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Abstract

The finite element solution of a class of parabolic integro–partial differential equations with interfaces is presented.
The spatial discretization is based on the triangular element while a two-step implicit scheme together with the

trapezoidal method is employed for time discretization. For the spatial discretization, the elements in the neigh-
borhood of the interface are more refined such that the interface is at σ-distance from the approximate interface.

The convergence rate of optimal order in L2-norm is analyzed with the assumption that the interface is arbitrary

but smooth. Examples are given to support the theoretical findings with implementation on FreeFEM++.
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1. Introduction

We consider a class of parabolic integro-differential equations of the form

ut(x, t)−∇·(a(x)∇u(x, t))+b(x)u(x, t)−
∫ t

0

∇·(α(x)∇u(x, s))−β(x)u(x, s) ds = f(x, t), in Ω×(0, T ], (1.1)

with initial and boundary conditions{
u(x, 0) = u0(x), Ω,
u(x, t) = 0, ∂Ω× [0, T ],

(1.2)

and interface conditions
[u]Γ = 0,[

a(x)
∂u(x, t)

∂n
+ α(x)

∫ t

0

∂u(x, s)

∂n
ds

]
Γ

= g(x, t),
(1.3)

where 0 < T < ∞, Ω is a bounded convex domain in R2 with boundary ∂Ω and partitioned into two subdomains
(Ω1 and Ω2) by arbitrary but smooth interface Γ (See Figure 1). [u] represents the jump of u across the interface Γ
while n is the unit outward normal to the boundary ∂Ω1. The interface conditions are defined as the difference of the
limiting values from each side of the interface. The input function f(x, t) is assumed continuous over each domain but
discontinuous across the interface for t ∈ [0, T ]. For simplicity of exposition, a(x) is assumed positive and piecewise
constant on Ω (i.e. a(x) = ai ∈ R+, x ∈ Ωi, i = 1, 2), while b(x), α(x) and β(x) are assumed non-negative and
piecewise constant on Ω.

The integro-differential equations of the form (1.1) are often referred to as parabolic partial differential equation with
memory. Equations of the form (1.1)−(1.3) arise in many applications, for example, heat conduction in material with
memory [13, 22], nuclear reactor dynamics [10, 28], compression of poro-viscoelasticity media [23], and the epidemic
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phenomena in biology [9]. In a more general setting, Ω represents a domain consisting of more than one material
medium with different properties such as diffusion constants, conductivities, etc. Thus (1.1) becomes an interface
problem with interface condition (1.3). Solutions of interface problems are less regular in the entire physical domain
than in each individual material region [7, 29].

In the absence of memory term in (1.1), convergence analysis of finite element method (FEM) for parabolic interface
problem has been studied by several authors, see [2, 4, 5, 20, 21, 32, 36, 45] for recent works. Solutions of parabolic
integro-differential equations without interfaces using standard finite element methods have been presented in [8,
10, 30, 34, 40, 41, 43, 46, 49]. Several other techniques have been studied, including mixed finite element methods
[18, 27, 31, 33, 44], domain decomposition method [37], two-grid finite element method [11, 26], discontinuous Galerkin
method [48], hp-local discontinuous Galerkin methods [35], mixed covolume methods [50, 52], least-squares finite
element methods [19] and the weak Galerkin method [51]. The finite element solution of time fractional gas dynamics
model using cubic Hermit element was discussed in [42]. However discussion on the finite element solution of parabolic
integro-differential equations with interfaces is still rare in literature.

Analysis of finite element solution of parabolic integro-differential equations with interfaces was carried out by
Deka and Deka [15] and later in [16]. In both articles, the special case of homogeneous interface condition was
considered. Using finite element space consisting of piecewise linear functions on a mesh that does not necessarily
resolve the interface, they established convergence rates of optimal order for semi discretization and full discretization.
Their time discretization, based on backward difference scheme, was shown to be first-order accurate. In [16] where
the memory term is a second-order partial differential operator, the authors did not include the contribution of the
memory term to the flux across the interface. This could have adverse effect on the convergence of the method.
Finite element solution of a second-order hyperbolic integro-differential equation with interface has been presented
in [3]. Ritz-Volterra operator and some auxiliary error estimates in the neighborhood of the interface were used to
obtain convergence estimates. The scheme was implemented using MATLAB. Recently, [38] proved posteriori error
estimates for linear non-interface parabolic integro-differential equation on finite element with a two-step backward
time discretization formula. The second-order accuracy in time was achieved.

