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Abstract

The objectives of this study are to develop the SEIR model for COVID-19 and evaluate its main parameters such as

therapeutic vaccines, vaccination rate, and effectiveness of prophylactic. Global and local stability of the model

and numerical simulation are examined. The local stability of equilibrium points was classified. A Lyapunov
function is constructed to analyze the global stability of the disease-free equilibrium. The simulation part is based

on two situations, including the USA and Iran. Our results provide a good contribution to the current research

on this topic.
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1. Introduction

The ponder of illness flow may be an overwhelming subject for numerous scientists and mathematicians. Any
condition which interferes with the normal functioning of the body and causes discomfort, disability, or impairment of
the health of a living organism is called a disease. The impact of severe diseases on people is a real concern in terms
of suffering as well as social and economic implications. The control of these acute diseases has been a great concern
for bio-mathematicians and medical experts. It has been approved that these infectious diseases are fatal to billions
of people and can also cause the loss of their worth. Mathematical modeling plays a crucial role in the study of these
adverse types of diseases [1, 4, 20, 23, 28, 30].

In the recent era, Corona virus 2 is the cause of COVID-19 which is a severe acute respiratory disease [1, 27, 31].
Golmankhaneh el al. formulated fractal functional differential equations as a framework that provides a mathematical
model for the phenomena with fractal time and fractal structure [11]. The droplets, airborne, and closed contact
transmission lead to virus spread from person to person [2, 5, 12, 14]. Symptoms of many COVID-19 infected patients
are minimal [13, 16, 21]. Recent reports indicate that 15− 45% of COVID-19 cases are asymptomatic, which includes
two categories:
• Asymptomatic (meaning those who never become symptomatic),
• Pre-symptomatic (pre-symptomatic means asymptomatic people who subsequently become symptomatic).
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Symptoms of COVID-19 patients were mild, moderate, and severe. They included joint pain, cough, nasal con-
gestion, diarrhea, runny nose, fatigue, chills, headache, muscle pain, nausea, sore throat, vomiting, and fever. The
first known human coronavirus infection occurred in early December 2019. The virus first broke out in mid-December
2019 in Wuhan, China, and in a short period caused many casualties [31]. Nowadays, the virus has recently caused
epidemics around the world in more than 215 countries with 35,604,464 confirmed cases and 1,120,378 mortality, as
of October 2, 2021. https://covid19.who.int. Due to the extent of the damage that COVID-19 has done to the
world, various research is underway to find the best way to reduce the spread of COVID-19, but until this research,
no definitive treatment has been found [15, 19]. By increasing of COVID-19 cases, predicting the number of infected
cases and the termination of COVID-19 are important. Despite the production of effective vaccines against COVID-19,
unfortunately, countries with limited resources, such as Iran, have not yet been able to bring their vaccination cover-
age to an acceptable level, and this is due to the injustice of the economic system worldwide [1]. Therefore, in these
circumstances, it seems that mathematical models predict the spread of disease, especially for health policymakers in
these countries to adopt the necessary policies to control the disease and prevent its spread. The infectious disease
mathematical model is a crucial tool that has been used to study the spreading mechanism of diseases [1].

In this research, we created the well-known frame of the SEIR model with four compartments of

• Susceptible population, (S);
• Exposed population, (E);
• Infectious population, (I);
• Recovered population, (R);

to investigate a system of ordinary differential equations to model the efficiency of vaccines for the COVID-19 situation
in the US and Iran. In this model, we divide people into four groups which is the dynamics diagram of the COVID-19
disease model shown in Figure 1. The SEIR model is appropriate for malady transmission in which a contaminated
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νps
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Figure 1. Model SEIR for COVID-19.

person needs a brief period to be irresistible. In this study, we employed the SEIR prepared with the adequacy of
immunization to figure the COVID-19 circumstance when an antibody comes out.

