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Abstract

In the current work, a new reproducing kernel method (RKM) for solving nonlinear forced Duffing equations with
integral boundary conditions is developed. The proposed collocation technique is based on the idea of RKM and

the orthonormal Bernstein polynomials (OBPs) approximation together with the quasi-linearization method. In
our method, contrary to the classical RKM, there is no need to use the Gram-Schmidt orthogonalization procedure

and only a few nodes are used to obtain efficient numerical results. Three numerical examples are included to

show the applicability and efficiency of the suggested method. Also, the obtained numerical results are compared
with some results in the literature.
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1. Introduction

Many problems in different areas of science and engineering such as underground water flow, heat, population
dynamics, and thermoelasticity lead to integral boundary value problems (see say [3, 13] and references therein). In
this work, we focus on the following forced Duffing equation (FDE)

u′′(t) + σu′(t) + f(t, u(t), u′(t)) = 0, t ∈ (0, 1), σ ∈ R− {0}, (1.1)

with integral boundary conditions (IBCs):

u(0)− µ1u
′(0) =

∫ 1

0

h1(s)u(s) ds, u(1) + µ2u
′(1) =

∫ 1

0

h2(s)u(s) ds. (1.2)

Here, f : [0, 1]× R2 → R and h1, h2 are given continuous functions. Also, µ1 and µ2 are nonnegative constants. The
study of the Duffing equation or Duffing oscillator has its origins in the early twentieth century. George Duffing (1861-
1944) can be considered as the first to study the classical nonlinear Duffing equation [29]. This equation has a main
role in modeling many applications such as brain modeling, biological systems, disease prediction, orbit extraction, and
so on [8, 10, 28]. The existence and uniqueness of the solutions for the FDE with IBCs are discussed in [2, 7]. While
many numerical and analytical methods have been proposed to solve the Duffing equation with two-point boundary
conditions [13, 27], there has been less research on the Duffing equations with IBCs such as Eqs. (1.1), and (1.2).
For instance, the reproducing kernel space method [9, 14], the homotopy perturbation method, and the reproducing
kernel Hilbert space method [16], and the Legendre multiwavelets method [23] are used for solving Eqs. (1.1), and
(1.2) where f = f(t, u). Also, hybrid functions approaches based on the combination of block-pulse functions with
Bernoulli polynomials [22] or Legendre polynomials [13] are employed for solving Eqs. (1.1), and (1.2).
In recent two decades, the RKMs have been widely used for solving various kinds of problems including, two-point
boundary value problems [18, 24, 30], Duffing equations [9], integro-differential equations [31], nonlinear integral
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equations [15] and partial differential equations [1]. For some historical remarks and for more applications of the
RKM, the interested reader can see [11]. However, there are some disadvantages to using approximations based
on the classical RKMs. In the classical RKM, a Gram-Schmidt orthogonalization process and a dense sequence of
nodal points are used to obtain a set of orthonormal basis functions. As said in [9], because of the randomness of
Gram-Schmidt’s orthogonalization coefficients, the convergence order of this method is not high. Also, for applying
the classical RKM, the Gram-Schmidt orthogonalization procedure is unstable numerically, and much more time-
consuming is needed [15, 24]. In order to solve the disadvantages mentioned above, some efforts have been made in
recent years (see e.g., [9, 15, 30]).
In this research, based on the work of [30], we improve the classical RKM to obtain an efficient and accurate method
for the numerical solution of Eqs. (1.1), and (1.2). In fact, we combine the idea of RKM and the orthonormal
Bernstein polynomials approximation, which we call the Bernstein-reproducing kernel method (BRKM), to avoid the
Gram-Schmidt orthogonalization procedure. Also, in BRKM, contrary to the classical RKM, only a few nodes are
used to obtain efficient numerical results.

In the next section, a reproducing kernel space with OBPs will be introduced. Also, in this section a new set of
linearly independent bases in Wn[0, 1] for solving Eqs. (1.1), and (1.2) will be constructed. In section 3, we present
three numerical examples to show the effectiveness of the BRKM. Conclusions are given in section 4.

2. Description of the method

In the BRKM, we must first construct the reproducing kernel functions with OBPs in the reproducing space. In the
next step, we create a set of bases that are linearly independent in Wn[0, 1]. We use these new bases to approximate
the solution of FDE ((1.1)) and obtain an approximate solution with excellent accuracy.

