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Abstract

The presented paper investigates a new numerical method based on the characteristics of flatlet oblique multi-

wavelets for solving fractional Volterra integro-differential equations, in this method, first using the dual bases
of the flatlet multiwavelets, the operator matrices are made for the derivative of fractional order and Volterra

integral. Then, the fractional Volterra integro-differential equation reduces to a set of algebraic equations which
can be easily solved. The error analysis and convergence of the presented method are discussed. Also, numerical

examples will indicate the acceptable accuracy of the proposed method, which is compared with the methods

used by other researchers.

Keywords. Flatlet oblique multiwavelets, Fractional Volterra integro-differential equations, Operational matrix, Collocation method, Biorthogonal

system.

2010 Mathematics Subject Classification. 65L99, 65L60, 65D99.

1. Introduction

The wide application of fractional calculus in various sciences and engineering fields such as physics, biophysics,
cosmology, bioengineering, control theory, finance and statistical mechanics have attracted the attention of many
researchers to investigate different numerical methods for solving fractional calculus problems. Some of the methods
that have been used in the works [2–20] to solve the fractional calculus equations include the adomian decomposition
method, Bessel collocation method, CAS wavelets method, Chebyshev pseudo-spectral method, cubic B-spline wavelets
method, Euler wavelets, and fractional differential transform method. Also Jacobi spectral-collocation method [23, 36],
Legendre collocation method [31], multi-domian pseudo-spectral method [22], normalized systems functions method
[33], novel Legendre wavelet Petrov-Galerkin method method [32], operational Tau method [19], piecewise polynomial
collocation method [37], Taylor expansion [31], and variational iteration methods [13, 24] are other techniques that
have been proposed to solve this category of problems.

Flatlet oblique multiwavelets are used for solving integer order integro-differential equations [9]. Also, in 2014, Dr.
Darani et al [8] solved the fractional integro-differential equation by constructing dual scale and wavelet functions in
the form of fractional degree polynomials for the Flatlet multiwavelets. However, since no method based on Flatlet
oblique multiwavelets has been proposed to solve the fractional Volterra integro-differential equation, in this paper, we
have solved this problem using the fractional order derivative and Volterra integration operator matrices constructed
by the basis of the flatlet multiwavelets.

The general form of the linear fractional integro-differential equation is expressed as

Dαy(x) + q(x)y(x) = g(x) + λ

∫ x

0

K(x, t)y(t)dt, (1.1)
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with initial conditions

yj(0) = cj , j = 0, 1, ..., n− 1, n− 1 < α < n,

where n ∈ Z+, λ ∈ R. K(x, t), q(x), and g(x) are given continuous functions and y(x) is the unknown function to be
determined. Also, Dαy(x) indicates the Caputo’s fractional derivative of y(x).

Definition 1.1. ([26]) The Caputo fractional differentiation operator Dα of order α is defined as

Dαf(x) =
1

Γ(n− α)

∫ x

0

fn(t)

(x− t)α+1−n dt, α > 0,

where n− 1 < α < n and n ∈ Z+.

In this research, in section 2, we will introduce and examine the properties of Flatlet oblique multiwavelets and
explain how an arbitrary function can be written as an extension of the scale and mother wavelet functions of Flatlet
multiwavelets. Also, we will discuss how to construct dual scale and mother wavelet functions using the biorthogonal
property of Flatlet multiwavelets in section 2. Section 3 includes the construction of Volterra integration and fractional
derivative operator matrices, as well as writing the fractional Volterra integro-differential equation as a set of algebraic
equations and solving this set of equations. The convergence and error analysis of the proposed method will be
discussed in section 4. Finally, in section 5, some numerical examples are presented to show the applicability and
accuracy of the proposed method.

2. Flatlet Multiwavelet System and the Duale Functions

functions φ0(x), ..., φm(x) defined by

φi(x) =


1, i

m+1 ≤ x <
i+1
m+1 ,

, i = 0, 1, ...,m.
0, otherwise,

(2.1)

The simplest member of this family is the Haar wavelet which happens for the case m = 0. Each of these unit constant
functions is called a scale function. The Flatlet mother wavelets ψ0(x), ..., ψm(x), corresponding to Flatlet scaling
functions are constructed by using two-scale relation which will be discussed in the following.

First, consider two vector functions

Φ(x) =



φ0(x)
...

φi(x)
...

φm(x)

 ,Ψ(x) =



ψ0(x)
...

ψi(x)
...

ψm(x)

 , (2.2)

whose components are Flatlet scaling functions and mother wavelets, respectively.
The two-scale relations for the Flatlet multiwavelet system are expressed as

Φ(x) = R

[
Φ(2x)

Φ(2x− 1)

]
,Ψ(x) = S

[
Φ(2x)

Φ(2x− 1)

]
, (2.3)

where R and S are (m+ 1)× 2(m+ 1) matrices. The matrix form of two-scale relations (2.3) are as follows[
Φ(x)
Ψ(x)

]
=

[
R
S

] [
Φ(2x)

Φ(2x− 1)

]
, (2.4)

and the coefficient matrix in (2.4) is called reconstruction matrix that is invertible [9]. Also, Eq. (2.1) for i =
0, · · · , (m+ 1)2J can be extended as follows

Φi(x) =

m+1∑
j=1

Ri,jφj−1(2x) +

2m+2∑
j=m+2

Ri,jφj−m−2(2x− 1),
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Ψi(x) =

m+1∑
j=1

Si,jφj−1(2x) +

2m+2∑
j=m+2

Si,jφj−m−2(2x− 1), (2.5)

which is called reconstruction relations.
As is clear, the Flatlet scaling functions have a simple form so the matrix R can be calculated as

R =


1 1 0

1 1
. . .