In this work, we include the contribution of the memory term to the flux across the interface in our model problem
(1.1)−(1.3). The interface is first approximated by piecewise continuous straight lines and the mesh is fitted to
this approximation. Sufficient conditions that guarantee the existence of a unique solution are given. Under these
assumptions, the convergence rate of optimal order in L2(Ω) norm is proved. In the work of [15, 16], the Euler scheme
(which is only first-order accurate) was used for the time discretization and the memory term was approximated by a
rectangle rule (which is also first-order accurate in time). However in this work, use is made of 2-step implicit scheme
and the use of the trapezoidal method is proposed for the approximation of the memory term. In [39], it was reported
that there is no generally available software that is able to solve the parabolic integro-differential equation numerically.
We further demonstrate, in this work, that finite element solution of parabolic integro-differential equation can be
implemented using FreeFEM++ and convergence of optimal order will still be obtained if certain conditions are met.

 
 
 

      
    
 

 

      
 

                
                           
 

Figure 1. A convex polygonal domain Ω = Ω1 ∪ Ω2 with interface Γ

This paper is organized as follows. In section 2, we define the notations used in this work and describe a finite
element discretization of the problem. In section 3, we give the fully discrete version of (2.1) and analyze convergence
rate of optimal order in L2(Ω)-norm. We confirm our theoretical analysis with examples in section 4. Throughout
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this paper, C is a generic positive constant (which is independent of the mesh parameter h and the time step size k)
and may take on different values at different occurrences.

2. Preliminaries

In this section, the regularity of the solution under the appropriate regularity of u0 and f as well as finite element
discretization is considered.

2.1. Notation and Regularity. The definitions and notations for Sobolev spaces and norms in [1] are used in this
work. For

ℵ(x, t) =

{
ℵ1(x, t) in Ω1 × (0, T ],

ℵ2(x, t) in Ω2 × (0, T ],

with ℵ1(x, t) ∈ H1(Ω1) and ℵ2(x, t) ∈ H1(Ω2), we define

‖ℵ(x, t)‖H1(Ω) = ‖ℵ1(x, t)‖H1(Ω1) + ‖ℵ2(x, t)‖H1(Ω2) , t ∈ (0, T ].

Let vi be the restriction of v to Ωi, i = 1, 2. The following spaces will be required for our analysis

X =
{
v : v ∈ H1(Ω), vi ∈ H2(Ωi)

}
, Y =

{
v : v ∈ L2(Ω), vi ∈ H1(Ωi)

}
,

equipped with the norms

‖v‖X = ‖v‖H1(Ω) + ‖v1‖H2(Ω1) + ‖v2‖H2(Ω2) ∀ v ∈ X,
‖v‖Y = ‖v‖L2(Ω) + ‖v1‖H1(Ω1) + ‖v2‖H1(Ω2) ∀ v ∈ Y.

We shall use the following norm for our error estimation.

‖v‖Z = ‖v1‖H2(Ω1) + ‖v2‖H2(Ω2) ∀ v ∈ Z.

Let A(., .) and B(t, s; ., .) be bilinear forms on H1(Ω)×H1(Ω) defined by

A(φ, ψ) =

∫
Ω

a(x)∇φ · ∇ψ + b(x)φψ dx,

B(t, s;φ, ψ) =

∫
Ω

α(x)∇φ · ∇ψ + β(x)φψ dx.

The weak form of (1.1)−(1.3) is to find u(t) ∈ H1
0 (Ω), t ∈ (0, T ] such that

(ut, v) +A(u, v) +

∫ t

0

B(t, s;u, v) ds = (f, v) + 〈g, v〉Γ ∀ v ∈ H1
0 (Ω), t ∈ (0, T ], (2.1)

where

(φ, ψ) =

∫
Ω

φψ dx, 〈φ, ψ〉Γ =

∫
Γ

φψ ds.

