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Abstract

Most of fractional differential equations are considered on a fixed interval. In this paper, we consider a typical

fractional differential equation on a symmetric interval [−α, α], where α is the order of fractional derivative.

For a positive real number α we prove that the solutions are Tn,α(x) = (α + x)
1
2Qn,α(x), where Qn,α(x)

produce a family of orthogonal polynomials with respect to the weight function wα(x) = (α+x
α−x )

1
2 on [−α, α]. For

integer case α = 1, we show that these polynomials coincide with classical Chebyshev polynomials of the third

kind. Orthogonal properties of the solutions lead to practical results in determining solutions of some fractional
differential equations.
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1. Introduction

Important orthogonal polynomials such as Chebyshev, Legendre, Hermite, and Laguerre are the solutions of the
integer order Sturm-Liouville equation. In [8, 10, 17, 18] fractional Sturm-Liouville problems are considered and
some spectral properties such as orthogonality of eigenfunctions corresponding to distinct eigenvalues are studied.
Numerical solutions for fractional Sturm-Liouville problems are studied in [3, 7, 12]. Moreover, solving fractional
Lagrange equation leads to fractional Sturm-Liouville problems. Fractional forms of important equations such as
Legendre, Chebyshev, Lagurre and Hermite equations have been considered in [1, 9, 11, 18].

The Chebyshev equation in classical case is a second-order linear differential equation and the solutions are poly-
nomials of the first, second, third and fourth kind Chebyshev polynomials, see [6, 14] for more details. In this paper,
we define a new form of Fractinal Chebyshev Differential Equation (FCDE) of the following form which is defined on
the interval [−α, α] [

cDα
α−(α2 − x2)α−

1
2Dα
−α+ − λn,α(α2 − x2)−

1
2

]
y(x) = 0, x ∈ [−α, α], (1.1)

where cDα
α− and Dα

−α+ are Caputo and Riemann-Liouville fractional derivatives, respectively. Note that for α = 1 the

equation (1.1) is classical Chebyshev differential equation of first kind, where λn,1 = n2 for Chebyshev polynomials
of first kind [15]. Our main goal in this paper is to generalize the results to FCDE by finding similar orthogonal
polynomials. Fractional differential equations with non-uniform intervals depending to fractional order α appear in
approximating time-dependent fractional diffrential equations by the corresponding finite difference equations.There
are applications in the Chaos theory. For more details see [4, 13].
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2. Preliminaries

In this section, we present some preliminary materials of fractional calculus[5, 10, 16] and Chebyshev polynomials

of the third kind [2, 15, 19]. Assume J
(α,β)
n (x) and Vn(x) are Jacobi polynomials and Chebyshev polynomials of the

third kind of degree n, respectively. An explicit form of Jacobi polynomials is defined by

J (α,β)
n (x) = 2−n

n∑
k=0

(
n+ α

k

)(
n+ β

n− k

)
(x− 1)n−k(x+ 1)k, α > −1, β > −1. (2.1)

Another form is defined by

J (α,β)
n (x) =

Γ(α+ n+ 1)

n!Γ(α+ β + n+ 1)

n∑
m=0

(
n

m

)
Γ(α+ β + n+m+ 1)

2mΓ(α+m+ 1)
(x− 1)m, α > −1, β > −1. (2.2)

Using Eq. (2.1), the following identity is immediate

J (α,β)
n (−x) = (−1)nJ (β,α)

n (x). (2.3)

The relationship between Chebyshev polynomials of the third kind and Jacobi polynomials is as follows:(
2n

n

)
Vn(x) = 22nJ

(− 1
2 ,

1
2 )

n (x). (2.4)

The Chebyshev polynomials of the third kind satisfy the following recurrence relation:

Vn(x) = 2xVn−1(x)− Vn−2(x), V0(x) = 1, V1(x) = 2x− 1. (2.5)

Moreover, the following orthogonality property holds:∫ 1

−1

(
1 + x

1− x

) 1
2

Vm(x)Vn(x)dx = πδm,n. (2.6)

By using relations (2.4), (2.3), and (2.2), the following explicit formula is obtained:

Vn(x) =
(−1)n22nΓ(n+ 3

2 )

(2n)!

n∑
m=0

(−1)m
(
n

m

)
Γ(n+m+ 1)

2mΓ(m+ 3
2 )

(1 + x)m. (2.7)

Left and right Riemann-Liouville integrals of order α are defined by

Iαa+f(x) =
1

Γ(α)