0 1 1

 .
In order to compute 2(m + 1)2 entries of matrix S, 2(m + 1)2 independent conditions are needed. For this purpose,
(m+1)(m+2)

2 orthonormality conditions∫ 1

0

ψi(x)ψj(x)dt = δi,j , i, j = 0, 1, ...,m, (2.6)

and (m+1)(3m+2)
2 vanishing moment conditions∫ ∞

−∞
ψi(x)xjdx = 0, i = 0, 1, ...,m, j = 0, 1, ...,m+ i, (2.7)

come to our aid where δi,j is Kronecker delta defined as

δi,j =

{
1 if i = j,

0 if i 6= j.

By using (2.2) and (2.4), Eq. (2.9) can be written as a system of linear equations

2(m+1)∑
l=0

{(l + 1)j+1 − (l)j+1}sj,l = 0, j = 0, ...,m+ i, i = 0, 1, · · · ,m. (2.8)

Now, the unknown matrix S and so Ψ(x) are obtained by solving (2.6)-(2.9). As an example, for the first order
Flatlet basis functions we have

φ0(x) =

{
1, 0 ≤ x < 1

2 ,
0, otherwise,

, φ1(x) =

{
1, 1

2 ≤ x < 1,
0, otherwise,

(2.9)

and the matrix S is computed as

S = ±

[
1√
2
− 1√

2
− 1√

2
1√
2

1√
10
− 3√

10
3√
10

− 1√
10

]
. (2.10)

This computation implies that the associated multiwavelets are not unique. A simple form of mother wavelets for the
above example may be given as

ψ0(x) =
√

2


1
2 , 0 ≤ x < 1

4 ,
− 1

2 ,
1
4 ≤ x <

3
4 ,

1
2 ,

3
4 ≤ x < 1,

0, otherwise,

, ψ1(x) =
√

10


1
10 , 0 ≤ x < 1

4 ,
− 3

10 ,
1
4 ≤ x <

1
2 ,

3
10 ,

1
2 ≤ x <

3
4 ,

− 1
10 ,

3
4 ≤ x < 1,

0, otherwise.

(2.11)

Also the second order Flatlet multiwavelet system can be represented as

φi(x) =

 1, i
3 ≤ x <

i+1
3 ,

, i = 0, 1, 2,
0, otherwise,
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ψ0(x) =
√

10



1
6 , 0 ≤ x < 1

6 ,
− 7

30 ,
1
6 ≤ x <

1
3 ,

− 2
15 ,

1
3 ≤ x <

1
2 ,

2
15 ,

1
2 ≤ x <

2
3 ,

7
30 ,

2
3 ≤ x <

5
6 ,

− 1
6 ,

5
6 ≤ x < 1,

0, otherwise,

, ψ1(x) =
√

14



1
14 , 0 ≤ x < 1

6 ,
− 3

14 ,
1
6 ≤ x <

1
3 ,

1
7 ,

1
3 ≤ x <

2
3 ,

− 3
14 ,

2
3 ≤ x <

5
6 ,

1
14 ,

5
6 ≤ x < 1,

0, otherwise,

ψ2(x) =
√

14



− 1
42 , 0 ≤ x < 1

6 ,
5
42 ,

1
6 ≤ x <

1
3 ,

− 5
21 ,

1
3 ≤ x <

1
2 ,

5
21 ,

1
2 ≤ x <

2
3 ,

− 5
42 ,

2
3 ≤ x <

5
6 ,

1
42 ,

5
6 ≤ x < 1,

0, otherwise,

(2.12)

2.1. Biorthogonal Flatlet Multiwavelet System (BFMS). Here, we introduce the dual scaling and wavelet vector

functions in biorthogonal Flatlet multiwavelet system (BFMS) respectively by Φ̃(x) and Ψ̃(x) that are represented as

Φ̃(x) =



φ̃0(x)
...

φ̃i(x)
...

φ̃m(x)

 , Ψ̃(x) =



ψ̃0(x)
...

ψ̃i(x)
...

ψ̃m(x)

 . (2.13)

According to the biorthogonality conditions we must have

〈φ̃i, φj〉 =

∫ 1

0

φ̃i(x)φj(x)dx = δi,j , (2.14)

〈ψ̃i, ψj〉 =

∫ 1

0

ψ̃i(x)ψj(x)dx = δi,j ,

〈ψ̃i, φj〉 =

∫ 1

0

ψ̃i(x)φj(x)dx = 0,

i, j = 0, 1, ...,m.