We have the following regularity result:

Theorem 2.1. Assume a(x) is positive and b(x) is nonnegative for x ∈ Ω. Let f ∈ H1(0, T ;L2(Ω)), g ∈ H1(0, T ;H1/2(Γ))
and u0 ∈ H1

0 (Ω). Then problem (1.1)−(1.3) has a unique solution

u ∈ L2(0, T ;X ∩H1
0 (Ω)) ∩H1(0, T ;Y ).

Proof. Using the regularity of result of the parabolic interface problems [12],

u ∈ L2(0, T ;X ∩H1
0 (Ω)) ∩H1(0, T ;Y ).

Now, let ũ be another solution of (1.1)−(1.3), then

(ũt, v) +A(ũ, v) +

∫ t

0

B(t, s; ũ, v) ds = (f, v) + 〈g, v〉Γ ∀ v ∈ H1
0 (Ω), t ∈ (0, T ]. (2.2)
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Figure 2. A typical interface element

Subtract (2.2) from (2.1), we have

(ut − ũt, v) +A(ut − ũ, v) +

∫ t

0

B(t, s;ut − ũ, v) ds = 0 ∀ v ∈ H1
0 (Ω), t ∈ (0, T ].

Let v = u− ũ, then we obtain

1

2

d

dt
‖u− ũ‖L2(Ω) + a(x)‖∇u−∇ũ‖L2(Ω) + b(x)‖u− ũ‖L2(Ω)

+ min{α(x), β(x)}
∫ t

0

‖u − ũ‖H1(Ω) ds ≤ 0, ∀ t ∈ (0, T ].

This implies

1

2

d

dt
‖u− ũ‖L2(Ω) + a(x)‖∇u−∇ũ‖L2(Ω) + b(x)‖u− ũ‖L2(Ω)

+ min{α(x), β(x)}t‖u − ũ‖L∞(0,t;H1(Ω)) ≤ 0, ∀ t ∈ (0, T ].

Integrating both sides from 0 to t and using the fact that u(x, 0) = ũ(x, 0) = u0(x), we have

‖u− ũ‖L2(Ω) + a(x)

∫ t

0

‖∇u−∇ũ‖L2(Ω) dτ + b(x)

∫ t

0

‖u− ũ‖L2(Ω) dτ

+ min{α(x), β(x)}
∫ t

0

τ‖u − ũ‖L∞(0,τ ;H1(Ω)) dτ ≤ 0, ∀ t ∈ (0, T ].

This implies u(x, t) = ũ(x, t) a.e.(x, t) ∈ Ω× [0, T ). �

2.2. Finite Element Discretization. We adopt the finite element discretization used in [3]. Th denotes a conforming
triangulation of Ω. Let hK be the diameter of an element K ∈ Th and h = maxK∈Th hK , 0 < h < 1. Let T ?h denote
the set of all elements that are intersected by the interface Γ;

T ?h = {K ∈ Th : K ∩ Γ 6= ∅},
K ∈ T ?h is called an interface element and we write Ω?h =

⋃
K∈T ?

h
K.

The domain Ω1 is approximated by a polygonal domain Ωh1 with boundary Γh whose vertices all lie on the interface
Γ. Ωh2 represents the domain with Γh and ∂Ω as its interior and exterior boundaries respectively. For each K ∈ T ?h ,
let σK be the maximum distance between Γ and Γh (see Figure 2) and let σ = maxK∈Th σK . The triangulation Th of
the domain Ω is fitted to Ωh1 such that σ = O(h2) and satisfies the conditions stated in [3].

Let Sh ⊂ H1
0 (Ω) represent the space of continuous piecewise linear functions on Th vanishing on ∂Ω. The FE

solution uh(x, t) ∈ Sh is represented as

uh(x, t) =

Nh∑
j=1

αj(t)φj(x) ,
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where each basis function φj , (j = 1, 2, . . . , Nh) is a pyramid function with unit height.
The approximation gh of g is given as

gh(x, t) =

nh∑
j=1

βj(t)ψj(x) ,

where {zj}nh
j=1 is the set of all nodes of the triangulation Th that lie on the interface Γ and {ψj}nh

j=1 is the hat functions

corresponding to {zj}nh
j=1 in the space Sh. We have the following ([12]).