2.1. A new reproducing kernel space based on Bernstein polynomials. In recent decades, orthogonal functions
have been widely used to approximate functions(see e.g., [4, 17, 20]). In this paper we use OBPs.
For i = 0, ..., n, the classical Bernstein polynomials of degree n are defined on [0, 1] by

βni (t) =

(
n

i

)
ti(1− t)n−i.

These polynomials form a complete basis over [0, 1]. Unfortunately, the classical Bernstein polynomials do not admit
the orthogonality [6]. In 2014, Bellucci [6] presented an explicit representation of the OBPs by

bni (t) =
√

2n+ 1− 2i(1− t)n−i
i∑

`=0

(−1)`
(

2n− `+ 1

i− `

)(
i

`

)
ti−`.

Also, applying binomial expansion of (1− t)n−i, bni (t) can be written as [26]

bni (t) =
√

2n+ 1− 2i
n∑
j=0

(
min{i,j}∑

λ=max{0,j−n+i}

θi,j−λ ϑi,λ

)
tj , i = 0, 1, . . . , n, (2.1)

where θi,r, (r = 0, 1, . . . , n− i) and ϑi,λ, (λ = 0, 1, . . . , i) are given as

θi,r =
(
− 1
)r(n− i

r

)
, ϑi,λ =

(
− 1
)i−λ(2n+ 1 + λ− i

λ

)(
i

i− λ

)
.

Now let Wn[0, 1] be the inner product space of polynomials of degree at most n on [0, 1]. The inner product and the
norm of Wn[0, 1] are defined as

〈u, v〉Wn
=

∫ 1

0

uv dt, ‖u‖Wn
=
√
〈u, u〉Wn

, u, v ∈Wn[0, 1].

Note that Wn[0, 1] is a closed finite dimensional subspace of L2[0, 1], therefore Wn[0, 1] is a (n+1)-dimensional Hilbert
space [12], 〈u, v〉Wn = 〈u, v〉L2 and ‖u‖Wn = ‖u‖L2 . Here, {bn0 (t), bn1 (t), ..., bnn(t)} are orthonormal basis functions of
Wn[0, 1]. So, according to [11, page 4], one obtains:
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Lemma 2.1. Wn[0, 1] is a reproducing kernel space and its polynomial reproducing kernel function is

R(s, t) =

n∑
i=0

bni (t)bni (s). (2.2)

Hence, by the definition of the kernel function, for any function u(s) ∈Wn[0, 1] we have [11]

u(t) = 〈u(s),R(s, t)〉Wn
. (2.3)

2.2. Construction of a new basis for Wn[0, 1] to approximate solutions of Eqs. (1.1), and (1.2): In this part,
we first use the quasi-linearization method (QLM) [5, 19, 21, 25] to linearize the non-linear Eq. (1.1), then we form a
new base for Wn[0, 1]. The quasi-linearized form of the FDE (1.1) is given by (see say [25])

u′′k+1(t) + (σ + qk(t))u′k+1(t) + pk(t)uk+1(t) = gk(t), k = 0, 1, 2, · · · (2.4)

with boundary conditions

uk+1(0)− µ1u
′
k+1(0) =

∫ 1

0

h1(s)uk+1(s) ds, uk+1(1) + µ2u
′
k+1(1) =

∫ 1

0

h2(s)uk+1(s) ds, (2.5)

in which:

qk(t) = fu′
(
t, uk, u

′
k

)
, pk(t) = fu

(
t, uk, u

′
k

)
,

and

gk(t) = ukfu
(
t, uk, u

′
k

)
+ u′kfu′

(
t, uk, u

′
k

)
− f

(
t, uk, u

′
k

)
.

Here, functions fu = ∂f/∂u and fu′ = ∂f/∂u′ are functional derivatives of f (t, u, u′). Note that, the QLM needs
initial approximation u0(t) and can be chosen using mathematical considerations or the boundary conditions. The
convergence of QLM has been proved in [5, 21]. They have shown that the order of convergence of this technique is
2. Also, QLM is appropriate for computer programming and has several modifications enabling one to improve the
convergence for non-linear problems [19].
Now, we introduce an operator L : Wn[0, 1]→ L2[0, 1] defined by

Luk+1 = u′′k+1 + (σ + qk(t))u′k+1 + pk(t)uk+1. (2.6)

Lemma 2.2. Suppose pk(t) and qk(t) are continuous functions on [0, 1], then L is a bounded linear operator.