Now we can introduce the φ̃i(x) and ψ̃i(x) as polynomials and piecewise polynomials of degree m respectively, by

φ̃i(x) =

{
ai1 + ai2x+ ...+ ai,m+1x

m, 0 ≤ x < 1,
0, otherwise,

(2.15)

ψ̃i(x) =


b1i1 + b1i2x+ ...+ b1i,m+1x

m, 0 ≤ x < 1
2 ,

b2i1 + b2i2x+ ...+ b2i,m+1x
m, 1

2 ≤ x < 1,
0, otherwise.

(2.16)

Based on biorthogonal conditions (2.14), we can show that coefficient ai,j , b
1
i,j and b2i,j , i = 0, ...,m and j =

1, ...,m + 1, are uniquely determined ( : see [9]). For example, we compute the dual multiwavelets corresponding to
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(2.9) and (2.11) as

φ̃0(x) =

{
3− 4x, 0 ≤ x < 1,

0, otherwise,
, φ̃1(x) =

{
−1 + 4x, 0 ≤ x < 1,

0, otherwise,

ψ̃0(x) =

 2
√

2(1− 4x), 0 ≤ x < 1
2 ,

−2
√

2(3− 4x), 1
2 ≤ x < 1,

0, otherwise,

, ψ̃1(x) =


√

10(1− 4x), 0 ≤ x < 1
2 ,√

10(3− 4x), 1
2 ≤ x < 1,

0, otherwise.

(2.17)

Also computation of dual multiwavelets corresponding to Eq. (2.12), yields

φ̃0(x) =

{
11
2 − 18x+ 27

2 x
2, 0 ≤ x < 1,

0, otherwise,

φ̃1(x) =

{ −7
2 − 27x+ 27x2, 0 ≤ x < 1,

0, otherwise,

φ̃2(x) =

{
1− 9x+ 27

2 x
2, 0 ≤ x < 1,

0, otherwise,

ψ̃0(x) =


√

10( 7
4 −

33
2 x+ 27x2), 0 ≤ x < 1

2 ,

−
√

10( 49
4 −

75
2 x+ 27x2), 1

2 ≤ x < 1,
0, otherwise,

ψ̃1(x) =


√

14( 9
4 −

45
2 x+ 81

2 x
2), 0 ≤ x < 1

2 ,√
14( 81

4 −
117
2 x+ 81

2 x
2), 1

2 ≤ x < 1,
0, otherwise,

ψ̃3(x) =

 −
√

14(1− 12x+ 27x2), 0 ≤ x < 1
2 ,√

14(16− 42x+ 27x2), 1
2 ≤ x < 1,

0, otherwise.

(2.18)

Now, suppose Λ(x) and Λ̃(x) are two vector functions as

Λ(x) =



φ0(x)
...

φm(x)
ψ0(x)

...
ψi(2

lx− k)
...

ψm(2Jx− 2J + 1)


, Λ̃(x) =



φ̃0(x)
...

φ̃m(x)

ψ̃0(x)
...

ψ̃i(2
lx− k)
...

ψ̃m(2Jx− 2J + 1)


. (2.19)

So, we can approximate a function f(x) defined on [0, 1] by the Flatlet multiwavelets [14] as

f(x) ' ΛT (x).C̃, (2.20)

or

f(x) ' Λ̃T (x).C̃, (2.21)

where C and C̃ are N-vectors as

C = [c0, ..., cm, d0,0,0, ..., di,l,k, ..., dm,J,2J−1],

C̃ = [c̃0, ..., c̃m, d̃0,0,0, ..., d̃i,l,k, ..., d̃m,J,2J−1],

in which N = 2J(m+ 1).
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Now, we can rewrite Eqs. (2.20) and (2.21) respectively as

f(x) '
m∑
i=0

ciφi(x) +

m∑
i=0

J∑
l=0

2j−1∑
k=0

di,l,kψi,l,k(x), (2.22)

and

f(x) '
m∑
i=0

c̃iφ̃i(x) +

m∑
i=0

J∑
l=0

2J−1∑
k=0

d̃i,l,kψ̃i,l,k(x), (2.23)

where ψi,l,k(x) = ψi(2
lx− k) and ψ̃i,l,k(x) = ψ̃i(2

lx− k). The vectors of C and C̃ can be obtained respectively as

C =

∫ 1

0

f(x).Λ̃T (x)dx, (2.24)

and

C̃ =

∫ 1

0

f(x).ΛT (x)dx. (2.25)

In other words

ci =

∫ 1

0

f(x).φ̃i(x)dx , di,l,k =

∫ 1

0

f(x).ψ̃i,j,k(x)dx (2.26)

and

c̃i =

∫ 1

0

f(x).φi(x)dx , d̃i,l,k =

∫ 1

0

f(x).ψi,j,k(x)dx. (2.27)

It is useful to note that the dual Flatlet multiwavelets are defined based on polynomials and have more flexibility in
approximating functions so we use the last relation and Eq. (2.21) because of the higher order of accuracy.

3. Description of Flatlet Oblique Multiwavelet Method for Solving Fractional Volterra
Integro-Differential Equation

As we mentioned in section 1, the purpose of this paper is to provide a numerical solution for the linear fractional
Volterra integro-differential equation as

Dαy(x) + q(x)y(x) = g(x) + λ

∫ x

0

K(x, t)y(t)dt, (3.1)

with initial conditions yj(0) = cj , j = 0, 1, ..., n − 1 and n − 1 < α < n. Also, Dα represents fractional derivative of
the order α > 0 of Caputo sense, n ∈ Z+, λ ∈ R. The continuous functions q(x), g(x), and K(x, t) are given and y(x)
is the unknown function to be determined.