∫ x

a

f(s)

(x− s)1−α ds, x > a,

Iαb−f(x) =
1

Γ(α)

∫ b

x

f(s)

(s− x)1−α ds, x < b,

where α is a positive real number. If m − 1 < α < m, where m is an integer, then left and right Riemann-Liouville
and Caputo fractional derivatives are defined by

(Dα
a+f)(x) = Dm(Im−αa+ f)(x), x > a,

(Dα
b−f)(x) = (−D)m(Im−αb− f)(x), x < b,

(cDα
a+f)(x) = (Im−αa+ Dmf)(x), x > a,

(cDα
b−f)(x) = (Im−αb− (−D)mf)(x), x < b.

Using integration by parts it is easy to see the following equalities hold:∫ b

a

f(x)Dα
b−g(x)dx =

∫ b

a

g(x)cDα
a+f(x)dx+

m−1∑
k=0

(−1)m−kf (k)(x)Dm−k−1Im−αb− g(x)|bx=a, (2.8)
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∫ b

a

f(x)Dα
a+g(x)dx =

∫ b

a

g(x)cDα
b−f(x)dx+

m−1∑
k=0

(−1)kf (k)(x)Dm−k−1Im−αa+ g(x)|bx=a. (2.9)

3. FCDE on symmetric interval depending on α

The classical Chebyshev differential equation of first kind is a second-order linear differential equation of the form[
(−D)(1− x2)

1
2D − λn(1− x2)−

1
2

]
y(x) = 0, x ∈ [−1, 1], (3.1)

where λn,1 = n2 for Chebyshev polynomials of first kind. Now we define a new FCDE of the form (1.1), where λn,α
will be computed later. Using (2.8) and (2.9) on the symmetric interval [−α, α] leads to∫ α

−α

[
g(x).cDα

α−(α2 − x2)α−
1
2Dα
−α+f(x)− f(x).cDα

α−(α2 − x2)α−
1
2Dα
−α+g(x)

]
dx = 0. (3.2)

Now we compute the orthogonal polynomials Qn,α(x) and related eigenvalues λn,α in the following theorem. We find
a recursive formula for coefficients of Qn,α(x), where the coefficient of the leading term is an = ( 2

α )n.

Theorem 3.1. The solution of the Fractional Chebyshev differential equation (1.1) is Tn,α(x) = (α+x)
1
2Qn,α(x), n =

0, 1, 2, · · · , where α is a positive real number and

λn,α =
(n+ 1

2 )Γ(n+ α+ 1
2 )

Γ(n− α+ 3
2 )

, (3.3)

and

Qn,α(x) =

n∑
k=0

ak(α+ x)k. (3.4)

The coefficients ak are functions of α and they are obtained by backward substitution starting with an = ( 2
α )n as follows

ak =
1

λn,α − λk,α

n∑
i=k+1

(2α)i−k
(

i

i− k

)[
Γ(i+ 3

2 ).Γ(k + α+ 1
2 )

Γ(k + 1
2 )Γ(i− α+ 3

2 )
− λn,α

]
ai,

k = n− 1, n− 2, ..., 1, 0. (3.5)

Proof. The proof is constructive and the solution is obtained by substituting Tn,α(x) in FCDE (1.1). We have

(α2 − x2)−
1
2Tn,α(x) = (α− x)−

1
2

n∑
k=0

ak(α+ x)k

= (α− x)−
1
2

n∑
k=0

ak(2α− (α− x))k

=

n∑
k=0

k∑
j=0

ak

(
k

j

)
(−1)k−j(2α)j(α− x)k−j−

1
2 .

Therefore,

(α2 − x2)α−
1
2Dα
−α+Tn,α(x) = (α2 − x2)α−

1
2Dα
−α+

n∑
k=0

ak(x+ α)k+ 1
2

= (α2 − x2)α−
1
2

n∑
k=0

ak
Γ(k + 3

2 )

Γ(k − α+ 3
2 )

(x+ α)k+ 1
2−α

= (α− x)α−
1
2

n∑
k=0

ak
Γ(k + 3

2 )

Γ(k − α+ 3
2 )

(2α− (α− x))k
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=

n∑
k=0

k∑
j=0

ak

(
k

j

)
(−1)k−j(2α)j

Γ(k + 3
2 )

Γ(k − α+ 3
2 )

(α− x)k−j+α−
1
2 .