Proof. It is clear that L is a linear operator. Since R(s, t) is the reproducing kernel function of Wn[0, 1], we can infer

that [11, 30] both ∂R(s,t)
∂t and ∂2R(s,t)

∂t2 are continuous functions on [0, 1]. Thus,∥∥∥∂R(s, t)

∂t

∥∥∥
Wn

≤ N1, and
∥∥∥∂2R(s, t)

∂t2

∥∥∥
Wn

≤ N2,

where N1 and N2 are positive real numbers. Therefore, for any uk+1 ∈Wn[0, 1], we obtain

|u′k+1(t)| =

∣∣∣∣∣
〈
uk+1(s),

∂R(s, t)

∂t

〉
Wn

∣∣∣∣∣
≤
∥∥uk+1(s)

∥∥
Wn

∥∥∥∂R(s, t)

∂t

∥∥∥
Wn

≤ N1

∥∥uk+1(s)
∥∥
Wn
,

(2.7)

and

|u′′k+1(t)| ≤
∥∥uk+1(s)

∥∥
Wn

∥∥∥∂2R(s, t)

∂t2

∥∥∥
Wn

≤ N2

∥∥uk+1(s)
∥∥
Wn
. (2.8)

Using Eq. (2.6) and the triangle inequality we get

‖Luk+1‖L2 ≤ ‖u′′k+1‖L2 +
∥∥ (σ + qk(t))u′k+1

∥∥
L2 + ‖pk(t)uk+1‖L2 .
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Due to Eqs. (2.7), and (2.8) and the fact that pk(t) and qk(t) are bounded functions on [0, 1], say |qk(t)| ≤ V1 and
|pk(t)| ≤ V2, we have∥∥ (σ + qk(t))u′k+1

∥∥2

L2 ≤ σ2

∫ 1

0

|u′k+1|2 dt+ 2σ

∫ 1

0

|qk(t)||u′k+1|2 dt+

∫ 1

0

|qk(t)|2|u′k+1|2 dt

≤ σ2N 2
1 ‖uk+1‖2Wn

+ 2σV1N 2
1 ‖uk+1‖2Wn

+ V2
1N 2

1 ‖uk+1‖2Wn

=
(
σ2 + 2σV1 + V2

1

)︸ ︷︷ ︸
M2

N 2
1 ‖uk+1‖2Wn

,

and

‖pk(t)uk+1‖2L2 ≤
∫ 1

0

|pk(t)|2|uk+1|2 dt ≤ V2
2N 2‖uk+1‖2Wn

.

We thus conclude that

‖Luk+1‖L2 ≤ N2‖uk+1‖Wn +MN1‖uk+1‖Wn + V2N‖uk+1‖Wn .

Therefore, ‖Luk+1‖L2 ≤ T ‖uk+1‖Wn
= T ‖uk+1‖L2 , where T = N2 +MN1 + V2N . �

Now, let us suppose that {ti}n−1
i=1 be (n − 1) distinct points in the interval (0, 1) and let r(s, t) be the kernel of

L2[0, 1]. Also, let L∗ be the conjugate operator of L. For i = 1, 2, · · · , n − 1, setting `i(t) = L∗sr(s, t)|s=ti . Here,
subscript s in L∗ indicates that L∗ applies to the function of s.

Lemma 2.3. For i = 1, 2, · · · , n− 1, we have `i(t) = LsR(s, t)|s=ti .

Proof. Using reproducing kernel properties in kernel reproducing space [11, 24] we have

`i(t) = 〈L∗sr(s, y)|s=ti ,R(y, t)〉Wn
= 〈r(s, y),LyR(y, t)|y=ti〉L2 = LsR(s, t)|s=ti .

�

Also, based on the boundary conditions given in Eq. (1.2), we define

B1(t) = R(s, t)|s=0 − µ1
∂

∂s
R(s, t)|s=0, B2(t) = R(s, t)|s=1 + µ2

∂

∂s
R(s, t)|s=1.

By similar processes as in [24, Theorem 2.1], we obtain

Theorem 2.4. {`1(t), `2(t), · · · , `n−1(t), B1(t), B2(t)} are linearly independent in Wn[0, 1].

Finally, since dim (Wn[0, 1]) = n+1, it is clear that {`1(t), `2(t), · · · , `n−1(t), B1(t), B2(t)} is a new basis of Wn[0, 1].