3.1. Constructing the Operational matrices. In order to solve this problem, we must construct the fractional
derivative of Caputo sense and the Volterra integral operational matrices. For this purpose, first we approximate the
unknown function y(x) by scaling and mother wavelet functions of dual flatlet multiwavelets as

y(x) = CT Λ̃(x), (3.2)

where C is an unknown vector of order (m+ 1)2J as follows

C = [c1, c2, ..., c(m+1)2J ]T .

By fractional derivation both sides of equation (3.2) the relation

Dαy(x) = CTDαΛ̃(x) = CTDΛ̃(x), (3.3)
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is obtained. Where D is fractional derivation operational matrix that is calculated from the flatlet multiwavelet
properties described in Eq. (2.14) as

D =

∫ 1

0

(
DαΛ̃(x)

)
.ΛT (x)dx. (3.4)

More precisely, using the definition of fractional derivation of Caputo sens, the entries of matrix D are calculated as

Di,j(x) =

∫ 1

0

(
1

Γ(n− α)

∫ x

0

Λ̃
(n)
i (t)

(x− t)α+1−n dt

)
Λj(x)dx, n− 1 < α < n. (3.5)

In other words, the fractional derivative was taken from all the basic functions in the vector Λ̃(x). The expansion of
these fractional derivatives was written in terms of the basic functions of the Flatlet multiwavelet and the coefficients
of the expansion of the fractional derivative were calculated using the property of orthogonality between the initial
wavelet and their duals. These obtained coefficients made the entries of the operational matrix D

Also, in order to calculate the Volterra integral operational matrix, assume∫ x

0

y(t)dt =

∫ x

0

CT Λ̃(t)dt = CT
∫ x

0

Λ̃(t)dt = CTPΛ̃(x), (3.6)

where P is the Volterra integral operational matrix whose entries is calculated using the flatlet multiwavelet properties
described in Eq. (2.14) as

Pi,j(x) =

∫ 1

0

(∫ x

0

Λ̃i(t)dt

)
Λj(x)dx (3.7)

In a similar way, the Volterra integral was taken from all the basic functions in the vector Λ̃(x). The expansion of these
functions was written in terms of the basic functions of the Flatlet multiwavelet and the coefficients of the expansion
of the Volterra Integral were calculated using the property of orthogonality between the initial wavelet and their duals.
These obtained coefficients made the entries of the operational matrix P.

3.2. Solving Fractional Volterra Integro-Differential Equation. After calculating the operational matrices
needed to solve Eq. (3.1), we extand the functions y(x), q(x), g(x) and K(x, t) by flatlet oblique multiwavelet basis
respectively as

y(x) = CT Λ̃(x), (3.8)

q(x) = QT Λ̃(x), (3.9)

g(x) = GT Λ̃(x), (3.10)

and

K(x, t) = Λ̃T (t)KT Λ̃(x). (3.11)

Using Eq. (2.25), the coefficient vectors Q and G and the coefficient matrix K are determined respectively as

Q =

∫ 1

0

q(x).ΛT (x)dx, (3.12)

G =

∫ 1

0

g(x).ΛT (x)dt, (3.13)

and

K =

∫ 1

0

(∫ 1

0

K(x, t).Λ(t)dt

)
.Λ(x)dx. (3.14)

Where C is unknown vector to be determined. By substituting the operational matrix D whose entries calculated in
Eq. (3.5) and Eqs. (3.8), (3.10) and (3.11) in Eq. (3.1) we can write

CT .D.Λ̃(x) +QT .Λ̃(x).Λ̃T (x).C = GT .Λ̃(x) +

∫ x

0

Λ̃T (x).KT .Λ̃(t).Λ̃T (t).Cdt. (3.15)
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Let HN (t) be a square matrix of dimensions (m+ 1)2J × (m+ 1)2J as

HN (t) = Λ̃(t).Λ̃T (t), (3.16)

whose entries are obtained by

HNi,j(t) = Λ̃i(t).Λ̃j(t). (3.17)

So, the Eq. (3.15) can be written as

CT .D.Λ̃(x) +QT .HN (x).C = GT .Λ̃(x) +

∫ x

0

Λ̃T (x).KT .HN (t).Cdt. (3.18)

If we define the square matrix B of dimension (m+ 1)2J × (m+ 1)2J as

HN (t).C = BN .Λ̃(t), (3.19)

then, using the Flatlet multiwavelets biorthogonality properties (2.14) we can write∫ 1

0

HN (t).C.ΛT (t)dt =

∫ 1

0

BN .Λ̃(t).ΛT (t)dt, (3.20)

and BN is calculated as

BN =

∫ 1

0

HN (t).C.ΛT (t)dt. (3.21)

Substituting Eq. (3.21) in Eq. (3.18) gives the following result

CT .D.Λ̃(x) +QT .BN .Λ̃(x) = GT .Λ̃(x) + λ.

∫ x

0

Λ̃T (x).KT .BN .Λ̃(t)dt (3.22)

= GT .Λ̃(x) + λ.Λ̃T (x).KT .BN .