In 2020, Rezapour et al. provided a SEIR epidemic model (Figure 2)

dS

dt
= ωµS− (β1E + β2I)S,

dE

dt
= (β1E + β2I)S− (λ+ µ)E,

dI

dt
= λE− (τ + µ+ δ)I,

dR

dt
= τI− µR,

https://covid19.who.int
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for the spread of COVID-19 using the Caputo fractional derivative where ω = n × N, N is the total number of
individuals and n is the birth rate, µ is the death rate of people, β1, β2 are the transmission rate of infection from E to
S, I to S, respectively, λ is the transmission rate of people from E to I, δ is the mortality rate due to the disease, and τ
is the rate of recovery of infected people [24]. Also, the feasibility region of the system and its equilibrium points were
calculated, and the stability of the equilibrium points and the approximate solution to the model were investigated
via fixed point theory and fractional Euler method [24]. To predict the transmission of COVID-19 in Iran and in the
world, we provide a numerical simulation based on real data [24].

S E

I R

β1E + β2I

λI

τI

µS

ω

µE

δI

µI

µR

Figure 2. SEIR model of COVID-19 introduce by authors in [24].

Khan et al. in [3], described the mathematical modeling and dynamics of a novel corona virus (2019-nCoV)



dSb
dt

= ωΠb − µbSb −
ηbSbIb
Nb

,

dEb
dt

=
ηbSbIb
Nb

− (µb + θb)Eb,

dIb
dt

= θbEb − (τb + µb)Ib,

dRb
dt

= τbIb − µbRb,



dSh
dt

= ωΠh − µhSh −
ηbhShIb

Nh
− ηhShIh

Nh
,

dEh
dt

=
ηbhShIb

Nh
+
ηhShIh
Nh

− (µh + θh)Eh,

dIh
dt

= θhEh − (τh + µh)Ih,

dRh
dt

= τhIh − µhRh,

by reducing the model with the assumptions that the seafood market has enough sources of infection and then formulate
a fractional model where Sb(t), Eb(t), Ib(t), and Rb(t) at any time t with Nb(t) = Sb(t) + Eb(t) + Ib(t) + Rb(t), and Nh(t)
is unknown host, which is classified into four subgroups, that is Sh(t), Eh(t), Ih(t), and Rh(t) respectively, show the
susceptible, exposed, infected and the recovered or removed hosts with

Nh(t) = Sh(t) + Eh(t) + Ih(t) + Rh(t).

Figure 3 shows the model. In 2021, Qesmi et al. introduced models of increasing complexity for COVID-19 trans-
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Figure 3. Interaction among basts and host in [3].

mission by considering an SEAIR model

dS

dt
= −((1− γ)pβc + (1− θ)(1− (1− γ)p)βN )S(t)(A(t) + Su(t)/N,

dE

dt
= ((1− γ)pβc + (1− θ)(1− (1− γ)p)βN )S(t)(A(t) + Iu(t))/N − k E,

dA

dt
= kE− δA(t),

dIu
dt

= δ1A(t)− µIu(t)− dIu(t),

dH

dt
= δ2A(t)− µH− dH, dR

dt
= µ(H + Iu(t)),

dD

dt
= d(H + Iu(t)),

including basic characteristics related to COVID-19 [22]. In addition, Baba et al. constructed a fractional order
COVID-19 model SEIHRV consisting of six compartments in Caputo sense

C
0D

α
t S(t) = Y α − βαSI− θαSV− µαS,

C
0D

α
t E(t) = βαSI + θαSV− (µα + γalpha+ ηα1 ) E,

C
0D

α
t I(t) = γαE− (µα + πα + ζα1 + ηα2 ) I,

C
0D

α
t H(t) = παI− (µα + ζα2 + ηα3 ) H,

C
0D

α
t R(t) = ηα1 E + ηα2 I + ηα3 H− µαR,

C
0D

α
t V(t) = qα1 E + qα2 I− rαR,

where the compartments S(t), E(t), I(t), H(t), R(t), and V(t) stands for susceptible, exposed, infected, hospitalized,
recovered, and virus compartments, respectively, to study the shedding effect, by adding compartment V(t) for con-
taminated surfaces [6].

The future situation of an outbreak can be predicted by a mathematical model. It can also assess the leading
technique to control spreading illnesses. There are numerous distinctive sorts of numerical models for foreseeing a
plague disease. One of them is called compartment models. A compartment demonstrates a curious apparatus for the
COVID-19 circumstance. A recent research study has been conducted on studying the model related to the efficiency
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of vaccines for COVID-19 situation in US and India [29].