2.3. Implementation of the BRKM for Eqs. (1.1), and (1.2). In this section, we apply the BRKM together
with the collocation approach for solving the linear differential equations in Eq. (2.4) with its boundary conditions
given by Eq. (2.5). First of all, we approximate uk+1(t), by the new basis of Wn[0, 1], as

un,k+1(t) =

n−1∑
i=1

ci,k+1`i(t) + a1,k+1B1(t) + a2,k+1B2(t), k = 0, 1, · · · ,MAX , (2.9)

where c1,k+1, c2,k+1, · · · , cn−1,k+1, a1,k+1, a2,k+1 are unknown coefficients and MAX is the maximum number of itera-
tions. Now, the residual error function for Eq. (2.4), at each iteration, is constructed by replacing un,k+1(t) ∈Wn[0, 1]
instead of uk+1(t) as

RESk+1(t) = u′′n,k+1(t) + (σ + qn,k(t))u′n,k+1(t) + pn,k(t)un,k+1(t)− gn,k(t), (2.10)

in which:

qn,k(t) = fu′
(
t, un,k, u

′
n,k

)
, pn,k(t) = fu

(
t, un,k, u

′
n,k

)
,

and

gn,k(t) = un,kfu
(
t, un,k, u

′
n,k

)
+ u′n,kfu′

(
t, un,k, u

′
n,k

)
− f

(
t, un,k, u

′
n,k

)
.
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Let us consider a set of n− 1 collocation points

ti =
1

2

(
cos

(
iπ

n

)
+ 1

)
, i = 1, · · · , n− 1. (2.11)

In every step of iteration k = 0, 1, · · · ,MAX , by collocating Eq. (2.10) in n− 1 points ti, i = 1, · · · , n− 1, we have

RESk+1(ti) = 0, i = 1, · · · , n− 1. (2.12)

Also, by substituting un,k+1(t) in boundary conditions, we obtain

un,k+1(0)− µ1u
′
n,k+1(0) =

∫ 1

0

h1(s)un,k+1(s) ds, (2.13)

un,k+1(1) + µ2u
′
n,k+1(1) =

∫ 1

0

h2(s)un,k+1(s) ds. (2.14)

Hence, Eqs. (2.12), (2.14) generates a set of (n+1) linear algebraic equations. By solving this system, the approximate
solution un,k+1(t) can be found via Eq. (2.9). Throughout this paper, we use Maple’s fsolve command for solving this
system.

It is worth mentioning here that, in the classical RKM we need a dense sequence of nodal points while in the BRKM
presented above we need only a finite sequence of collocation points.

3. Numerical examples

In this section, we provide three examples to illustrate the validity and accuracy of the BRKM. We also compare the
obtained results with the exact solution and other methods. In all examples, we choose the initial guess, required in
QLM, so that it satisfies the boundary conditions. For this purpose, the initial guess is taken as u0(t) = α0+α1t+α2t

2,
where the unknown coefficients α0, α1 and α2 are obtained using the boundary conditions. Also, in Examples 3.1 and
3.2, we put MAX = 4.

Example 3.1. At first, we consider the following FDE [9, 13, 16, 22]

u′′(t) + u′(t) + (t− t2)u3(t) = f(t), t ∈ (0, 1),

with IBCs

u(0)− 2

π2
u′(0) =

∫ 1

0

−u(s) ds, u(1) +
1

π2
u′(1) =

∫ 1

0

−su(s) ds,

where f(t) = − sin(πt)
(
π2 + (t2 − t) sin2(πt)

)
+ π cos(πt). The analytical solution of this equation is u(t) = sin(πt).

For solving this example by BRKM, we put u0(t) = −1.007+t+0.019t2. In Table 1, the relative errors obtained by the
present method with n = 16, 20 are compared with those obtained by the combination of the homotopy perturbation
method and the reproducing kernel Hilbert space method [16], hybrid functions approach [22], improving the RKM [9]
and a method based on the hybrid Legendre Block-pulse functions [13]. From Table 1, we see that our method was
clearly reliable if compared with the numerical results given in [9, 13, 16, 22]. Note that, in [9], to achieve the desired
accuracy 10−14, the number of bases is n = 100, while in our method, we have reached higher accuracy by using
a much smaller number of basis functions. Also, Figure 1 shows the absolute error function corresponding to our
method with n = 25. Moreover, we plot the logarithmic graph of the maximum absolute error for n = 4, 8, 12, 16, 20
in Figure 2. These figures show that we can get a very good result by using BRKM.
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Table 1. Comparison of relative errors for Example 3.1.