∫ x

0

Λ̃(t)dt

= GT .Λ̃(x) + λ.Λ̃T (x).KT .BN .P.Λ̃(x),

where P is operational matrix of Voltera integration.
In order to approximate the solution of Eq. (3.1), we use (m + 1)2J collocation points. First, set N = (m + 1)2J ,

so the suitable collocation points are Newoton-Cotes nodes as

xi =
2i− 1

2N
, i = 1, 2, ..., N. (3.23)

Suppose the matrix LN is a square matrix of dimension N ×N whose columns are the value of Λ̃(x) at the above
points as

LN = [Λ̃(x1), Λ̃(x2), ..., Λ̃(xN )]. (3.24)

Furthermore,

Λ̃(xi) = LN .ei, (3.25)

where ei is N × 1 vector that entire i is 1 and the others are 0.
Now, by applying collocation points and Eq. (3.25), Eq. (3.22) can be rewritten as

CT .D.LN .ei +QT .BN .LN .ei = GT .LN .ei + λ.ei
T .LN

T .KT .BN .P.LN .ei. (3.26)

Eq. (3.26) makes a set of algebraic equations with (m+ 1)2J equations and (m+ 1)2J unknowns {c1, c2, ..., cN} that
can be easily solved.
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4. Error Analysis and Convergence of the Method

In this section, we discusse the error analysis and convergence of the presented method.

Theorem 4.1. For Flatlet oblique multiwavelet functions ψi of order m and i = 0, 1, ...,m, which have m + i + 1
vanishing moments from Eq. (2.6), if f(x) ∈ C(

∑m
i=0m+i+1)(R) then∣∣∣d̃i,j,k∣∣∣ ≤ C.2−(
∑m

i=0m+i+1) max
ζ∈[0,1]

|fp(ζ)| , (4.1)

in which C is a constant independent of j and f .

Proof. For each x ∈ [0, 1], the Taylor expansion of function f(x) at the point x = k
2j is as follows

f(x) =

(m+1)∑
l=0

f (l)(
k

2j
)
(x− k

2j )
l

l!

+ f (m+i+1)(ζ)
(x− k

2j )
∑m

i=0m+i+1

(m+ i+ 1)!
, (4.2)

In which ζ ∈ [ k2j , x]. By substituting Eq. (4.2) in Eq. (2.27) we can write

d̃i,j,k =

∫ 1

0

f(x).ψi,j,k(x)dx (4.3)

=

m+i∑
l=0

f (l)(
k

2j
)

1

l!

∫ 1

0

(x− k

2j
)
l

.ψi,j,k(x)dx

+
1

(
∑m
i=0m+ i+ 11)!

∫ 1

0

f (
∑m

i=0m+i+1)(ζ)(x− k

2j
)

∑m
i=0m+i+1

.ψi,j,k(x)dx.

Suppose that t = 2jx− k so∫ 1

0

(x− k

2j
)
l

ψi,j,k(x)dx =

∫ 1

0

(x− k

2j
)
l

ψi(2
jx− k)dx (4.4)

=

∫ 1

0

(
t

2j

)l
ψi(t).2

−jdt

= 2−j(l+1)

∫ 1

0

tlψi(t)dt , l = 0, 1, ...,m+ i.

Now, using vanishing moments property we will have∫ 1

0

(x− k

2j
)
l

ψi,j,k(x)dx = 0 , l = 0, 1, ...,m+ i, (4.5)

and Eq. (4.3) can be written as∣∣∣d̃i,j,k∣∣∣ =
1

(
∑m
i=0m+ i+ 1)!

∣∣∣∣∣
∫ 1

0

f (
∑m

i=0m+i+1)(ζ)(x− k

2j
)

∑m
i=0m+i+1

ψi(2
jx− k)dx

∣∣∣∣∣ (4.6)

≤ 1

(
∑m
i=0m+ i+ 1)!

max
ζ∈[0,1]

∣∣∣f (
∑m

i=0m+i+1)(ζ)
∣∣∣ ∫ 1

0

∣∣∣∣∣(x− k

2j
)
m+i+1

ψi(2
jx− k)

∣∣∣∣∣ dx
= 2−((

∑m
i=0m+i+1)+1)j 1

(
∑m
i=0m+ i+ 1)!

max
ζ∈[0,1]

∣∣∣f (
∑m

i=0m+i+1)(ζ)
∣∣∣ ∫ 1

0

∣∣∣t∑m
i=0m+i+1ψi(t)

∣∣∣ dt,
by assuming

C =
1

(
∑m
i=0m+ i+ 1)!