(3.6)

Taking the right Caputo derivative of the equation (3.6) implies that

cDα
α−(α2 − x2)α−

1
2Dα
−α+Tn,α(x) =

n∑
k=0

k∑
j=0

ak

(
k

j

)
(−1)k−j(2α)j

Γ(k + 3
2 ).Γ(k − j + α+ 1

2 )

Γ(k − α+ 3
2 ).Γ(k − j + 1

2 )
(α− x)k−j−

1
2 .

Now substitution in FCDE (1.1) implies that

n∑
k=0

k∑
j=0

ak

(
k

j

)
(−1)k−j(2α)j

Γ(k + 3
2 ).Γ(k − j + α+ 1

2 )

Γ(k − α+ 3
2 ).Γ(k − j + 1

2 )
(α− x)k−j−

1
2

−λα,n
n∑
k=0

k∑
j=0

ak

(
k

j

)
(−1)k−j(2α)j(α− x)k−j−

1
2 = 0. (3.7)

Equating the cofficients of (α− x)k to zero we find an algebraic system that computes ak. Equating the cofficient
of (α− x)n to zero we find

an
Γ(n+ 3

2 )Γ(n+ α+ 1
2 )

Γ(n− α+ 3
2 )Γ(n+ 1

2 )
(α− x)n − λn,αan(α− x)n = 0.

Thus we find λn,α =
(n+ 1

2 )Γ(n+ α+ 1
2 )

Γ(n− α+ 3
2 )

. It is clear that an can be any arbitrary nonzero real number. Now we find

a recursive formula to compute the coefficients ak. Expanding the sums, choosing an an arbitrary real number and
equating the coefficient of (α− x)n−1 to zero implies that

an−1 =
−1

λα,n−1 − λn,α

(
n

1

)
(2α)

[
Γ(n+ 3

2 )Γ(n− 1 + α+ 1
2 )

Γ(n− α+ 3
2 )Γ(n− 1 + 1

2 )
− λn,α

]
an.

Similarly we find

an−2 =
−1

λn−2,α − λn,α

[(
n− 1

1

)
(2α)(

Γ(n− 1 + 3
2 )Γ(n− 2 + α+ 1

2 )

Γ(n− 1− α+ 3
2 )Γ(n− 2 + 1

2 )
− λn,α)an−1

+

(
n− 1

2

)
(2α)2(

Γ(n+ 3
2 )Γ(n− 2 + α+ 1

2 )

Γ(n− α+ 3
2 )Γ(n− 2 + 1

2 )
− λn,α)an

]
.

Using induction and simple calculations, we obtain the coefficient ak given by (3.5). �

One of the most important objectives of this paper is the investigation of orthogonal properties of Tn,α. The
significance of this paper is to obtain the orthogonal functions on a variable interval. This is proved in the following
Theorem.

Theorem 3.2. For two distinct nonnegative integers m and n the functions Tm,α(x) and Tn,α(x) are orthogonal on
the interval [−α, α], that is ∫ α

−α

(
α2 − x2

)− 1
2 Tm,α(x)Tn,α(x)dx = 0. (3.8)

Moreover the polynomials Qm,α(x) and Qn,α(x) are orthogonal with different weight function as follows∫ α

−α

(
α+ x

α− x

) 1
2

Qm,α(x)Qn,α(x)dx = 0. (3.9)
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Proof. Since Tm,α(x) and Tn,α(x) are solutions of Equation (1.1) thus we have[
cDα

α−(α2 − x2)α−
1
2Dα
−α+ − λn,α(α2 − x2)−

1
2

]
Tn,α(x) = 0,[

cDα
α−(α2 − x2)α−

1
2Dα
−α+ − λm,α(α2 − x2)−

1
2

]
Tm,α(x) = 0.

Multiplying the first equation by Tm,α and the second equation by Tn,α and subtracting the results implies

Tm,α(x)cDα
α−(α2 − x2)α−

1
2Dα
−α+Tn,α(x)− Tn,α(x)cDα

α−(α2 − x2)α−
1
2Dα
−α+Tm,α(x)

= [λn,α − λm,α] (α2 − x2)−
1
2Tn,α(x)Tm,α(x).