The rest of this paper is arranged as follows: In section 2, we remember what fractional integral and derivative
mean. We make a plan and look at all the places where things balance out. Then we see if these places are stable
both in the whole world and in their smaller surroundings. This is explained in section 3. Section 4 is where we find
solutions that are greater than or equal to zero for model 3.1. We try out model 3.1 in two situations. Specifically,
we use measurements from the USA and Iran that we wrote down in section 5. We looked at the situation in both
countries and made a guess about how bad COVID-19 could get once vaccines are available. This is explained in
section 5. In section 6, there is a conclusion about the model 3.1.

2. Preliminaries

This section is dedicated to introduce some introductory definitions and the fundamental concepts of fractional
differential calculus (some related studies can be seen in [17, 25]). Recently, a new definition of fractional derivative
and fractional integration has hugely evolved, namely the derivatives with nonsingular kernel and new Riemann-
Liouville fractional derivative without singular kernel to the two-parameter derivatives with non-singular and nonlocal
kernel [7, 9, 10].

Among all these, the two most commonly used definitions are defined as follows: The Rieman-Liouville and Caputo
(CFD) derivative of order λ for an integrable function ϕ, are defined as form

Dλ
t ϕ(t) =


1

Γ(m− λ)

dm

dtm

∫ t

0

ϕ(ξ)

(t− ξ)λ−m+1
dξ, m− 1 < λ < m,

dm

dtm
ϕ(t), λ = m ∈ N,

(2.1)

and

Dλ
∗ ϕ(t) =


1

Γ(m− λ)

∫ t

0

ϕ(m)(ξ)

(t− ξ)λ−m+1
dξ, 0 ≤ m− 1 < λ < m, m ∈ N,

dm

dtm
ϕ(t), λ = m, m ∈ N.

(2.2)

respectively. The most used definition of the Riemann-Liouville fractional integration is given by

I λϕ(t) =


1

Γ(λ)

∫ t

0

ϕ(ξ)

(t− ξ)−λ+1
dξ, t > 0, λ > 0,

ϕ(t), λ = 0.

(2.3)

The relation between Caputo fractional differential operator and Riemann-Liouville integral operator is given by the
following.

Lemma 2.1. [18] Let m be a positive integer number and m− 1 < λ ≤ m then Dλ
∗I λϕ(t) = ϕ(t) and

I λDλ
∗ ϕ(t) = ϕ(t)−

m−1∑
κ=0

ϕ(κ)(0)
tκ

κ!
, t > 0.

We use this lemma in most of Theorems in this paper.

3. Creating a plan or strategy to solve a problem

In viral pandemic, mathematical models are important for predicting virus behavior and how it is transmitted from
person to person in different parts of the world to help manage the disease. To evaluate the prevalence of diseases,
various mathematical models such as SIR, SIRD, SEIRD, SIRS, SEAIHRD, MSEIR, SIRC, SEIR, etc. are used. According
to the World Health Organization, there are two types of people with COVID-19. The timelines of infection within
the host can be best described with reference to the dynamics of infectiousness and of disease (Figure 4). Both start
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with the active disease of the vulnerable host by the parasite. The timeline of infectiousness includes the latent period,
the time interval from infection to development of infectiousness, and the period of infectiousness of the host, during
which time the host could infect another host.

Eventually, the host becomes noninfectious either by recovery from the infection, possibly developing immunity, or
by death. The host can also become noninfectious while still alive and still harboring the parasite [1]. The timeline
of disease within the host includes the incubation period, the time from infection to development of symptomatic
disease, and the symptomatic period. The probability of developing symptoms or disease after becoming infected
is the pathogenicity of the interaction of the parasite with the host. Eventually, the host leaves the symptomatic
state either by recovering from the symptoms or by death. The host becomes an infectious carrier if he recovers from
symptoms but remains infectious. The terminology used in infectious disease epidemiology always differs from that
of non-infectious disease epidemiology. The term latent period refers the time corresponding to the period from the
development of asymptomatic disease to the development of symptoms. The incubation period in infectious disease
is a combination of what is called the induction and the latent periods in noninfectious diseases. The way two lines
on Figure 4 are set up and how they are connected is different for each parasite. This can affect the health of lots of
people and how studies are designed [1].

Time of infection
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Figure 4. Timeline for infection and disease.

