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Abstract r )

In the present paper, modified simple equation method (MSEM) is implemented for obtaining exact solutions of
three nonlinear (3 + 1)-dimensional space-time fractional equation, namely three types of modified Korteweg-de-
Vries (mKdV) equations. Here, the derivatives are of the type of conformable fractional derivatives. The solving
process produces a system of algebraic equations which is possible to be easily with no need of using software for
determining unknown coefficients. Results show that this method can supply a powerful mathematical tool to
construct exact solutions of mKdV equations and it can be employed for other nonlinear (3 + 1) - dimensional
space-time fractional equations.
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1. INTRODUCTION

In almost every field of science and engineering, including nuclear, plasma, chemical and solid state physics, optical
fibers, fluid mechanics, biology, etc. Nonlinear phenomena are revealed. Mathematical modeling of most physics
systems results in nonlinear evolution equations (NLEE). Indeed, a lot of NLEEs are broadly utilized to explain
these physical phenomena. Accordingly, trying to find solutions to NLEEs is highly essential, and developing efficient
methods to get analytic and numerical solutions of such equations have been popular by researchers. For example see
[1, 5, 13, 17, 30].

Exact solutions to nonlinear evolution equations play a significant role in nonlinear physical science, because various
natural phenomena, such as solitons, vibrations, and propagation with a finite speed can be described by these solutions
well [29]. There are abundant powerful methods to obtain the exact solutions of such equations including, Hirota’s
method [19], extended tanh-function method [2], (G’/G)-expansion method [6, 25], exp-function method [15, 32],
homogeneous balance method [16, 28], modified auxiliary equation method [4], Jacobi elliptic function expansion
method [21], optimal perturbation iteration method [27], Weierstrass elliptic function method [14], modified simple
equation method (MSEM) [10, 20], generalized projective Riccati equations method [3], and so on.

The KdV equation as a celebrated NLEE plays an important role in modeling various phenomena. It is the governing
equation for shallow waves of water interacting weakly and nonlinearly, long internal waves in a density-stratified
ocean, ion-acoustic waves in a plasma, and acoustic waves on a crystal lattice. Additionally, it describes a string in
the Fermi-PastaUlam-Tsingou problem in the continuum limit. This equation is a famous model for solitons and it
is a significant foundation to investigate other equations [9]. Thus, investigating the exact solutions of this equation
is significant because they are useful to understand the physics behind them. Also, the higher the dimensions of the
model, the more realistic; in literature multiple modifications to the KdV equation have been suggested including, the
(3 4 1)-dimensional modified KdV equations by [18] and [31] as follows.
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Uy + 6u2u$ + Ugy, = 0, (1.1)
Uy + 6u2uy + Ugy, =0, (1.2)
up + 6uu, + Ugyz = 0. (1.3)

These equations play an important role in three-dimensional non-linear dispersion problems [26].

Fractional differential equations (FDEs) are generalizations of ordinary differential equations to an arbitrary order.
The theory of derivatives and integrals of fractional order allows us to describe physical phenomena more accurately|[23].
Many phenomena in engineering, physics, chemistry, biology, and some other sciences may be modeled using FDEs.
For example, [7] have transformed the classical model of a cubic isothermal auto-catalytic chemical system (CIACS)
into a new fractional form by using three different and special fractional operators. [8] have formulated a fractional
optimal control model of spread of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) in Atangana-
Baleanu-Caputo derivative sense. [11] have obtained a new model for Chua’s circuit by transforming the classical
model of Chua’s circuit into novel forms of various fractional derivatives. [13] have proposed an optimal perturbation
iteration procedure with the Laplace transform to solve the fractional type of damped Burgers’ equation which is ob-
tained by remodeling the classical damped Burgers’ equation to fractional differential form via the Atangana-Baleanu
fractional derivatives described with the help of the Mittag-Leffler function. [26] introduced the conformable fractional
order derivative of Equations ((1.1)-(1.3)).

This work aims to employ MSEM to examine exact solutions to three types of (3+1) dimensional fractional modified
Korteweg-de-Vries (mKdV) equation introduced by [26].

The outline of the current paper is as follows: The description of the conformable fractional derivative and its
properties are presented in Section 2. The MSEM is introduced in Section 3. The method is implemented for the
(3 + 1)-dimensional fractional (mKdV) equation in Section 4. In the end, the conclusions are supplied in Section 5.