Now integrating over interval [−α, α] and applying relation (3.2), we have

[λn,α − λm,α]

∫ α

−α

(
α2 − x2

)− 1
2 Tm,α(x)Tn,α(x)dx = 0,

Which completes the orthogonality relation (3.8). For orthogonality of Qm,α(x) and Qn,α(x) it suffices to use Tn,α(x) =

(α+ x)
1
2Qn,α(x) and Tm,α(x) = (α+ x)

1
2Qm,α(x). �

Now we give an interesting relation between the polynomials Qn,α(x) and the Chebyshev polynomials of the third
kind Vn in the following theorem.

Theorem 3.3. If n is a nonnegative integer and x ∈ [−α, α] then for an = ( 2
α )n, we have

Qn,α(αx) = Vn(x). (3.10)

Proof. We use induction to prove this result. For n = 0 the statement is true since we have

Q0,α(αx) = 1 = V0(x).

Suppose that the statement is true for all j < n, i.e.

Qj,α(αx) = Vj(x).

We may write Qn,α(αx) as a linear combination as follows

Qn,α(αx) =

n∑
k=0

AnkVk(x) = AnnVn(x) +

n−1∑
k=0

AnkQk,α(αx). (3.11)

Using (3.9) for two different and arbitrary indices n, j and changing variables x = αu implies that∫ 1

−1

(
1 + u

1− u
)

1
2Qn,α(αu)Qj,α(αu)du = 0.

Multiplying both sides of Eq. (3.11) by ( 1+x
1−x )

1
2Qj,α(αx) for j < n and integrating over [−1, 1] implies that Anj = 0,

for j = 0, 1, 2, · · · , n− 1. Thus by using Eq. (3.11) we find

Qn,α(αx) = AnnVn(x),

On the other hand, we have an = ( 2
α )n. Since the leading coefficients of Qn,α(αx) and Vn(x) are both 2n, we conclude

Ann = 1 that completes the proof. �

Remark 3.4. Theorem 3.3 implies that the coefficients of polynomial Qn,α(x) are

ak =
(−1)n22nΓ(n+ 3

2 )

(2n)!
(−1)k

(
n

k

)
Γ(n+ k + 1)

αk2kΓ(k + 3
2 )
. (3.12)
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Corollary 3.5. Orthogonality of the polynomials Qn,α(x) implies that∫ α

−α

(
α2 − x2

)− 1
2 Tα,m(x)Tα,n(x)dx = απδmn, (3.13)

and ∫ α

−α

(
α+ x

α− x

) 1
2

Qα,m(x)Qα,n(x)dx = απδmn. (3.14)

Proof. If m = n and x = αu then we have∫ α

−α

(
α2 − x2

)− 1
2 T 2

α,n(x)dx =

∫ α

−α

(
α+ x

α− x

) 1
2

Q2
α,n(x)dx = α

∫ 1

−1

(
1 + u

1− u

) 1
2

Q2
α,n(αu)du.

Using (3.10) and (2.6) we conclude the results. �

Definition 3.6. The Chebyshev norm of the function f(x) is denoted by ‖f‖C and it is difined by

‖f‖C =

(∫ α

−α
(α2 − x2)−

1
2 f(x)Tn,α(x)dx

) 1
2

. (3.15)

The corollary 3.5 implies that

‖Tn,α‖2L = απ. (3.16)

Now we introduce a recursive formula to compute Qn,α(x) in the following theorem.

Lemma 3.7. polynomials Qk,α(x) satisfy the following recursive formula

Qk+1,α(x) =
2x

α
Qk,α(x)−Qk−1,α(x), k ≥ 1,

Q0,α(x) = 1, Q1,α(x) = 2
αx− 1.

(3.17)

Proof. Using (3.10) and (2.5), we conclude that

Qk+1,α(αx) = 2xQk,α(αx)−Qk−1,α(αx), k ≥ 1,

Q0,α(αx) = 1, Q1,α(αx) = 2x− 1.

Changing variable αx = u in the last equations implies the result. �

4. Integral transform on symmetric interval [−α, α]

Integral transforms with respect to orthogonal functions are nice tools in solving classical differential equations.
Some of the well-known integral transforms in classical analysis are Laplace and Fourier transforms. For fractional dif-
ferential equations there are similar terminology and applications. Now we define an integral transforms corresponding
to Tn,α and we define the corresponding inverse transform. Similar to the classical case, we try to apply this concept
to find the solution of some nonhomogeneous fractional differential equations.