One group is asymptomatic and the other is symptomatic, both of which can transmit the disease to healthy people,
and in this case, the infected people either recover or die. Therefore, one of the above models can be selected for
research. On the other hand, since vaccine administration is one of the effective methods of preventing and reducing
viral infections and accurate information is not available from groups such as the number of admissions, etc., we used a
simple model called SEIR and looked at how well a vaccine would work to predict what might happen with COVID-19
in the future. The system of ordinary differential equations related to the SEIR model for COVID-19 in Figure 1 as
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follows: 

dS

dt
= −(νps + d0)S − β(1− νps)SI + b0,

dE

dt
= β(1− νps)SI− (d1 + α+ (1− α)νpe)E,

dI

dt
= αE− (d2 + γ + (1− γ)νpi)I,

dR

dt
= νpsS + νpe(1− α)E + (γ + (1− γ)νpi)I− d0R,

via initial conditions 0 ≤ S(0), E(0), I(0), R(0) < 1.

In this section, we aimed to change the time derivative with the CFD. The ordinary derivative includes an inverse
second dimension 1

s and the fractional derivative Dν has a dimension of s−ν . To solve this problem, we employed
an auxiliary parameter θ with a second dimension s called the cosmic time (https://www.worldometers.info/
coronavirus).

By the parameter, from a physical point of view, we will have[
θν−1CDν

]
=

[
d

dt

]
=

1

s
.

Therefore, the COVID-19 mathematical model based on fractional derivatives for t > 0 and λ ∈ (0, 1) is presented as
follows:

θλ−1Dλ
∗ S(t) = −(νps + d0)S− β(1− νps)SI + b0,

θλ−1Dλ
∗ E(t) = β(1− νps)SI− (d1 + α+ (1− α)νpe)E,

θλ−1Dλ
∗ I(t) = αE− (d2 + γ + (1− γ)νpi)I,

θλ−1Dλ
∗ R(t) = νpsS + νpe(1− α)E + (γ + (1− γ)νpi)I− d0R,

(3.1)

such that the initial conditions are

S(0) = S0 > 0, E(0) = E0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0.

The variables and parameters used in (3.1) is explained in Table 1.

Table 1. The parameters description used in model.

The physical interpretation Variable/Parameter

Changing rate from E to I α
Effective transmission rate of COVID-19 β
Changing rate from I to R γ
Vaccination rate of population ν
Birth rate of population b0
Death rate of population without COVID-19 d0

Death rates of exposed and infectious population plus d0 d1, d2

Effectiveness of vaccination in E, I, S pe, pi, ps

Consider the set

Λ =

{
(S, E, I, R) ∈ C

(
[0,∞)4

)
: Y (t) ≤ b0

d0

}
,

with Y = S + E + I + R. The next Lemma shows that the closed set Λ is the invariant set with respect to fractional
system of (3.1).

https://www.worldometers.info/coronavirus
https://www.worldometers.info/coronavirus
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Lemma 3.1. The closed set Λ is positively invariant with respect to fractional system (3.1).

Proof. By adding all of the relations in system (3.1), we have:

θλ−1(Dλ
∗ S(t) + Dλ

∗ E(t) + Dλ
∗ I(t) + Dλ

∗ R(t)) = b0 − d0(S + E + I + R) + (d0 − d1) + (d0 − d2)I.

Hence, θλ−1Dλ
∗ Y (t) = b0 − d0(Y (t)) + (d0 − d1)E + (d0 − d2)I. Thus,

θλ−1
(
Dλ
∗ Y (t)

)
≤ b0 − d0Y (t) =⇒ Dλ

∗ Y (t) ≤ θ1−λb0 − θ1−λd0Y (t).

By applying [8, Theoremm 7.2] and [8, Remark 7.1], we conclude:

Y (t) ≤ Y (0)Eλ
(
−d0θ

1−λtλ
)

+

∫ t

0

b0θ
1−λzλ−1Eλ,λ

(
−d0θ

1−λzλ
)

dz.

Hence,

Y (t) ≤ Y (0)Eλ(−d0θ
1−λtλ) +

∫ t

0

b0θ
1−λzλ−1

∞∑
i=0

(−1)idi0θ
(1−λ)iziλ

Γ(iλ+ λ)

= Y (0)Eλ(−d0θ
1−λtλ) + b0θ

1−λ
∞∑
i=0

(−1)idi0θ
(1−λ)itiλ+λ

Γ(iλ+ λ+ 1)
dz

= Y (0)Eλ(−d0θ
1−λtλ)− b0

d0

∞∑
i=0

(−1)idi0θ
(1−λ)itiλ

Γ(iλ+ 1)

= Y (0)Eλ(−d0θ
1−λtλ)− b0

d0
(Eλ

(
−d0θ

1−λtλ−1)
)

=
b0
d0

+ Eλ(−d0θ
1−λtλ)

(
Y (0)− b0

d0

)
.