∫ 1

0

∣∣∣t∑m
i=0m+i+1ψi(t)

∣∣∣ dt, (4.7)

the proof ends. �
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Theorem 4.2. For Flatlet oblique multiwavelet functions ψi of order m and i = 0, 1, ...,m, with compact support
which have Ni =

∑m
i=0m+ i+ 1 vanishing moments we can say

|εJ(x)| = O
(

2−(
∑m

i=0m+i+1)J
)
. (4.8)

Proof. Since

f(x) =

m∑
i=0

c̃iφ̃i(x) +

m∑
i=0

J−1∑
j=0

2j−1∑
k=0

d̃i,j,kψ̃i(2
jx− k), (4.9)

therefore, the error of this approximation will be as follows

εJ(x) =

∞∑
J

2j−1∑
k=0

d̃i,j,kψ̃i,j,k(x). (4.10)

Suppose

Cψ̃ = max
x∈[0,1]

∣∣∣ψ̃i(2jx− k)
∣∣∣ = max

t∈[0,1]

∣∣∣ψ̃i(t)∣∣∣ , (4.11)

using (4.11) we can write∣∣∣d̃i,j,kψ̃i,j,k(x)
∣∣∣ ≤ C2−(((

∑m
i=0m+i+1))+1)j max

ζ∈[0,1]

∣∣∣f (
∑m

i=0m+i+1)(ζ)
∣∣∣Cψ̃. (4.12)

Now, we obtain

2j−1∑
k=0

∣∣∣d̃i,j,kψ̃i,j,k(x)
∣∣∣ ≤ Cψ̃C2−((

∑m
i=0m+i+1)+1)j2j max

ζ∈[0,1]

∣∣∣f (
∑m

i=0m+i+1)(ζ)
∣∣∣ (4.13)

= Cψ̃C2−(
∑m

i=0m+i+1)j max
ζ∈[0,1]

∣∣∣f (
∑m

i=0m+i+1)(ζ)
∣∣∣ ,

substituting (4.13) in (4.10) we can write

|εJ(x)| ≤ Cψ̃C max
ζ∈[0,1]

∣∣∣f (
∑m

i=0m+i+1)(ζ)
∣∣∣ ∞∑
j=J

2−(
∑m

i=0m+i+1)j (4.14)

= Cψ̃C max
ζ∈[0,1]

∣∣∣f (m+i+1)(ζ)
∣∣∣ 2−(m+i+1)J

1− 2−(m+i+1)
.

Therefore, we conclude that for any desired x, the approximation error will be as follows

|εJ(x)| = O
(

2−(
∑m

i=0m+i+1)J
)
, (4.15)

and as m and J increase, the error decreases. �

Lemma 4.3. [27] Let X = L2([0, 1]), indicates the vector space of square-summable functions defined on [0, 1] and Ω
be a Volterra integral operator on X defined by

Ω (u(x)) =

∫ x

0

κ(x, t)u(t)dt, ∀u ∈ X, (4.16)

and for the kernel κ(x, t) we have ∫ 1

0

∫ 1

0

|κ(x, t)|dtdx = ρ2, (4.17)

or supx,t κ(x, t) = ρ and ρ is a constant. Then Ω is bounded in L2([0, 1]). That is,

||Ω (u(x)) ||2 ≤ ρ||u||2 (4.18)
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Lemma 4.4. Let u(x) be sufficiently smooth function in L2([0, 1]) and Dα(x) indicates the approximation of Caputo
fractional derivative of the order α > 0 of u(x), Dαu(x). Assuming that Dαu(x) is bounded by a constant ξ, Dαu(x) ≤
ξ, in this case, there exists an integer like γ such that

||Dαu(x)−DαuN (x)||22 ≤ ξ2.γ. (4.19)

Proof. Let

Dαu(x) =

∞∑
i=1

ciΛ̃i(x), (4.20)

now, if we consider the first N = (m+ 1)2J terms of the sum above, we will have

DαuN (x) =

N∑
i=1

ciΛ̃i(x), (4.21)

and Eqs. (4.20) and (4.21) yields

Dαu(x)−DαuN (x) =

∞∑
i=N+1

ciΛ̃i(x). (4.22)

Using Eq. (2.19), since the end entries of the vector Λ̃(x) are composed of ψi(x) and i = 1, ..., N , it can be written as

||Dαu(x)−DαuN (x)||22
=

∫ 1

0

(Dαu(x)−DαuN (x))
2
dx (4.23)

=

∫ 1

0

( ∞∑
i=N+1

ciΛ̃i(x)

)2

dx

=

∞∑
i=N+1

ci
2


∫ 1

2

0

(
s1
i1 + s1

i2x+ ...+ s1
i,2m+1x

2m
)
dx, 0 ≤ x < 1

2∫ 1
1
2

(
s2
i1 + s2

i2x+ ...+ s2
i,2m+1x

2m
)
dx, 1

2 ≤ x < 1

0, otherwise

+

∞∑
i=N+1

∞∑
j=N+1

ci.cj


∫ 1

2

0

(
p1
i1 + p1

i2x+ ...+ p1
i,2m+1x

2m
)
dx, 0 ≤ x < 1

2∫ 1
1
2

(
p2
i1 + p2

i2x+ ...+ p2
i,2m+1x

2m
)
dx, 1

2 ≤ x < 1

0, otherwise

=

∞∑
i=N+1

ci
2.M +

∞∑
i=N+1

∞∑
j=N+1

ci.cj .P,

where

M =


1
2 .s

1
i1 + 1

8 .s
1
i2 + ...+

( 1
2 )2m+1

2m+1 .s1
i,2m+1, 0 ≤ x < 1

2 ,

1
2 .s

2
i1 + 1

8 .s
2
i2 + ...+

( 1
2 )2m+1

2m+1 .s2
i,2m+1,

1
2 ≤ x < 1,

0, otherwise,

and

P =


1
2 .p

1
i1 + 1

8 .p
1
i2 + ...+

( 1
2 )2m+1

2m+1 .p1
i,2m+1, 0 ≤ x < 1

2 ,

1
2 .p

2
i1 + 1

8 .p
2
i2 + ...+

( 1
2 )2m+1

2m+1 .p2
i,2m+1,

1
2 ≤ x < 1,

0, otherwise,
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also

sik =

∞∑
i=N+1

2m+1∑
k=1

bik.bki , pik =

∞∑
i=N+1

2m+1∑
k=1

∞∑
j=N+1

bik.bkj . (4.24)