Lemma 2.2. Assume that g ∈ H2(Γ). Then we have

|〈g, vh〉Γ − 〈gh, vh〉Γh
| ≤ Ch3/2‖g‖H2(Γ)‖vh‖H1(Ω?

h) ∀ vh ∈ Sh.

The result below is useful in our analysis. See [47, Chapter 6] for proofs.

Lemma 2.3. Let f ∈ H2(Ω) for t ∈ [0, T ], we have

|(f, v)− (f, v)h| ≤ Ch2‖f‖H2(Ω)‖v‖H1(Ω).

3. Error Estimate

We discuss a fully discrete scheme based on two-step backward difference approximation. Convergence rate of opti-
mal order in L2(Ω)-norm is analyzed. The interval [0, T ] is divided into M equally spaced (for simplicity) subintervals:

0 = t0 < t1 < . . . < tM = T,

with tn = nk, k = T/M being the time step. Let

un = u(x, tn), fn = f(x, tn), and gn = g(x, tn).

For a given sequence {wn}Mn=0 ⊂ L2(Ω), we have the backward differentiation formula of order two defined by

∂wn =
3wn − 4wn−1 + wn−2

2k
, n = 2, 3, . . . ,M.

Let z be any of a, b, α, β. For each triangle K ∈ Th, let zK = zi if K ⊂ Ωhi , i = 1, 2. Then the approximation zh of z
is defined as

zh = zK ∀ K ∈ Th.
The fully discrete finite element approximation to (2.1) is defined as follows:

Let U0
h = πhu0, find Unh ∈ Sh, such that

(∂Unh , vh)h +Ah(Unh , vh) +
k

2

n∑
j=1

(
Bh(tn, tj ;U

j−1
h , vh) +Bh(tn, tj ;U

j
h, vh)

)
= (fn, vh)h + 〈gnh , vh〉Γh

∀ vh ∈ Sh n = 2, 3, . . . ,M, (3.1)

where (ψ, φ)h : H1(Ω)×H1(Ω)→ R, Ah(φ, ψ) : H1(Ω)×H1(Ω)→ R and 〈g(x, t), vh〉Γh
: H1/2(Γ)×H1(Ω)→ R are

defined as

(ψ, φ)h =
∑
K∈Th

∫
K

ψφ dx , Ah(φ, ψ) =
∑
K∈Th

∫
K

[ah∇φ · ∇ψ + bhφψ] dx ,

Bh(tn, tj ;φ, ψ) =
∑
K∈Th

∫
K

[αh∇φ · ∇ψ + βhφψ] dx, 〈g(x, t), vh〉Γh
=

∫
Γh

g(x, t)φ dx,

∀ φ, ψ ∈ H1(Ω), g ∈ H1/2(Γ), t ∈ [0, T ]. (ψ, φ)h : H1(Ω) × H1(Ω) → R, Ah(φ, ψ) : H1(Ω) × H1(Ω) → R
and 〈g(x, t), vh〉Γh

: H1/2(Γ) × H1(Ω) → R are the discrete versions of (ψ, φ) : H1(Ω) × H1(Ω) → R, A(φ, ψ) :
H1(Ω) × H1(Ω) → R and 〈g(x, t), vh〉Γ : H1/2(Γ) × H1(Ω) → R respectively and are obtained numerically using
quadrature schemes. See [47] and the reference therein, for more information on numerical integration in FEM.
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Let

A(u, v) = A(u, v) +

∫ t

0

B(t, s;u, v) ds for u, v ∈ H1(Ω),

and Ah(u, v) be the semi-discrete version of A(u, v) defined as

Ah(u, v) = Ah(u, v) +

∫ t

0

Bh(t, s;u, v) ds for u, v ∈ Sh.