Thus if Y (0) ≤ 1
d0
b0, then so Y (t) ≤ 1

d0
b0, for each positive real number t. Therefore, the closed set Λ is positively

invariant with respect to fractional model (3.1). This complete the proof. �

4. Equilibrium points and their stability

Equilibrium points of the system (3.1) can be determined by solving the following equations:

Dλ
∗ S(t) = Dλ

∗ E(t) = Dλ
∗ I(t) = Dλ

∗ R(t) = 0.

That equivalence to

−(νps + d0)S− β(1− νps)SI + b0 = 0,

β(1− νps)SI− (d1 + α+ (1− α)νpe)E = 0,

αE− (d2 + γ + (1− γ)νpi)I = 0,

νpsS + νpe(1− α)E + (γ + (1− γ)νpi)I− d0R = 0.

(4.1)

It is clearly, whenever there is no spread of the disease; i.e., E ≡ 0 ≡ I, then a disease-free equilibrium (DFE) is
occurred. Hence the DFE point is obtained as

ϕ0 = (S0, E0, I0, R0) =

(
b0

νPs + d0
, 0, 0,

b0νPs
d0(νPs + d0)

)
.
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If R0 > 1, one can find others equilibrium points of the model by solving 4.1. So, we obtain the endemic equilibrium
points of the model whenever S, E, I, R is against zero, and it is in the form: ϕ1 =

(
S1, E1, I1, R1

)
, where

S1 =
ξη

αβ(1− νps)
, E1 =

b0
ξ
− η(νps + d0)

αβ(1− νps)
, I1 =

αb0
ξη
− (νPs + d0)

β(1− νps)
,

R1 =
1

d0

[
ξηνps

αβ(1− νps)
+ νpe(1− α)

(
b0
ξ
− η(νps + d0)

αβ(1− νps)

)
+ (γ + (1− γ)νpi)

(
αb0
ξη
− 1

β(1− νps)
(νps + d0)

)]
,

here ξ = d1 +α+ (1−α)νpe, and η = d2 +γ+ (1−γ)νpi. Also, R0 is the basic reproduction number, which is obtained
as the spectral radius of FV −1 which is equal to spectral radius of V −1F and

F =

[
0 β(1− νps)S
α 0

]
, V =

[
ξ 0
0 η

]
. (4.2)

It’s clearly

V −1F =
1

ξη

 0 βη(1− νps)S

αξ 0

 . (4.3)

Thus, R0, corresponding to the DFE, i.e., for S(0) = 1
νPs+d0

b0, is in the form

R0 =

[
αβ(1− νps)b0
ξη(psν + d0)

]0.5

.

Theorem 4.1. (i) The DFE point ϕ0 of system (3.1) is globally asymptotic stable; ii) The equilibrium point ϕ1 of
system (3.1) is locally asymptotic stable.

Proof. The system (3.1) has the jacobian matrix as follows

J = θ1−λ



−(νps + d0)− β(1− νps)I 0 −β(1− νps)S 0

β(1− νps)I −ξ β(1− νps)S 0

0 α −η 0

νps νpe(1− α) (γ + (1− γ)νpi) −d0

 . (4.4)

Thus, at E(0) = I(0) = 0, the Jacobian matrix os system is �

J(E0) = θ1−λ



−(νps + d0) 0 −βb0(1−νps)
νps+d0

0

0 −ξ βb0(1−νps)
νps+d0

0

0 α −η 0

νps νpe(1− α) η − d2 −d0


. (4.5)

Now, the characteristic equation of the Jacobian matrix at the DFE point J(E0) is

det(J(E0)− xI) = 0.

By compute of characteristic polynomial, we obtain:

det(J(E0)− xI) = θ1−λ(x+ d0)(x+ νps + d0)
[
x2 + (ξ + η)x+ η(α+ ξ)

]
= 0. (4.6)

The eigenvalues of the characteristic equation are x = −d0, x = −(d0 + νPs), and the roots of the equation

x2 + (ξ + η)x+ η(α+ ξ) = 0.
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But this equation has two negative real root or no, so E0 is asymptotically stable in two cases. Now, we consider the
Jacobian matrix (3.1) at the endemic equilibrium point E1.

