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Abstract

Our research is about the Sturm-Liouville equation which contains conformable fractional derivatives of order
α ∈ (0, 1] in lieu of the ordinary derivatives. First, we present the eigenvalues, eigenfunctions, and nodal points,

and the properties of nodal points are used for the reconstruction of an integral equation. Then, the Bernstein

technique was utilized to solve the inverse problem, and the approximation of solving this problem was calculated.
Finally, the numerical examples were introduced to explain the results. Moreover, the analogy of this technique

is shown in a numerical example with the Chebyshev interpolation technique .
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1. Introduction

Inverse nodal problem (INP) was researched by J. R. McLaughlin [20]. In this regard, several uniqueness theorems
were introduced, and it became evident that knowing about the nodal points is enough to specify the potential
function related to the problem of Sturm-Liouville towards a constant on an infinite interval. The connection between
the function of density and the nodal points related to the string equation was researched by Shen [27]. Hald and
McLaughlin presented numerical results [11] to restructure the density function related to string vibration. Numerous
researchers objectively studied inverse nodal problems [28, 30, 31].
Applied mathematics and mathematical analysis widely utilized the fractional derivative of 1695. Various kinds of
fractional derivatives have been made by a lot of authors [16, 21, 23, 24]. The conformable fractional derivative was
defined by Khalil et al. in 2014 [14]. In [1, 4, 12], this derivative’s rudimentary features and preliminary results
are introduced. A diverse range of fields, namely quantum mechanics, dynamical systems, time scale problems, etc.,
utilized this derivative [7, 33]. Some studies have been developed for fractional differential equations (for example see
[6, 9, 29]).
In recent years, some authors solved inverse problems which include the fractional derivatives [2, 5, 13, 14, 22, 25, 26].
In the present study, the following conformable fractional Sturm-Liouville problem of order α (0 < α ≤ 1) is regarded:

lαy := −TαTαy + q(x)y = λ2y, 0 < x < 1, (1.1)

y(0, λ) = y(1, λ) = 0. (1.2)

Here λ is the spectral parameter, q(x) ∈W 1
2,α[0, 1] is a real-valued function.

The Bernstein technique has been used to compute the approximate potential function by solving inverse nodal problem
in this equation; therefore, this study is considered to be new.
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2. Main results

Some notations of conformable fractional calculus are evoked, and we can see more detailed knowledge [1, 4, 14].

Definition 2.1. ([14]) Suppose that G : [0,∞)→ < is considered. The conformable fractional derivative of G of order
α regarding x :

TαG(x) = lim
h→0

G(x+ hx1−α)− G(x)

h
, TαG(0) = lim

x→0+
TαG(x), x > 0.

If G is differentiable so that

G′(x) = lim
h→0

G(x+ h)− G(x)

h
,

then

TαG(x) = x1−αG′(x).

Definition 2.2. ([1]) Conformable fractional integral with order α is determined as:

IαG(x) =

∫ x

0

G(t)dαt =

∫ x

0

tα−1G(t)dt, x > 0.

Theorem 2.3. ([14]) Assume that F ,G is α- differentiable at x, x > 0,
(i) Tα(c1F + c2G) = c1TαF + c2TαG, ∀c1, c2 ∈ <,
(ii) Tα(xr) = rxr−α, ∀r ∈ <,
(iii) Tα(c) = 0, (c is a constant),
(iv) Tα(FG) = Tα(F)G + FTα(G),

(v) Tα(FG ) = Tα(F)G−FTα(G)
G2 , (G 6= 0).

Denote by y(x, λ) the solution of (1.1) under the conditions y(0, λ) = 0 and Tαy(0, λ) = 1. Hence, one can obtain
the conformable fractional Volterra integral equation as below

y(x, λ) =
1

λ
sin(

λ

α
xα) +

1

λ

∫ x

0

sin[
λ

α
(xα − tα)]q(t)y(t, λ)dαt. (2.1)

Using the technique of successive approximations, we deduce

y(x, λ) =
1

λ
sin(

λ

α
xα)− 1

2λ2
cos(

λ

α
xα)

∫ x

0

q(t)dαt+O

(
1

λ3

)
. (2.2)

The eigenvalues {λn}n≥1 coincide with zeros of the characteristic function

∆(λ) := y(1, λ) =
1

λ
sin(

λ

α
)− 1

2λ2
cos(

λ

α
)

∫ 1

0

q(t)dαt+O

(
1

λ3

)
, (2.3)

and we have the asymptotic formula:

λn = nπα+
ω

nπ
+O

(
1

n2

)
, n→∞, (2.4)

where ω = 1
2

∫ 1

0
q(t)dαt (see [10, 32]).