Let Rh : X ∩H1
0 (Ω)→ Sh be the Ritz-Volterra projection (which was first presented in [30]) of the exact solution

u in Sh defined by

Ah(Rhu, φ) = A(u, φ) ∀ φ ∈ Sh, t ∈ [0, T ]. (3.2)

For this projection, we have

Lemma 3.1. Let ai(x), bi(x), αi(x), βi(x) be continuous on Ωi × (0, T ], i = 1, 2. Assume that u ∈ Z ∩H1
0 and let

Rhu be defined as in (3.2), then

‖Rhu− u‖2H1(Ω) ≤ Ch2

(
‖u‖2Z +

∫ t

0

‖u(s)‖2Zds
)
, (3.3)

‖Rhu− u‖2L2(Ω) ≤ Ch4

(
‖u‖2Z +

∫ t

0

‖u(s)‖2Zds
)
, (3.4)

‖(Rhu− u)t‖H1(Ω) ≤ Ch2

(
‖u‖2Z + ‖ut‖2Z +

∫ t

0

‖u(s)‖2Z + ‖us(s)‖2Z ds
)
, (3.5)

‖(Rhu− u)t‖2L2(Ω) ≤ Ch4

(
‖u‖2Z + ‖ut‖2Z +

∫ t

0

‖u(s)‖2Z + ‖us(s)‖2Z ds
)
. (3.6)

Proof. It follows from [3, Lemma 4.3] with sufficient refinement in the neighbourhood of the interface such that
σ = O(h2). �

Below is our main result:

Theorem 3.2. Let un and Unh be the solutions of (2.1) and (3.1) respectively. Suppose ai(x, t), bi(x, t), αi(x, t), βi(x, t)

and fi(x, t) are continuous on Ωi × (0, T ], i = 1, 2 and g(x, t) ∈ L2(0, T ;H1/2(Γ) ∩ H2(Γ)), u ∈ H3(0, T ;L2(Ω)) ∩
L2(0, T ;Z). Let µ1 = min{a1, a2}. For 0 < k < 1

1+µ1
, there exists a positive constant C independent of h and k such

that

‖un − Unh ‖L2(Ω) ≤
[
k2 + h2

]
C(u, ut, uttt, f, g). (3.7)

Proof. We split the error

un − Unh = un −Rhun +Rhu
n − Unh = θn + zn.

The term θn can be bounded using Lemma 3.1. In the sequel, we find an estimate for zn.
Letting zn = Rhu

n − Unh in (3.1) and using (3.2), we have

(∂zn, vh)h +Ah(zn, vh) = B1 +B2 +B3, (3.8)

where

B1 = (∂(Rhu
n − un), vh)h + (∂un − unt , vh) + (∂un, vh)h − (∂un, vh),

B2 = (fn, vh)− (fn, vh)h + 〈gn, vh〉Γ − 〈gnh , vh〉Γh
,

B3 =
k

2

n∑
j=1

(
Bh(tn, tj ;U

j−1
h , vh) +Bh(tn, tj ;U

j
h, vh)

)∫ tn

0

Bh(t, s;Rhu, vh)ds,
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with vh = zn. The Lemma 2.3 is used to obtain

B1 ≤ 2‖∂(Rhu
n − un)‖2L2(Ω) +

1

4
‖zn‖2L2(Ω) + 2‖∂un − unt ‖2L2(Ω) + γCh4‖∂un‖2X +

1

4γ
‖zn‖2H1(Ω) (3.9)

and Lemmas 2.2, 2.3 are used to obtain

B2 ≤ Ch2‖fn‖H2(Ω)‖zn‖H1(Ω) + Ch2‖gn‖H2(Γ)‖zn‖H1(Ω),

≤ C(γ)h4
(
‖fn‖2H2(Ω) + ‖gn‖2H2(Γ)

)
+

1

2γ
‖zn‖2H1(Ω). (3.10)

For B3, we have

B3 =
k

2

n∑
j=1

(
Bh(tn, tj ;Rhu

j−1, zn) +Bh(tn, tj ;Rhu
j , zn)

)
−
∫ tn

0

Bh(t, s;Rhu, z
n) ds− k

2

n∑
j=1

(
Bh(tn, tj ; z

j−1, zn) +Bh(tn, tj ; z
j , zn)

)
.