J(E1) = θ1−λ



−(νps + d0)− β(1− νps)I1 0 −β(1− νps)S1 0

β(1− νps)I1 −ξ β(1− νps)S1 0

0 α −η 0

νps νpe(1− α) η − d2 −d0

 . (4.7)

Hence, let

θ1−λ det



−(A+ x) 0 − ξηα 0

A− (d0 + νPs) −(ξ + x) ξη
α 0

0 α −(η + x) 0

νPs νPe(1− α) η − d2 −(d0 + x)



= −θ1−λ(x+ d0) det


−(A+ x) 0 − ξηα

−(x+ d0 + νPs) −(x+ ξ) 0

0 α −(η + x)


= θ1−λ(x+ d0)

[
x3 + (A+ ξ + η)x2 + (ξ + η)Ax+ ξη(A− d0 − νPs)

]
,

here A = 1
ξη αβb0(1− νPs). Since E1 > 0 thus all of real root of characteristic equation are negative and this implies

that E1 is locally asymptotically stable.

5. The model’s numerical simulations and interpretation

We simulate model 3.1 under two cases, USA and Iran. The simulation have been done by MATLAB program. The
Figure 5 shows that, if the rate of vaccination per day is increased, the infection rate is significantly reduced. Indeed,
the vaccination rate has an important role to terminate the pandemic. Hence, the maximum value of R0 in USA

Table 2. Parameter values and initial populations.

Initial/Parameter USA Iran

S(0) 89838× 10−5 96689× 10−5

E(0) + I(0) 2177× 10−5 591× 10−5

R(0) 7985× 10−5 272× 10−4

β 462× 10−3 233× 10−3

α 8696× 10−5 8696× 10−4

γ 686× 10−4 686× 10−4

b0 4.9307× 10−5 3.285× 10−5

d0 2.459× 10−5 1.330× 10−5

d1 2.675× 10−5 1.549× 10−5

d2 2.675× 10−5 1.549× 10−5
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and Iran was 2.9985 and 3.4982, respectively. As the vaccination rate (ν) increased, the values of R0 decreased with
respect to effectiveness of prophylactic (ps) and therapeutic (pe, pi) vaccines, as shown in Figure 5. Also, if the rate of
vaccination per day of the populations is under 0.00019, (0.019%), in USA and 0.00014, (0.014%), in Iran, the number
of people who can get sick from a disease is still high, even with vaccines. According to Figure 5, the infection rate in
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Figure 5. Graphical representation of effectiveness of prophylactic vaccines and treatment for USA and Iran under
vaccination rate is {0.2, 0.4, 0.6, 0.8, 1.0} with the range of vaccination rate per day.

the two cases USA and Iran will be decreased whenever the rate of vaccination per day is increased (0− 5%) in both
countries. Hence the vaccination rate plays an important role to terminate the pandemic. Vaccines can also help reduce
the chance of getting sick, for more instance, see https//www.cdc.gov/flu/vaccines-work/vaccineeffect.htm.

Moreover, with the same efficiency of 70% of prophylactic vaccines and 60% of treatment, the USA requires a higher
rate of vaccination than Iran to flatten the curve as seen in Figure 6.

Figure 7 depicts the difference between efficiency of prophylactic vaccines and treatment in terms of SARS-CoV-
2 infection in humans. The effectiveness of both prophylactic vaccines and treatment was set to the same values.
The results demonstrated that prophylactic vaccine had was more efficient than treatment in both the USA and Iran.
Prophylactic vaccine can stimulate the immune system and produce long-lived memory lymphocytes [26]. Subsequently,
the immune system can rapidly respond to viral infection, resulting in a decrease in infected cases. The equilibrium
point related to the USA and Iran situations can be computed by using Equation 4.1. With the vaccination rate 0.1%
per day of the USA population (ν = 0.001) and 90% efficiency of prophylactic vaccines and treatment, the equilibrium
point corresponding to the fixed parameters in Table 2 of the US case is

ϕ0 = (S0, E0, I0, R0) = (0.05333, 0, 0, 2.00516).