On the other hand, according to the Eq. (2.27), ci =
∫ 1

0
Dαu(x).Λi(x)dx, so from Eq. (4.7) we can write

ci ≤ ξ
∫ 1

0
Λi(x)dx = ξ.C,

and as a result

|ci|2 ≤ (ξ.C)
2
, (4.25)

where

C =
1

(m+ i+ 1)!

∫ 1

0

∣∣tm+i+1ψi(t)
∣∣ dt. (4.26)

So

||Dαu(x)−DαuN (x)||22
=

∞∑
i=N+1

ci
2.M +

∞∑
i=N+1

∞∑
j=N+1

ci.cj .P (4.27)

≤
∞∑

i=N+1

(ξ.C)
2

(M + P) = ξ2.γ,

and γ = C2(M + P). �

Theorem 4.5. Let us consider all assumptions of theorems (4.1) and (4.2) and lemmas (4.3) and (4.4), also let
yN (x) be the approximate solution of fractional Volterra integro-differential Eq. (3.1) given by

yN (x) =

N∑
i=1

ciΛ̃i(x), N = (m+ 1)2J ,

and satisfy the initial conditions yj(0) = cj , j = 0, 1, ..., n − 1 and n − 1 < α < n, then we have ||y(x) − yN (x)|| → 0
when N →∞.

Proof. Let εN (x) = y(x)−yN (x) represent the error function of the approximate solution yN (x) for the exact solution
y(x) and N = (m+ 1)2J . By substituting yN (x) in the Eq. (3.1) we get

DαyN (x) + q(x)yN (x) = g(x) + λ

∫ x

0

K(x, t)yN (t)dt, (4.28)

and also we can write

Dαy(x)−DαyN (x) + q(x) (y(x)− yN (x)) = λ

∫ x

0

K(x, t) (y(t)− yN (t)) dt. (4.29)

So

q(x) (εN (x)) =

∫ x

0

K(x, t)εN (t)dt− (Dαy(x)−DαyN (x)) (4.30)

≤
∣∣∣∣∫ x

0

K(x, t)εN (t)dt

∣∣∣∣+ |Dαy(x)−DαyN (x)|

≤ ρ
∣∣∣∣∫ x

0

εN (t)dt

∣∣∣∣+ |Dαy(x)−DαyN (x)| .

Now, by Eq. (4.29) and Gronwall’s inequality [28], we can write

||q(x) (εN (x)) ||2 ≤ ||D
αy(x)−DαyN (x)||2 ≤ ξ

√
γ. (4.31)



386 Z. SHAFINEJHAD AND M. ZAREBNIA

Using the proofs of theorem (4.1) and lemma (4.3), since γ = (M + P)
(

1
(m+i+1)!

∫ 1

0

∣∣tm+i+1ψi(t)
∣∣ dt)2

and q(x) 6= 0,

therefore εN (x)→ 0 or y(x)→ yN (x) as N →∞. �

5. Numerical examples

In order to illustrate the performance of the proposed method and justify the accuracy and efficiently of the
presented method, we consider the following examples.

Remark 5.1. First we consider the fractional Volterra integro-differential equation given by, [32]

D
1
2 y(x) = y(x) +

8

3Γ(0.5)
x1.5 − x2 − 1

3
x3 +

∫ x

0

y(t)dt, (5.1)

y(0) = 0, y′(0) = 0,

whith the exact solution y(x) = x2. In Table 1 , the absolute error values for different m and J is presented. By
looking at the table, it is clear that the exact answer is obtained even for low m and J . Also we compared our results
with LWPGM method presented in [32]. Figure 1 shows the approximation processes in this example for m = 4 and
J = 1. Also Figure.2 shows the errore rate for several m and J briefly.

Remark 5.2. Consider the following fractional Volterra integro-differential equation

D0.75y(x) = (x cosx− sinx)y(x) +
1

Γ(1.25)
x0.25 +

∫ x

0

x sin ty(t)dt, (5.2)

y(0) = 0, y′(0) = 0.

The exact solution of above equation is y(x) = x. This problem has been solved by Flatlet oblique multiwavelet
method and you can see the absolute values of errors for different values of m and J in Table 2. The approximation
and error diagrams are shown in Figures 3 and 4 for different values of m and J respectively.

Remark 5.3. Consider the following fractional Volterra integro-differential equation

D
√

3y(x) =
2

Γ(3−
√

3)
x2−

√
3 + 2 sinx− 2x+

∫ x

0

cos(x− t)y(t)dt, (5.3)

y(0) = 0, y′(0) = 0.

with the exact solution y(x) = x2. The absolute values of errors for different values of m and J is shown in Table 3.
Also Figures 5 and 6 represent the approximation and error diagrams for different values of m and J .