Using [17, Section 5.2],

B3 ≤ Ck2‖Rhunt ‖H1(Ω)‖zn‖H1(Ω) + Ck2‖Rhu0
t‖H1(Ω)‖zn‖H1(Ω)

+kµ3‖zn‖H1(Ω)

n−1∑
j=0

‖zj‖H1(Ω),

≤ Ck4
(
‖Rhunt ‖2H1(Ω) + ‖Rhu0

t‖2H1(Ω)

)
+

3

4γ
‖zn‖2H1(Ω) + γµ2

3tnk

n−1∑
j=0

‖zj‖2H1(Ω). (3.11)

Substituting (3.9)−(3.11) into (3.8), we have

1

k
‖zn‖2L2(Ω) + µ1‖zn‖2H1(Ω) ≤ C

k

(
‖zn‖L2(Ω)‖zn−1‖L2(Ω) + ‖zn‖L2(Ω)‖zn−2‖L2(Ω)

)
+

1

4
‖zn‖2L2(Ω)

+ 2‖∂(Rhu
n − un)‖2L2(Ω) + 2‖∂un − unt ‖2L2(Ω) + Ch4‖∂un‖2X

+
3

2γ
‖zn‖2H1(Ω) + Ck4

(
‖Rhunt ‖2H1(Ω) + ‖Rhu0

t‖2H1(Ω)

)
+ Ch4

(
‖fn‖2H2(Ω) + ‖gn‖2H2(Γ)

)
+ γµ2

3tn

n−1∑
j=0

‖zj‖2H1(Ω) + µ1‖zn‖2L2(Ω).

Using Young’s inequality and the discrete version of Grönwall’s inequality taking γ =
3

2µ1
, we obtain(

1− 1

2
k − 2kµ1

)
‖zn‖2L2(Ω) ≤ C

(
‖zn−1‖2L2(Ω) + ‖zn−2‖2L2(Ω)

)
+ Ck

[
‖∂(Rhu

n − un)‖2L2(Ω)

+ ‖∂un − unt ‖2L2(Ω) + h4‖∂un‖2X + h4
(
‖fn‖2H2(Ω) + ‖gn‖2H2(Γ)

)
+ k4

(
‖Rhunt ‖2H1(Ω) + ‖Rhu0

t‖2H1(Ω)

)]
. (3.12)

For 0 < k < 1
1+4µ1

,
(
1− 1

2k − 2kµ1

)−1
< 2, therefore (3.12) becomes

‖zn‖2L2(Ω) ≤ C
(
‖zn−1‖2L2(Ω) + ‖zn−2‖2L2(Ω)

)
+ Ck

[
‖∂(Rhu

n − un)‖2L2(Ω) + ‖∂un − unt ‖2L2(Ω)

+ h4‖∂un‖2X + h4
(
‖fn‖2H2(Ω) + ‖gn‖2H2(Γ)

)
+ k4

(
‖Rhunt ‖2H1(Ω) + ‖Rhu0

t‖2H1(Ω)

)]
,
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for n = 2, . . . ,M . By iteration on n, we have

‖zn‖2L2(Ω) ≤ C
[
‖z0‖2L2(Ω) + ‖z1‖2L2(Ω)

]
+ Ck

n∑
j=2

‖∂(Rhu
j − uj)‖2L2(Ω)

+ Ch4k

n∑
j=2

(
‖f j‖2H2(Ω) + ‖gj‖2H2(Γ)

)
+ Ck

n∑
j=2

‖∂uj − ujt‖2L2(Ω)

+ Ch4k

n∑
j=2

‖∂uj‖2X + Ck5
n∑
j=2

(
‖Rhujt‖2H1(Ω) + ‖Rhu0

t‖2H1(Ω)

)
.

A simple calculation shows that

‖zn‖2L2(Ω) ≤ C
(
‖z0‖2L2(Ω) + ‖z1‖2L2(Ω)

)
+ C

∫ tn

0

‖(Rhu− u)t‖2L2(Ω) dt

+ Ck4

∫ tn

0

‖uttt‖2L2(Ω) dt+ Ch4

∫ tn

0

(
‖ut‖2X + ‖f‖2H2(Ω) + ‖g‖2H2(Γ)

)
dt

+Ck4

∫ tn

0

‖Rhut‖2H1(Ω) dt+ Ck4‖Rhu0
t‖2H1(Ω),

≤ C
(
‖z0‖2L2(Ω) + ‖z1‖2L2(Ω)

)
+ Ch4

∫ tn

0

(
‖u‖2Z + ‖ut‖2Z + ‖f‖2H2(Ω) + ‖g‖2H2(Γ)