If there is no vaccine, the equilibrium point of the USA case is

ϕ1 = (S1, E1, I1, R1) = (0.14858, 0.00034, 0.00043, 1.18655),

that’s the illness will not kick the bucket out in the long run. Within the long term, there are almost 0.043% infectious
of the USA population. Iran’s case has

ϕ0 = (S0, E0, I0, R0) = (0.03553, 0, 0, 2.40421),

https//www.cdc.gov/flu/vaccines-work/vaccineeffect.htm
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Table 3. Numerical values of Effectiveness of prophylactic and therapeutic vaccines.

Ps ν = 0.2 ν = 0.4 ν = 0.6 ν = 0.8 ν = 1.0

Case USA

0.0E + 00 2.99851 2.99851 2.99851 2.99851 2.99851
1.0E − 05 2.88353 2.78084 2.68840 2.60460 2.52817
2.0E − 05 2.78084 2.60460 2.45811 2.33384 2.22670
3.0E − 05 2.68840 2.45811 2.27838 2.13307 2.01243
4.0E − 05 2.60460 2.33384 2.13307 1.97655 1.85009
5.0E − 05 2.52817 2.22670 2.01243 1.85009 1.72160
6.0E − 05 2.45811 2.13307 1.91019 1.74516 1.61663
7.0E − 05 2.39356 2.05034 1.82209 1.65627 1.52879
8.0E − 05 2.33384 1.97655 1.74516 1.57971 1.45386
9.0E − 05 2.27838 1.91019 1.67722 1.51287 1.38897

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

9.0E − 04 1.03945 0.75807 0.62561 0.54472 0.48878
9.1E − 04 1.03440 0.75415 0.62231 0.54181 0.48616
9.2E − 04 1.02943 0.75030 0.61906 0.53895 0.48357
9.3E − 04 1.02453 0.74650 0.61586 0.53614 0.48103
9.4E − 04 1.01970 0.74277 0.61271 0.53337 0.47853
9.5E − 04 1.01494 0.73908 0.60961 0.53064 0.47607
9.6E − 04 1.01024 0.73546 0.60655 0.52795 0.47364
9.7E − 04 1.00560 0.73188 0.60355 0.52530 0.47125
9.8E − 04 1.00103 0.72836 0.60058 0.52270 0.46890
9.9E − 04 0.99653 0.72488 0.59766 0.52013 0.46658

Case Iran

0.0E + 00 3.49842 3.49842 3.49842 3.49842 3.49842
1.0E − 05 3.26112 3.06636 2.90278 2.76287 2.64142
2.0E − 05 3.06636 2.76287 2.53469 2.35507 2.20891
3.0E − 05 2.90278 2.53469 2.27848 2.08698 1.93684
4.0E − 05 2.76287 2.35507 2.08698 1.89356 1.74556
5.0E − 05 2.64142 2.20891 1.93684 1.74556 1.60165
6.0E − 05 2.53469 2.08698 1.81505 1.62759 1.48832
7.0E − 05 2.43993 1.98323 1.71368 1.53070 1.39608
8.0E − 05 2.35507 1.89356 1.62759 1.44928 1.31910
9.0E − 05 2.27848 1.81505 1.55330 1.37961 1.25360
1.0E − 04 2.20891 1.74556 1.48832 1.31910 1.19697
1.1E − 04 2.14535 1.68348 1.43088 1.26592 1.14739
1.2E − 04 2.08698 1.62759 1.37961 1.21869 1.10349
1.3E − 04 2.03312 1.57692 1.33348 1.17638 1.06427

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

9.0E − 04 0.91629 0.65927 0.54145 0.47028 0.42136
9.1E − 04 0.91159 0.65576 0.53854 0.46774 0.41907
9.2E − 04 0.90695 0.65231 0.53567 0.46523 0.41681
9.3E − 04 0.90239 0.64891 0.53285 0.46276 0.41460
9.4E − 04 0.89789 0.64557 0.53007 0.46034 0.41241
9.5E − 04 0.89346 0.64228 0.52734 0.45795 0.41027
9.6E − 04 0.88910 0.63903 0.52465 0.45560 0.40815
9.7E − 04 0.88480 0.63584 0.52199 0.45328 0.40607
9.8E − 04 0.88056 0.63269 0.51938 0.45100 0.40402
9.9E − 04 0.87638 0.62959 0.51681 0.44875 0.40200

for ν = 0.001 and 90% vaccines efficiency, and it has

ϕ1 = (S1, E1, I1, R1) = (0.29520, 0.00020, 0.00025, 3.30911),

for no vaccines. Similarly to the USA, a few percentages (0.025%) of Iran’s populace are irresistible within the long
term in case there’s no immunization.