Theorem 2.4. According to Eq. (1.1) under the conditions

y(0, λ) = 0, Tαy(0, λ) = 1, (2.5)
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we formulate the nodes and nodal length of the problem (1.1) and (2.5) in the form of

xjn =

 j
n
− ωj

n3π2α
+

1

2n2π2α

∫ ( jn )
1
α

0

q(t)dαt+O

(
1

n3

) 1
α

, (2.6)

ljn = (cj)1−α

 1

nα
− ω

n3π2α2
+

1

2n2π2α2

∫ ( j+1
n )

1
α

( jn )
1
α

q(t)dαt

+O

(
1

n3

)
,

for some cj ∈ (xjn, x
j+1
n ).

Proof. Using (2.2),

y(x, λ) =
1

λ
sin(

λ

α
xα)− 1

2λ2
cos(

λ

α
xα)

∫ x

0

q(t)dαt+O

(
1

λ3

)
.

Considering the roots xjn, n > 1, j = 1, n− 1 of n-th eigenfunction, we take λ = λn and x = xjn. Thus,

1

λn
sin(

λn
α

(xjn)α)− 1

2λ2n
cos(

λn
α

(xjn)α)

∫ xjn

0

q(t)dαt+O

(
1

λ3n

)
= 0.

Using formula (2.4), we have

sin(nπ(xjn)α) +
ω

nπα
(xjn)α cos(nπ(xjn)α)− 1

2nπα

[
cos(nπ(xjn)α)− ω

nπα
(xjn)α sin(nπ(xjn)α)

]
×
∫ xjn

0

q(t)dαt+O

(
1

n2

)
= 0.

Thus,

tan(nπ(xjn)α) = − ω

nπα
(xjn)α +

1

2nπα

∫ xjn

0

q(t)dαt+O

(
1

n2

)
.

Therefore,

(xjn)α =
j

n
− ω

n2π2α
(xjn)α +

1

2n2π2α

∫ xjn

0

q(t)dαt+O

(
1

n3

)
, (2.7)

then, we can write

(xjn)α =
j

n
− ωj

n3π2α
+

1

2n2π2α

∫ ( jn )
1
α

0

q(t)dαt+O

(
1

n3

)
.

Also, we have

(xj+1
n )α − (xjn)α =

1

n
− ω

n3π2α
+

1

2n2π2α

∫ ( j+1
n )

1
α

( jn )
1
α

q(t)dαt+O

(
1

n3

)
.

Using the mean value theorem, it follows that

(xj+1
n )α − (xjn)α = α(cj)α−1(xj+1

n − xjn),

for some cj ∈ (xjn, x
j+1
n ). Hence, according to the definition of nodal length, we get

ljn =xj+1
n − xjn =

(xj+1
n )α − (xjn)α

α
(cj)1−α

=(cj)1−α

 1

nα
− ω

n3π2α2
+

1

2n2π2α2

∫ ( j+1
n )

1
α

( jn )
1
α

q(t)dαt

+O

(
1

n3

)
.

�
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We consider X to be a set of all nodes, then for each fixed x ∈ (0, 1) and α ∈ (0, 1], we can choose a sequence
{jn} ⊂ X so that limn→∞ xjnn = x. Now, we will give a uniqueness theorem.

Theorem 2.5. The potential function q − α
∫ 1

0
q is uniquely obtained by a dense subset of nodes in (0, 1).

Proof. Imagine that we have two problems of the kind (1.1)-(1.2) with q, q̃. Let the nodes xjnn , x̃jnn meeting xjnn = x̃jnn
make a dense subset in (0, 1). Solutions (1.1)-(1.2) can be taken as y for q and ỹ for q̃. It follows (1.1) that

Tα[(Tαy)ỹ − y(Tαỹ)] = [q − q̃ + λ̃2n − λ2n]ynỹn.

Integrating this formula from 0 to xjnn , we arrive at

(Tαy(xjnn ))ỹ(xjnn )− y(xjnn )(Tαỹ(xjnn )) =

∫ xjnn

0

[q − q̃ + λ̃2n − λ2n]ynỹndαt.

Since the nodes xjnn are the roots of n-th eigenfunction, then

(Tαy(xjnn ))ỹ(xjnn )− y(xjnn )(Tαỹ(xjnn )) = 0.