)
dt

+ Ck4

∫ tn

0

‖uttt‖2L2(Ω) dt+ C
(
h4 + k4

) ∫ tn

0

∫ τ

0

(
‖u(s)‖2Z + ‖ut(s)‖2Z

)
ds dτ

+ Ck4
(
‖u0‖2Z + ‖ut(0)‖2Z

)
.

where use is made of (3.5) to obtain the above inequality. We take U0
h = πhu0, U1

h = U0
h+kπh[∇·(a∇u0)−bu0+f(x, 0)]

and use triangle inequality to obtain

‖un − Unh ‖2L2(Ω) ≤ Ch4

∫ tn

0

(
‖u‖2Z + ‖ut‖2Z + ‖f‖2H2(Ω) + ‖g‖2H2(Γ)

)
dt

+ Ck4

(∫ tn

0

‖uttt‖2L2(Ω) dt+ ‖u0‖2Z + ‖ut(0)‖2Z
)
dt

+ C
(
h4 + k4

) ∫ tn

0

∫ τ

0

(
‖u(s)‖2Z + ‖ut(s)‖2Z

)
ds dτ.

Equation (3.7) follows immediately. �

4. Numerical Experiments

We give examples to verify our main result. The mesh generation and computation are done with FreeFEM++
[25].

Example 4.1. Consider the computational domain Ω = (−1, 1)× (−1, 1) where the interface Γ is a circle centered at
(0, 0) with radius 0.5. Ω1 = {(x, y) : x2 + y2 < 0.25}, Ω2 = Ω \ Ω1.
On Ω× (0, T ], 0 < T <∞, we consider the problem (1.1)−(1.3) whose exact solution, is

u =

{
0.5(0.25− x2 − y2) sin t, in Ω1 × (0, T ],

(0.25− x2 − y2)(1− x2)(1− y2)t exp(−2t), in Ω2 × (0, T ],

The source function f , interface function g and the initial data u0 are determined from the choice of u with

a =

{
1 in Ω1 × (0, T ],

3 in Ω2 × (0, T ],
b =

{
0.5 in Ω1 × (0, T ],

1 in Ω2 × (0, T ],
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α =

{
2 in Ω1 × (0, T ],

1 in Ω2 × (0, T ],
β =

{
0 in Ω1 × (0, T ],

0 in Ω2 × (0, T ].

The finite element solution is presented in Figure 3. Errors in L2-norm at t = 1 for various step size h time step k are
presented in Table 1. To achieve this, we choose k ≤ Ch. Agreement of the numerical experiment with the theoretical
result is verified using

order of convergence =
log(ei+1/ei)

log(hi+1/hi)
,

where ei is the error at the i-th iteration corresponding to the mesh size hi.

 

Figure 3. Computational domain and Finite element solution of Example 4.1 with h = 0.101379, k = 0.02.

Table 1. Error estimates for Example 4.1 in L2-norm.

k h ‖Error‖L2(Ω) Order of convergence
0.040 0.2028 1.42653× 10−3

0.020 0.1014 3.45921× 10−4 2.044

0.010 0.0507 8.43860× 10−5 2.035

0.005 0.0250 2.02345× 10−5 2.025

Although the analysis was done for parabolic integro-differential equations with the homogeneous Dirichlet condi-
tion, the next example shows that the error estimate (3.7) is valid for equations with the non-homogeneous Dirichlet
condition.

Example 4.2. We consider problem (1.1)−(1.3) in Ω× (0, T ] where T <∞ and Ω = (−1, 1)× (−1, 1). Ω1 = {(x, y) ∈
Ω : x2 + y2 < 0.25}, Ω2 = Ω \ Ω1 and the interface Γ is a circle centered at (0, 0) with radius 0.5.
For the exact solution, we choose

u =

{
10(0.25− x2 − y2)t exp(−t) sin(t) + 0.75 sin(t), in Ω1 × (0, T ],

(1− x2 − y2) sin t, in Ω2 × (0, T ],
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and

a =

{
8 in Ω1

1 in Ω2
, b =

{
1 in Ω1

4 in Ω2
, α =

{
1 in Ω1

2 in Ω2
, β =

{
4 in Ω1

1 in Ω2
.