Finally, the numerical simulations with different values of CFD λ are carried out. In Figure 6, we have platted
the result of model 3.1 for value λ = 0.97 and ν = 0.001, 0.01, 0.05. But in Figure 8, the value ν = 0.01 is fixed
and the values of λ are 0.80, 0.85, 0.90, 0.95. These results are obtained from Algorithm 1 that are available in the
supplementary material section. As you can see in these Figures, The factors have diverse comes about in several sums
of λ but show the same behavior. The figure of the USA case appears that the number of individuals with COVID-19
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Figure 6. Graphical representation of fraction of USA and Iran infection cases over time if we had 70% effectiveness
of prophylactic vaccines and 60% effectiveness of treatment, with different rate of vaccination ν = 0, 0.001, 0.01, 0.05%

per day of each population.
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Figure 7. Graphical representation of fraction of USA and Iran infection cases over time if we had 70% effectiveness

of prophylactic vaccines and 60% effectiveness of treatment, with different rate of vaccination ν = 0, 0.001, 0.01, 0.05%
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increments until nearly 100 days and after that decreases, but the bend within the Iran case increases until nearly for
more than 100 days and after that diminishes. Of course, for less than many infected people.
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Figure 8. A picture showing how many people in the USA and Iran got sick over time if a vaccine worked really well,

preventing 70% of infections of prophylactic vaccines, 60% effectiveness of treatment and rate of vaccination ν = 0.01,
with fractional derivative of order λ = 0.80, 0.85, 0.90, 0.95 per day of each population

Moreover, we have assessed the impacts of fragmentary arrange λ on the dynamical behavior of the Caputo model 3.1
for all three compartments in Iran. As seen in Figure 9a, the vulnerable populace diminished with expanding λ, while
as appeared in Figure 9b, with expanding the irresistible populace values of λ expanded, and this makes sense since
the helpless populace, after being tainted, is moved to (I) compartment, subsequently coming about in an increment
in that. As appeared in Figure 9c, the recouped populace moves forward on the off chance that λ gets huge.

6. Conclusion

We made a model for COVID-19 called SEIR and looked at important things like how many people get vaccinated
and how well vaccines work to prevent or treat the disease. We found out how fast the system reproduces and where
it stops growing. We also studied how steady the system is in a special type of math problem. The number of times a
virus can be spread and the points where it stops spreading have been figured out using computer calculations. Our
findings show that the system is balanced and steady if each function reaches its equilibrium point.

• The USA situation showed that if 0.1% of people got vaccinated each day and the vaccines were at least 20%
effective, the number of people who caught the virus went down. Before vaccines, each person with the virus
could spread it to almost 3 other people. But with vaccines, less than 1 person could get it from each sick
person.

• Iran had a maximum reproductive number of 3.38, which is the same as the result found.

To obtain the same infection level in both countries, the simulation results revealed that with the same vaccine’s
efficiency the US would require a higher vaccination rate per day.

Although the research on COVID-19 has been continuously going on and achieved excessive progress, certain
limitations, especially in accessing the data source for pandemic modeling, is inevitable. Even when the data is
accessible, there is no certainty that the data is complete, or in perfect condition, with full information available. As
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Figure 9. Graphical representation of effects of fractional order λ on the dynamical behavior of Caputo model for

all three compartments of Iran case per day of each population

a result, despite currently having very few applications to mathematical modeling or pandemic prediction, the Grey
Systems theory has tremendous potential for later development. Not only can it make accurate and reliable predictions
for policy-making and controlling purposes, but Grey data analysis can also shed light on important insights that can
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help us understand much more about the pandemic in the near future, assisting researchers in containing this disease,
at the worldwide level.

Therefore, it is recommended that the effect of each of the coefficients in the model on the disease transmission
process be evaluated in future studies. Also, more studies are needed to be conducted in order to optimally control
the disease spread model and investigate the effect of drugs and vaccination on the current model.
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