2. THE CONFORMABLE FRACTIONAL DERIVATIVE AND ITS PROPERTIES

In this section, the conformable fractional derivative is defined. Then, some of its properties are presented according
to what was first reported by [22].

Definition 2.1. [26].
Suppose that y : [0,00) — R. Then the conformable fractional derivative of y of order « is described as follows.

y (x + exlfa) —y(x)

)

D (y(x)) = lim

e—0 €

for all z > 0 and « € (0, 1].

Theorem 2.2. [22].
If a function y : [0,00) — R is a-differentiable at zo > 0, € (0, 1], then y is continuous at xg.

Proof. [22].

Suppose that y and z are a-differentiable at > 0 and « € (0,1]. Some properties of the conformable fractional
derivative is presented in the following [26].

(1) DY (x°) = cx® @ for all c € R.

(#4) D¢ (a) = 0, for all constant functions y(z) = a.

(791) D% (ay(x) + bz(x)) = aDSy(x) + bDgz(x) for all a,b € R.
(=)=
E)NE
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(vi) Dg(y(x)z(x)) = Dy(x)(2(2)) + 2(x) DY (y(x)).
(v) Do (m) _ @Dy y@De) 0y )

z \ z(x) 22(x)

. A, . a _ ,l-ad
(i) If y is differentiable then, D (y(z)) = z'~* L.

3. DESCRIPTION OF MSEM

It is well-known that MSEM is employed to solve a nonlinear ordinary differential equation (ODE) as follows [20].

Q (Y(§)7;l§y(§),j§21/(g),> =0, (3'1)

where @ is a polynomial of the unknown function Y and its derivatives. To solve Eq. (3.1), its solution U(&) is
expanded in the following finite series.

N

Vo= (49 (32)

J=0

in which cg,...,cy are constants which must be specified, provided that ¢y # 0, and w is an unknown function
which is specified subsequently, so that w’ # 0. The simple equation method is basic designed on the presumption
that some special functions satisfy some ODEs. These ODEs are attributed as the simplest equations. The simplest
equation has two main properties: firstly, the order equation is lesser than the order of Eq. (3.1); secondly, the general
solution of this equation is known. This implies that we can obtain the exact solutions Y (£) of (3.2) by a finite series
(3.1) in the general solution of the simplest equation [20]

3.1. Algorithm of MSEM. To express the algorithm of MSEM, the following general nonlinear fractional differential
equation is considered.

G (u, D{u, D' u, Dyu, .. ) =0, (3.3)
where a, a1, ag are fractional orders and G is a polynomial in u and its fractional partial derivatives. The principal
stages of the MSEM for solving Eq. (3.3) are as follows.
1: Substitute the wave transformation (Nuruddeen 2018)
xal yaz t(x

+b —-r—, (3.4)

(5] (6%} o

u(m,t) = Y(g)v §=a

where a,b and r are nonzero constants, into Eq. (3.3). This leads to a reduced ODE of the polynomial
form as (3.1).

2: Assume that the solution of Eq. (3.1) can be presented by a polynomial in % as Eq. (3.2).

3: Balance the highest order derivatives with the highest order nonlinear term in Eq. (3.1) to determine the
positive integer N in (3.2). To find out this procedure we focus on the leading terms of (3.1). These are the
terms that lead to the least positive p when a monomial Y = a/£P is substituted in all the components of the
equation. The value of N is found by the homogeneous balancing between the leading terms.

4: Substitute Eq.(3.2) in Eq.(3.1) and collect all terms with the same power of w™*i = 0,..., N together. In this
case, a polynomial of % and its derivatives is achieved. Then, equate each coefficient to zero. This process
results in producing a system of equations that is possible to be solve with no need of software to determine
Co, - - .,cn and w. Consequently, an exact solution of Eq. (3.1) and subsequently an exact solution of Eq. (3.3)
can be achieved.

(&)
ENE
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4. APPLICATION

In this section, by applying the algorithm described in the previous section, some exact solutions for the (3 + 1)-
dimensional fractional modified Korteweg-de-Vries (mKdV) equations. Graphical representations are carried out by
Maple software.

4.1. (3 + 1)-dimensional modified Korteweg-de-Vries equation (mKdV).