The source function f , interface function g, initial data u0 and the boundary conditions are determined from the
choice of u. Errors in L2 norm at t = 2 for various step size h time step k are presented in Table 2.

Table 2. Error estimates for Example 4.2 in L2-norm.

k h ‖Error‖L2(Ω) Order of convergence
0.08 0.2028 7.50121× 10−3

0.04 0.1006 1.84727× 10−3 1.999

0.02 0.0491 4.26196× 10−4 2.045

0.01 0.0247 1.06495× 10−4 2.018

 

Figure 4. Computational domain and Finite element solution of Example 4.2 with h = 0.0603449,
k = 0.002.

We have been able to show that the error estimate (3.7) is valid for the equations with non-homogeneous Dirichlet
condition. Next we consider a model of real life situation.

Example 4.3. We consider a model describing the heat flow in materials with memory [6, 24]. Sometimes, the material
may have two or more parts with different properties. Let the domain under consideration Ω = (−2, 2)× (−2, 2) be of
two materials Ω1 and Ω2. Let the interface Γ be an ellipse centered at (1, 0) with described by Ω1 = {(x, y) : 4(x−1)2 +
y2 < 1}, Ω2 = Ω\Ω1. We also assume the material has an elliptical hole centered at (−1, 0) {(x, y) : 4(x+1)2 +y2 < 1}
(kindly check the domain discretization in Figure 5).

The governing equation is

wt(x, t)− c∇2w(x, t) = f(x, t) +

∫ t

0

[
H(t− s)∇2w(x, s)

]
ds, in Ω,

[w] = 0,

[
c∇w · n +

∫ t

0

H(t− s)∇w(x, s) · n ds

]
= g, on Γ,

w(x, t) = 0, on ∂Ω,
w(x, 0) = w0(x), for x ∈ Ω,
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where c > 0 represents the thermal diffusivity of the material, f(x, t) represents the distributed control in the domain
Ω and H(t − s) is the memory kernel. This kind of equation also describes the situation where a conservative
tracer is transported by convection and dispersion under a steady, saturated, incompressible groundwater flow in a
nondeformable porous medium of constant porosity [14].

For this experiment, we choose

c =

{
1 in Ω1 × (0, T ]

2 in Ω2 × (0, T ]
, H(t− s) =

{
e−(t−s) in Ω1 × (0, T ]

e−2(t−s) in Ω2 × (0, T ]
.

The initial data w0, interface function g and the control function f are chosen corresponding to the exact solution

w =

{ (
1− 4(x− 1)2 − y2

)
t exp(−t), in Ω1 × (0, T ],

1
1000 (4(x− 1)2 + y2 − 1)(4− x2)(4− y2) sin t, in Ω2 × (0, T ].

Errors in L2 norm at t = 1 for various step size h time step k are presented in Table 3.

Table 3. Error estimates for Example 4.3 in L2-norm.

k h ‖Error‖L2(Ω) Order of convergence
0.1000 0.5070 9.69262× 10−3

0.0500 0.2534 2.47972× 10−3 1.966

0.0250 0.1288 6.46641× 10−4 1.987

0.0125 0.0651 1.62088× 10−4 2.025

 

Figure 5. Computational domain of Example 4.3 with h = 0.2828.
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Figure 6. Finite element solution of Example 4.3 with h = 0.0651, k = 0.0125.

5. Concluding Remarks

In this work, a conforming linear triangular finite element method is proposed for the solution of parabolic integro-
differential equations with memory on the domain with interfaces. The implicit difference scheme together with
the trapezoidal rule was proposed for time discretization. The proposed scheme is shown to have optimal order of
convergence in L2 norm. To the best of the author’s knowledge, this is the article that first presents the implementation
of finite element solution of integro-differential equation on FreeFEM++. Although the analysis and computation in
this work have been presented for interfaces that partitions the domain, extension of the method to open interfaces
within the domain is straightforward.

The method presented in this work is the continuous Galerkin method on fitted mesh. Extension of this work to
parabolic integro-differential equations with moving interfaces or evolving domains in the framework of extended finite
element method is still open and may be considered in the future work.
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