Figure 1. The numerical solution of Example 5.1 for m = 4 and J = 2 with the exact answer.



CMDE Vol. 12, No. 2, 2024, pp. 374-391 387

Figure 2. The error value diagrams of Example 5.1, the left one for m = 3 and J = 1, the middle
one for m = 4 and J = 1 and the right one for m = 4 and J = 2.

Figure 3. The numerical solution of Example 5.2 for m = 4 and J = 1 with the exact answer.

Figure 4. The error value diagrams of Example 5.2, the left one for m = 3 and J = 1, the middle
one for m = 3 and J = 2 and the right one for m = 4 and J = 1.
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Figure 5. The numerical solution of Example 5.3 for m = 2 and J = 3 with the exact answer.

Figure 6. The error value diagrams of Example 5.3, the left one for m = 3 and J = 1 and J = 2
and the tight one for m = 2 and J = 3.

Table 1. Absolute values of errors for Example 5.1.
x Exact m = 2 , J = 1 m = 4,J = 1 Errors by LWPGM[32]

0.0 0.0 1.83× 10−19 2.18× 10−19 3.88× 10−16

0.1 0.01 2.23× 10−19 3.32× 10−19 5.55× 10−16

0.2 0.04 2.77× 10−19 4.42× 10−19 6.66× 10−16

0.3 0.09 3.45× 10−19 5.52× 10−20 9.15× 10−16

0.4 0.16 4.20× 10−19 6.70× 10−20 1.27× 10−15

0.5 0.25 5.10× 10−19 8.10× 10−19 1.63× 10−15

0.6 0.36 5.30× 10−19 1.50× 10−18 2.04× 10−15

0.7 0.49 6.50× 10−19 1.79× 10−18 2.52× 10−15

0.8 0.64 8.10× 10−19 2.04× 10−18 3.27× 10−15

0.9 0.81 1.01× 10−18 2.34× 10−18 3.77× 10−15

1.0 1.0 1.20× 10−18 2.76× 10−18 4.21× 10−15
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Table 2. Absolute values of errors for Example 5.2.
x Exact m = 3 , J = 1 m = 4,J = 1 m = 4,J = 2

0.0 0.0 7.60× 10−20 8.34× 10−20 2.76× 10−22

0.1 0.1 7.50× 10−6 1.23× 10−7 5.15× 10−10

0.2 0.2 5.66× 10−6 5.63× 10−8 7.10× 10−10

0.3 0.3 2.22× 10−6 6.61× 10−8 7.21× 10−6

0.4 0.4 4.92× 10−6 7.71× 10−8 7.21× 10−7

0.5 0.5 2.15× 10−5 3.30× 10−7 7.22× 10−7

0.6 0.6 1.87× 10−6 2.60× 10−6 8.27× 10−7

0.7 0.7 4.75× 10−6 2.39× 10−6 8.80× 10−7

0.8 0.8 7.63× 10−6 2.41× 10−6 4.21× 10−7

0.9 0.9 7.16× 10−6 2.35× 10−6 1.75× 10−7

1.0 1.0 7.1× 10−19 1.60× 10−18 2.51× 10−18

Table 3. Absolute values of errors for Example 5.3.
x Exact m = 3 , J = 1 m = 3 , J = 2 m = 2 , J = 3

0.0 0.0 1.96× 10−3 1.0× 10−4 3.52× 10−6

0.1 0.01 2.45× 10−3 1.5× 10−4 9.51× 10−7

0.2 0.04 2.94× 10−3 2.0× 10−4 8.25× 10−8

0.3 0.09 3.43× 10−3 3.1× 10−4 4.32× 10−6

0.4 0.16 3.94× 10−3 3.9× 10−4 1.23× 10−5

0.5 0.25 4.47× 10−3 4.8× 10−4 1.47× 10−5

0.6 0.36 6.12× 10−3 5.9× 10−4 1.03× 10−5

0.7 0.49 7.02× 10−3 7.1× 10−4 2.36× 10−6

0.8 0.64 7.97× 10−3 7.9× 10−4 9.26× 10−6

0.9 0.81 8.95× 10−3 9.4× 10−4 2.45× 10−5

1.0 1.0 9.99× 10−3 1.1× 10−3 3.13× 10−5

6. Conclusions

In this paper, the Flatlet oblique multiwavelets (FOM) was used to solve the fractional Volterra integro-differential
equation. In this way, first by expanding the unknown function y(x) by the dual functions of flatlet oblique multi-
wavelets and then by constructing the operator matrices related to fractional derivative and Volterra integration, we
converted the fractional Volterra integro-differential equation into a set of algebraic equations and solved this system
of algebraic equations using collocation points that are Newoton-Cotes nodes. Therefore, we obtained a suitable ap-
proximation for the solution of fractional Volterra integro-differential equation, the results of which are presented in
different values of m and J . Also the convergence of method and error analysis were expressed as several theorems
and their proofs. This method is computationally attractive and its practicality is demonstrated through illustra-
tive examples. In this research, we have seen that by increasing the order of Flatlet multiwavelet (m) even using
low-dimensional matrices, an acceptable approximation of the answer with fewer error values can be achieved.
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