4.1.1. The first equation. Consider the first (3 + 1)-dimensional mKdV equation as follows [20]

D§u + 6D + D3 u = 0. (4.1)

Yz
Using the wave transformation,
[e3 tOé

¢ ye z
H=Y —a bl 4.2
u(z,y, z,1) €, ¢ a— + b e —r—, (4.2)

gives

Y’ +6a (Y?) + abey”" = 0. (4.3)

Integrating Eq. (4.3) with zero constant of integration leads to

—rY 4 6aY? + abcY” = 0. (4.4)
In addition, we have N = 1 by using the homogeneous balance method. So, Eq. (3.2) has the following form.

Y(€)=co+ ) (4.5)

by computing Y and Y’ according to Eq. (4.5), we have

W' W' 2 W' 3
Y3 =¢l+ 30361; + 3cpct (w) +c (w) , (4.6)

and

m 1o N\ 3
Y = (“—3“; +2<”) ) (4.7)
w w w

Substituting Eqs. (4.5), (4.7) into Eq. (4.4), and then putting all the coefficients of w® w™!, w™2, and w3 equal
to zero, leads to:

w1 —rep 4 6ach =0, (4.8)
1 abeciw” — reyw’ + 18aciciw’ =0,
~2 :18acpciw™ — 3abcciw'w” = 0. (4.10)
and
w3 bactw™ + 2abecw™ = 0. (4.11)
By simplifying the equations ((4.8), (4.11)), we have

(=)=
E)NE
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T
co=+Y ar>0 4.12
0 Vba ( )
abew”"" + 2rw’ =0, (4.13)
be
I = " 4.14
6eoer (4.14)
and
v —b
o =+Y"° <o (4.15)
V3

Substituting (4.12) and (4.15) into Eq. (4.14) gives

V—ab
W = YL, (4.16)

V2r

By substituting (4.16) into Eq. (4.13), we have

WV 2rdw” =0, (4.17)
where d = \/ﬁ A solution of Eq. (4.17) is given by
w(€) = A+ Be 8, (4.18)

where v = v/2rd, and A and B are arbitrary free parameters.

Consequently, substituting Eq. (4.18) for w() into Eq. (4.4) for u(z,y, z,t) gives the following exact solution.

\/’IT . \/—7bc Bﬁyef'}/(a%eryTJrc%fr%)

U(LIZ‘, Y, z, t) ==+ o o (419)
Vba V3 A4 pe(ofabiaess _ r%)
Fora=b=r=A=B=1and ¢ = —1, we have
VB VB VBeREt )
U(.’L‘, Y, z, t) =+ —+— — V32 . (420)
6 3 1+eT(xa+ya_Za_ta)

The solution u(z,y, z,t) in Eq. (4.21) with positive sign, at y = z =t = 1 and for @ = 0.25,0.5,0.75, 1 is represented
in Figure 1. Also, the solution u(x,y, z,t) in Eq. (4.21) at y = z = 1 and for @ = 1 is shown in Figure 2.
an
(o] < |
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=125 =5 =75 = =

FIGURE 2. The solution u(x,1,1,t) in Eq. (4.21) for a = 1.

4.1.2. The second equation. Consider the second (3 + 1)-dimensional fractional mKdV equation as follows [26].
D{u+6D5u’ + D3% u = 0. (4.21)

Applying the wave transformation (4.2) and integrating the resulting equation with zero constant of integration,
gives

—rY 4 6bY 3 + abcY” = 0. (4.22)

Besides, we obtain N = 1 by homogeneous balancing. So, Eq. (4.22) has a solution as Eq. (4.5). Substituting Egs.
(4.5), (4.6) into Eq. (4.22), and setting all the coefficients of w® w™!, w™2, and w™2 equal to zero, leads to:

(=)=
E)NE
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W’ —reg 4 6bcg =0, (4.23)
w !t abeeiw” — rejw’ + 18bckeiw’ =0, (4.24)
w2 :18bcociw’ — 3abecyw'w” = 0, (4.25)
and
w?: 6bciw™ + 2abeciw = 0. (4.26)

From equations ((4.23)-(4.26)), we can get the following results:

T

co=+Y=, br>0, 4.27
) (427
abew”"" + 2rw’ =0, (4.28)

/ ac 1
= 4.29
Geoer (4.29)

and

== 9 e <. (4.30)

\/g )
Substituting (4.27) and (4.30) into Eq. (4.29) gives

v/ —ab
W= Y, (4.31)

V2r

which is the same as Eq. (4.16). Substituting (4.31) into Eq. (4.28), gives a similar equation as Eq. (4.17). Hence,
Eq. (4.21) has a solution as follows.