By choosing a sequence xjnn accumulating at an arbitrary x ∈ (0, 1), we have∫ x

0

[q − q̃ − α
∫ 1

0

(q − q̃)]ynỹndαt = 0,

and this holds for all x. Since ynỹn is bounded, hence we can write

q − q̃ − α
∫ 1

0

(q − q̃)dαt = 0,

and consequently, we come to the conclusion that q − α
∫ 1

0
q is uniquely obtained by a dense subset of nodal points

(also see [17, 28]). �

Furthermore, by formula (2.7), we have

nπ2α
(
n(xjn)α − j

)
= −ω(xjn)α +

1

2

∫ xjn

0

q(t)dαt+O

(
1

n

)
.

Similarly, one can derive

lim
n→∞

[
nπ2α

(
n(xjnn )α − jn

)]
= −ω(x)α +

1

2

∫ x

0

q(t)dαt.

Define

Q(x) := lim
n→∞

[
nπ2α

(
n(xjnn )α − jn

)]
,

thus,

Q(x) = −ω(x)α +
1

2

∫ x

0

q(t)dαt = −ω(x)α +
1

2
Iαq(x).

Using definition of ω, we arrive at

q(x)− α
∫ 1

0

q(t)dαt = 2TαQ(x).

Theorem 2.6. The specification of X and ω uniquely determines the potential q where

ω =
1

2

∫ 1

0

q(t)dαt.
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Proof. Suppose that q, q̃ and xjn, x̃jn are potential functions and nodes for two operators lα and l̃α, respectively.
Take xjn = x̃jn, j = 1, n− 1, n > 1, and let ω = ω̃. Therefore, in accordance with the definition ω, we obtain∫ 1

0
qdαt =

∫ 1

0
q̃dαt and at last by using Theorem 2.5, we have q = q̃ a.e. on (0, 1). Hence, the proof of this theorem is

completed (see [17]). �

3. Numerical solution of INP

INP. Let the points xjn, α be given, construct potential function q(x).

Using the specification of xjn, j = 1, n− 1, n > 1,, the formula (2.2) yields∫ xjn

0

q(x)dαx ∼= 2λn tan

(
λn
α

(xjn)α
)
. (3.1)

By using the Bernstein technique, we convert the above integral equation into a linear equation system. Since the
solution of (3.1) is also a solution of INP, we obtain the approximation of the q(x) with the Bernstein technique.
For the convenience of readers, we firstly present Bernstein’s technique as follows:

Fractional Bernstein polynomials and convergence analysis:

Definition 3.1. ([8, 19]) The N−th degree Bernstein basis polynomials on [0, 1] are defined as

Bk,N (x) =

(
N
k

)
xk(1− x)N−k, k = 0, N, (3.2)

so that, using the binomial theorem, it is clear that

Bk,N (x) =

N−k∑
i=0

(−1)i
(
N
k

)(
N − k
i

)
xk+i, k = 0, N.

The fractional Bernstein polynomials on [0, 1], obtained by substituting x→ xα in the formula (3.2), are formulated
in the form (see [3, 18])

Bαk,N (x) =

(
N
k

)
xkα(1− xα)N−k (3.3)

=

N−k∑
i=0

(−1)i
(
N
k

)(
N − k
i

)
x(k+i)α, k = 0, N,

and the arbitrary function F(x) defined on [0, 1] can be approximated by the fractional Bernstein polynomials as

F(x) ∼= BF,αN (t) :=

N∑
k=0

F(
k

N
)Bαk,N (x), (3.4)

where 0 < α ≤ 1 and N is any positive integer.
Substituting xα to x in the process used in proof of theorem 1.1.1 in [19], leads to an intersting result.
Let the function F(x) be α-integrable on [0, 1] and take F (x) =

∫ x
0
F(s)dαs. then, by using the same process with

[19], we can write
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PF,αN (x) = TαBF,αN+1(x)

=

N+1∑
k=0

F (
k

N + 1
)

(
N + 1
k

)
Tα
(
xkα(1− xα)N−k

)
=

N+1∑
k=1

F (
k

N + 1
)

(
N + 1
k

)
kαxα(k−1)(1− xα)N+1−k

−
N+1∑
k=0

F (
k

N + 1
)

(
N + 1
k

)
α(N + 1− k)xαk(1− xα)N−k

=

N∑
k=0

F (
k + 1

N + 1
)