Method Method Method Method Present

of [16] of [22] of [13] of [9] method

t n = 100, m = 5 N = 6, M = 6 P = 4, Q = 8 n = 100 n = 16 n = 20

0.01 7.49E-5 6.73 E-7 2.02E-08 7.31E-14 1.92E-15 5.00E-21

0.08 8.17E-5 2.07 E-8 3.29E-09 5.66E-14 2.48E-16 5.77E-22

0.16 8.11E-5 2.68 E-8 2.12E-10 5.53E-14 1.31E-16 2.93E-22

0.32 8.09E-5 2.25 E-8 1.29E-10 5.47E-14 6.60E-17 1.56E-22

0.48 8.08E-5 1.04 E-8 7.04E-10 5.44E-14 4.87E-17 1.31E-22

0.64 8.03E-5 1.24 E-8 8.12E-10 5.35E-14 5.80E-17 1.41E-22

0.80 7.97E-5 6.22 E-8 9.83E-10 5.21E-14 8.73E-17 1.82E-22

0.96 7.58E-5 4.29 E-7 3.58E-10 4.85E-14 3.31E-16 9.54E-22

Figure 1. Absolute error function with n = 25 for Example 3.1.
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Figure 2. The logarithmic graph of the maximum absolute error for Example 3.1 (left) and Exam-
ple 3.2 (right).

Example 3.2. Consider the following FDE [9, 13]

u′′(t)− u′(t)− 2u(t) + sin(u(t)) = f(t), t ∈ (0, 1),

with IBCs

u(0)− 4

3π2
u′(0) =

∫ 1

0

− cos
(πs

2

)
u(s) ds, u(1) +

6

π2
u′(1) =

∫ 1

0

−2 (s+ 1)u(s) ds,

where f(t) = −(2 + π2) sin(πt) + sin (sin(πt)) − π cos(πt). The analytical solution of this equation is u(t) = sin(πt).
Taking u0(t) = −1.016− 0.014t+ t2. In Table 2, the absolute errors of the presented method are compared with those
obtained by RKM [9] and the hybrid functions approach [13]. Also, Figure 2 demonstrates the logarithmic graph
of the maximum absolute error for n = 4, 8, 12, 16, 20. As we see, by increasing n the maximum absolute errors are
decreasing quickly.

Table 2. Comparison of absolute errors for Example 3.2.

Method
of [13]

RKM [9] Present
method

t P = 6, Q = 6 n = 50 n = 15 n = 19

0.2 1.12E-05 7.89E-13 1.32E-14 3.09E-20
0.4 3.82E-05 1.21E-12 1.47E-14 5.43E-20
0.6 4.31E-05 1.15E-12 1.61E-14 6.12E-20
0.8 2.03E-05 6.97E-13 1.80E-14 5.21E-20
1 1.20E-05 2.42E-14 1.91E-14 7.93E-20

Example 3.3. As the third example, let us consider the following FDE [14]

u′′(t) + u′(t) + u(t) cos(u(t)) = f(t), t ∈ (0, 1),

with IBCs

u(0)− 2u′(0) =

∫ 1

0

−su(s) ds, u(1) +
12

25
u′(1) =

∫ 1

0

2 (s+ 1)u(s) ds,
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where f(t) = 1 +
(
1 + t+ t4

)
cos
(
1 + t+ t4

)
+ 12t2 + 4t3. The analytical solution of this equation is u(t) = t4 + t+ 1.

We solved this problem by choosing u0(t) = 1 + 1.325t + 2.833t2. The maximum absolute errors for n = 4 and
MAX = 3, 4, 5, 6 are shown in Table 3. This problem is solved in [14] by traditional RKM. In [14] to achieve an
absolute error of about 10−4, the number of bases is n = 100 (see Figure 3 in [14]), while in our method, we have
reached much higher accuracy by using n = 4.

Table 3. Maximum absolute error with n = 4 for Example 3.3.

MAX = 3 MAX = 4 MAX = 5 MAX = 6

1.00E-03 4.10E-08 2.54E-17 1.87E-35

4. Conclusion

In this research, we presented the higher-order BRKM method for solving the nonlinear FDE (1.1) with its boundary
conditions given in Eq. (1.2). Two important advantages of our method compared to other classical RKMs are (i)
we used very few nodes but we obtained very accurate numerical results. (ii) In the presented method, we do not use
the Gram-Schmidt orthogonalization process. Numerical results show the effectiveness and accuracy of the BRKM
method. In the future, we intend to develop the technique presented in this paper to solve partial differential equations
and fractional differential equations.
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