\/; \/Tac B’ye—w(a%ﬁ-b%ﬁ-c%—r%)

u(z,y,2,1) =+ — (4.32)
VBT VB Ay e R )
Forb=a=1,r=6,A= B =1 and ¢ = —3, we have
e%(wa—&—yo‘—l}za—&a)
w(z,y,z,t) =+ 142 PR Py (4.33)

The solution u(zx,y, z,t) in Eq. (4.33) with positive sign, at x = z =t = 1 and for « = 0.4,0.6,0.8, 1 is shown in
Figure 3. Also, in Figure 4, the solution u(z,y, z,t) in Eq. (4.33) at z = z = 1 and for « = 1 is plotted.
an
(o] < |
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=4 a=ih -4 o=l

FIGURE 3. The solution u(1,y,1,1) in Eq. (4.33) for different values of «.

FIGURE 4. The solution u(1,y,1,t) in Eq. (4.33) for a = 1.

4.1.3. The third equation. Consider the third (3+1)-dimensional conformable space-time fractional mKdV equation
as follows [26].

D§u + 6D 4+ D3 u = 0. (4.34)

TYz

Applying the wave transformation (4.2) and integrating the resulting equation with zero constant of integration,
gives

—rY +6¢Y3 + abeY” = 0. (4.35)

Also, homogeneous balancing results in N = 1. So, Eq. (4.35) has a solution as Eq. (4.5).

By substituting Eqgs. (4.5)-(4.6) into Eq. (4.35), and setting all the coefficients of w®,w™!, w™2,and w3 equal to
zero, we get:
an
Ba
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W’ —reg 4 6ecy =0, (4.36)
w !t abeeiw” — reyw’ + 18ccieiw’ =0, (4.37)
w™? :18ccociw — 3abecyw'w” = 0, (4.38)
and
w™: Beciw™ + 2abeciw” = 0. (4.39)

Manipulating equations ((4.36), (4.39)), gives the following results.

T
co=*t—, ¢,r>0, 4.40
abew”"" + 2rw’ =0, (4.41)
1o b (4.42)

66061

and

g =t———, ab<0. (4.43)

Substituting (4.40) and (4.43) into Eq. (4.42) and then substituting the resulted equation into Eq. (4.41), gives a
similar equation as Eq. (4.17). Finally, Eq. (4.34) has a solution as follows.

e

= e

u(z,y,2,t) ==+ - o 4.44
o=y Ve VB pereiirte ez i) o
Fora=4,c=0.5,r=3,A=B =1 and b= —3, we have
e%(4xa—3ya+0.5za—3ta)
w(z,y, z,t) =+ (142 PP (4.45)

The solution u(zx,y, z,t) in Eq. (4.45) with positive sign, at x = y =t = 1 and for « = 0.4,0.6,0.8, 1 is shown in
Figure 1. Also, in Figure 2, the solution u(z,y, z,t) in Eq. (4.45) at z =y = 1 and for a = 1 is plotted.
an
(o] < |
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P

-300 - M) 100 0 0] 200 30

L =il =i =08 o= I_|

FIGURE 5. The solution u(1,1,2,1) in Eq. (4.45) for different values of «.

FIGURE 6. The solution u(1,1,2,t) in Eq. (4.45) for o = 1.

5. CONCLUSION

In this work, MSEM has been utilized to obtain exact solutions for three types of (3 + 1) dimensional space-time
conformable fractional derivatives mKdV equations. By this method, a system of algebraic equations is derived which is
possible to be solved easily with no need of using software. Also, 3-dimensional (3D) and 2-dimensional representations
(2D) of all studied three types of (3 + 1)-dimensional space-time conformable fractional derivatives mKdV equations
have been given in Figures 1-6. These figures show the kink soliton solutions for different values of «, parameters, and
variables. Results show that this method can provide a reliable technique for constructing exact solutions for mKdV
equations and it can be employed for other nonlinear (3 + 1) - dimensional space-time fractional equations.

(=)=
E)NE
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