(
N + 1
k + 1

)
(k + 1)αxαk(1− xα)N−k

−
N∑
k=0

F (
k

N + 1
)

(
N + 1
k

)
α(N + 1− k)xαk(1− xα)N−k

=

N∑
k=0

[
F

(
k + 1

N + 1

)
− F

(
k

N + 1

)]
α(N + 1)

(
N
k

)
xαk(1− xα)N−k

=

N∑
k=0

α(N + 1)

(
N
k

)
xαk(1− xα)N−k

∫ k+1
N+1

k
N+1

F(s)dαs (3.5)

=

N∑
k=0

CkBαk,N (x),

where Ck = α(N + 1)
∫ k+1
N+1
k

N+1

F(s)dαs. Therefore, if function F(x) is α-integrable on [0, 1], then we have

PF,αN (x) =

N∑
k=0

CkBαk,N (x). (3.6)

Theorem 3.2. At any point x of [0, 1] where F(x) is fractional derivative of its indefinite fractional integral of order
α, which is almost everywhere,

lim
N→∞

PF,αN (x) = F(x).

Proof. Like the process applied in [19], this theorem can be proved. �

The formula (3.5) can be considered as

PF,αN (x) =

N∑
k=0

∫ k+1
N+1

k
N+1

KN (x, s)F(s)dαs =

∫ 1

0

KN (x, s)F(s)dαs, (3.7)

where for 0 ≤ x ≤ 1

KN (x, s) = α(N + 1)

(
N
k

)
xαk(1− xα)N−k,

k

N + 1
< s ≤ k + 1

N + 1
, k = 0, N.

Substituting xα instead of x in the process used in proof of theorem 2.1.2 in [19], it can be shown that for any F ∈ Lp,α,

the polynomial PF,αN (x) is strongly convergent towards F .
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From (3.7), we consider PF,αN (x) =
∫ 1

0
KN (x, s)F(s)dαs, where for 0 ≤ x ≤ 1, k

N+1 < s ≤ k+1
N+1 , k = 0, N,

KN (x, s) = α(N + 1)

(
N
k

)
xαk(1− xα)N−k.

So, for 0 ≤ x ≤ 1, k
N+1 < s ≤ k+1

N+1 , k = 0, N , we have∫ 1

0

|KN (x, s)|dαs =

N∑
k=0

∫ k+1
N+1

k
N+1

α(N + 1)

(
N
k

)
xαk(1− xα)N−kdαs

=

N∑
k=0

α(N + 1)

(
N
k

)
xαk(1− xα)N−k

∫ k+1
N+1

k
N+1

dαs

=

N∑
k=0

α(N + 1)

(
N
k

)
xαk(1− xα)N−k

[
sα

α

] k+1
N+1

k
N+1

=

N∑
k=0

(N + 1)

(
N
k

)
xαk(1− xα)N−k

[(
k + 1

N + 1

)α
−
(

k

N + 1

)α]
. (3.8)

Using the mean value theorem, we have(
k + 1

N + 1

)α
−
(

k

N + 1

)α
=

α

N + 1
cα−1k ,

for some ck ∈
(

k
N+1 ,

k+1
N+1

)
, k = 0, N . Since c0 = min{c0, c1, ..., cN} and 0 < α ≤ 1, it follows from (3.8) that

∫ 1

0

|KN (x, s)|dαs = α

N∑
k=0

cα−1k

(
N
k

)
xαk(1− xα)N−k

≤ αcα−10

N∑
k=0

(
N
k

)
xαk(1− xα)N−k = αcα−10 ,

and also for k
N+1 < s ≤ k+1

N+1 ,∫ 1

0

|KN (x, s)|dαx =

∫ 1

0

α(N + 1)

(
N
k

)
xαk(1− xα)N−kdαx

= α(N + 1)

(
N
k

)∫ 1

0

xαk(1− xα)N−kdαx

= α(N + 1)

(
N
k

)∫ 1

0

xαk(1− xα)N−kxα−1dx

= (N + 1)

(
N
k

)∫ 1

0

tk(1− t)N−kdt

= (N + 1)

(
N
k

)
(N − k)!

(N + 1)N...(k + 2)(k + 1)
= 1.

Take M = max{1, αcα−10 }, assume that F ∈ H and H is a set of continuous functions in Lp,α. According to Theorem

3.2, we can write PF,αN → F and since H is an everywhere dense set in Lp,α (see [19]), thus for F ∈ Lp,α, PF,αN → F
in Lp,α.
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Therefore, the approximation solution of function q(x) ∈ L2,α(0, 1), can be computed by the fractional Bernstein
technique. In fact, according to (3.4), we have

q(x) ∼=
N∑
k=0

ckBαk,N (x) = XTφ(x), (3.9)

where

X = [c0, c1, . . . , cN ]T , φ(x) = [Bα0N (x),Bα1N (x), . . . ,BαNN (x)]T .

Substituting (3.9) into (3.1), for n > 1, j = 1, ..., n− 1, we arrive at

N∑
k=0

ck

∫ xjn

0

Bαk,N (x)dαx ∼= 2λn tan

(
λn
α

(xjn)α
)
.

Consequently, potential function q(x) can be created using the numerical algorithm as below:

Numerical algorithm:

1. Choose the values n, α. Set N = n− 2 and let the nodal points {xjn}n−1j=1 , be given.

2. Define the matrixes A and B in the form

A =



∫ x1
n

0
Bα0,N (x)dαx

∫ x1
n

0
Bα1,N (x)dαx . . .

∫ x1
n

0
BαN,N (x)dαx∫ x2

n

0
Bα0,N (x)dαx

∫ x2
n

0
Bα1,N (x)dαx . . .

∫ x2
n

0
BαN,N (x)dαx

. .

. . . . .

. .

∫ xn−1
n

0
Bα0,N (x)dαx

∫ xn−1
n

0
Bα1,N (x)dαx . . .

∫ xn−1
n

0
BαN,N (x)dαx


,

B =



2λn tan
(
λn
α (x1n)α

)
2λn tan

(
λn
α (x2n)α

)
.
.
.

2λn tan
(
λn
α (xn−1n )α

)


.

3. Compute the vector X = [c0, c1, . . . , cN ]T by the following linear system:

AX = B.

4. Calculate the values q(xi), i = 0, N, by the formula

[q(xi)] = XTΦ,

where

xi =
i

N
, i = 0, 1, ..., N, Φ = [φ(x0), φ(x1), ..., φ(xN )].
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4. Numerical examples

In this section, the Bernstein technique is applied to compute the approximate solution of INP, and the accuracy of
the presented technique is determined by furnishing the numerical examples. Further, a comparison of this technique
with Chebyshev interpolation technique can be seen in Example 4.1. To obtain the numerical results, we apply Matlab
software.

Example 4.1. Let the function q(x) = cos 3πx, and the value of α = 2
3 be given. Since

ω =
1

2

∫ 1

0

q(x)dαx =
1

2

∫ 1

0

xα−1 cos 3πxdx =
3

4
hypergeom

(
1

3
,

[
1

2
,

4

3

]
,
−9π2

4

)
,

and

q1(xjn) =
1

2

∫ xjn

0

q(x)dαx =
1

2

∫ xjn

0

xα−1 cos 3πxdx

=
3

4
(xjn)

2
3hypergeom

(
1

3
,

[
1

2
,

4

3

]
,
−9π2(xjn)2

4

)
,

so, it follows from (2.6) that

(xjn)
2
3 =

j

n
− 9j

8π2n3

[
hypergeom

(
1

3
,

[
1

2
,

4

3

]
,
−9π2

4

)
− hypergeom

(
1

3
,

[
1

2
,

4

3

]
,
−9π2j3

4n3

)]
.

Take n = 15, then according to the above formula, the numerical values of nodes xjn, j = 1, n− 1 = 1, 14 are shown
in Table 1.

Table 1. The nodes xjn in Example 4.1.

j 1 2 3 4 5 6 7
xjn 0.01722494 0.04871865 0.08949781 0.13777955 0.19252978 0.25305038 0.31883341
j 8 9 10 11 12 13 14
xjn 0.38949422 0.46473226 0.54430123 0.62798395 0.71557563 0.80688198 0.90173291

Now, suppose that the above nodes are given, next, we calculate the approximation of function q as a solution of
inverse nodal problem by the Bernstein technique. We draw an exact solution and numerical approximation for n = 15
denoted in Figure 1.

Also, the exact solution and the numerical approximations for n = 10 and α = 0.40, 0.67, 0.80 are shown in Figure
2.

Moreover, the absolute errors obtained with n = 5, 10, 15, and α = 2
3 by Bernstein technique and comparison of

Bernstein technique with Chebyshev interpolation technique for n = 10 and α = 2
3 are seen in Figure 3 and Figure 4,

respectively.
In Figure 4, for n = 10, it can be seen the Chebyshev interpolation technique is better than the Bernstein technique

and has less error, but due to the fact that the interpolation technique has a low speed, it is not recommended for
large n values. In other words, for a large n value, we propose the Bernstein technique due to its high speed.

Example 4.2. Assume that the function q(x) = x2 sin 7πx, and the value of α = 0.75 are given. Take n = 15, then
according to the formula (2.6), the numerical values of nodes xjn, j = 1, n− 1 = 1, 14 are shown in Table 2.

Suppose that the nodes with n = 40 are given, we calculate approximation of q, by Bernstein technique that is
shown in Figure 5. Exact solution and also numerical approximations for n = 30 and α = 0.35, 0.55, 0.75, 0.95 and the
absolute errors obtained with n = 20, 30, 40, and α = 0.75 by Bernstein technique are seen in Figure 6 and Figure 7,
respectively.
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Figure 1. Exact and approximate
solutions of function q(x) with
n = 15 by Bernstein technique in Ex-
ample 4.1.
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Figure 2. Exact solution and nu-
merical approximations of function
q(x) for n = 10 and different values
of α by Bernstein technique in Ex-
ample 4.1.
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Figure 3. Absolute errors between
approximate and exact solutions for
α = 2

3 by Bernstein technique in Ex-
ample 4.1.
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Figure 4. Comparison of Bernstein
technique with Chebyshev interpola-
tion technique for n = 10 and α = 2

3
in Example 4.1.

Example 4.3. Assume that the function q(x) = x3 − 9
8x

2 + 5
16x −

3
128 , and the value of α = 0.5 are given. Take

n = 15, then according to the formula (2.6), the numerical values of nodes xjn, j = 1, n− 1 = 1, 14 are shown in Table
3.

If the above nodes are given, next, an approximation of function q, by Bernstein technique with n = 15, is shown
in Figure 8.

Also, the numerical approximations calculated for n = 5 and α = 0.5, 0.6, 0.7 and the absolute errors obtained with
n = 5, 10, 15, are shown in Figure 9 and Figure 10, respectively.
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Table 2. The nodes xjn in Example 4.2.

j 1 2 3 4 5 6 7
xjn 0.02703152 0.06811520 0.11695879 0.17163963 0.23111553 0.29471570 0.36196676
j 8 9 10 11 12 13 14
xjn 0.43250753 0.50604903 0.58237062 0.66129711 0.74264819 0.82627150 0.91209315
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Figure 5. Exact and approximate
solutions of function q(x) with n =
40 by Bernstein technique in Exam-
ple 4.2.
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Figure 6. Exact solution and nu-
merical approximations of function
q(x) for n = 30 and different values
of α by Bernstein technique in Ex-
ample 4.2.
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Figure 7. Absolute errors between
approximate and exact solutions for
α = 0.75 by Bernstein technique in
Example 4.2.

5. Conclusion

In this perusal, we considered the Sturm-Liouville equation with conformable fractional derivatives of order 0 <
α ≤ 1 and reconstructed an integral equation using the property that the nodes are zeroes of eigenfunctions. Then,
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Table 3. The nodes xjn in Example 4.3.

j 1 2 3 4 5 6 7
xjn 0.00444427 0.01777713 0.03999869 0.07110910 0.11110850 0.15999696 0.21777443
j 8 9 10 11 12 13 14
xjn 0.28444070 0.35999545 0.44443834 0.53776920 0.63998839 0.75109733 0.87109920
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Figure 8. Exact and approximate
solutions of function q(x) with n =
15 by Bernstein technique in Exam-
ple 4.3.
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Figure 9. Exact solution and nu-
merical approximations of function
q(x) for n = 5 and different values
of α by Bernstein technique in Ex-
ample 4.3.
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Figure 10. Absolute errors be-
tween approximate and exact solu-
tions for α = 0.5 by Bernstein tech-
nique in Example 4.3.

the Bernstein technique was used to solve inverse nodal problem and the approximation of the solution to this problem
was calculated. Moreover, a comparison of this technique with the Chebyshev interpolation technique was shown in
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a numerical example and it was concluded that both techniques are good numerical techniques however Chebyshev
interpolation technique has the less errors. Nevertheless, due to the fact that the interpolation technique has a low
speed for n >> 1, it is not recommended. In other words, in this study, we propose the Bernstein technique for a
large value of n due to this high speed.
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