Definition 4.1. Let F (n) be the integral transform of a function f ∈ L2[−α, α] in terms of Tn,α defined by

F (n) = T [f ](n) =

∫ α

−α
(α2 − x2)

−1
2 f(x)Tn,α(x)dx. (4.1)

The inverse transform is defined by

T−1[F (n)](x) =

∞∑
n=0

1

απ
F (n)Tn,α(x). (4.2)
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Lemma 4.2. Suppose Jα =cDα
α−(α2 − x2)α−

1
2Dα
−α+ . Then

T
[
(α2 − x2)

1
2 Jαf

]
= λn,αF (n). (4.3)

Proof. Using (3.2) we have the following equality

T
[
(α2 − x2)

1
2 Jαf(x)

]
=

∫ α

−α
Jαf(x).Tn,α(x)dx =

∫ α

−α
f(x).JαTn,α(x)dx

= λn,α

∫ α

−α
(α2 − x2)−

1
2 f(x)Tn,α(x)dx = λn,αF (n),

which completes the proof. �

If the integral transform of a given function g ∈ L2[−α, α] has a specific asymptotic property, then we can find the

solution of a nonhomogeneous fractional differential equations of the form
[
(α2 − x2)

1
2 Jα − λ

]
f = g by using integral

transform. Indeed we have the following Lemma.

Lemma 4.3. Suppose λ 6= λn,α. If the integral transform of g satisfies the following inequality

|G(n)| ≤Mnβ , n > n0, (4.4)

then the solution of fractional differential equation[
(α2 − x2)

1
2 Jα − λ

]
y(x) = g(x), (4.5)

for 2α > β + 1 is given by the following series

y(x) =

∞∑
n=0

G(n)

απ(λn,α − λ)
Tn,α. (4.6)

Proof. Taking integral transform of (4.5) and using (4.3) implies that

[λα,n − λ]Y (n) = G(n),

which implies Y (n) = G(n)
λα,n−λ . Applying inverse transform (4.2), the function y(x) could be expressed in the form

(4.6). For n > n0 we have

‖ G(n)

απ(λn,α − λ)
Tn,α‖C ≤

Mnβ√
απ|λn,α − λ|

.

Using the asymptotic property of the eigenvalues [8] we find

λn,α ∼= (n+
1

2
)2α, n −→∞. (4.7)

Thus we have

Mnβ√
απ|λn,α − λ|

∼=
M√

απn2α−β .

The assumption 2α > β + 1 implies uniform convergence of (4.6) on [−α, α] . �

Example 4.4. For a fix m ∈ N, we consider the following nonhomogeneous fractional differential equation on the
interval [−α, α] [

(α2 − x2)
1
2 Jα − λ

]
f(x) = Tm,α(x). (4.8)

Taking the integral transform of (4.8) implies

F (m) =
απ

λm,α − λ
,
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Table 1. Results of Example 4.5 for α = 0.9 and λ = 8.

N ‖fN − f18‖∞ ‖fN − f18‖c
4 2.7× 10−2 1.9× 10−2

6 1.0× 10−2 7.0× 10−3

8 4.3× 10−3 3.6× 10−3

10 3.0× 10−3 2.1× 10−3

12 2.2× 10−3 1.4× 10−3

14 1.3× 10−3 9.0× 10−4

16 6.1× 10−4 5.7× 10−4

Table 2. Results of Example 4.5 for α = 1.5 and λ = 8.

N ‖fN − f18‖∞ ‖fN − f18‖c
4 2.7× 10−3 2.0× 10−3

6 9.6× 10−4 5.9× 10−4

8 4.0× 10−4 2.4× 10−4

10 1.7× 10−4 1.2× 10−4

12 9.8× 10−5 6.5× 10−5

14 5.6× 10−5 3.8× 10−5

16 2.4× 10−5 2.2× 10−5

and F (n) = 0 for n 6= m. Using relation (4.2), the particular solution of the nonhomogeneous fractional equation (4.8)
is obtained as follows:

f(x) =
1

λα,m − λ
Tm,α(x).

Example 4.5. We consider the following nonhomogeneous equation on the interval [−α, α][
(α2 − x2)

1
2 Jα − λ

]
f(x) = (α− x)

1
2 . (4.9)

Taking integral transform implies that

(λn,α − λ)F (n) =

∫ α

−α
(α2 − x2)

−1
2 (α− x)

1
2Tn,α(x)dx

=
n∑
k=0

ak(

∫ α

−α
(α+ x)kdx) =

n∑
k=0

ak
(2α)k+1

k + 1
.

Substituting the values of ak from Remark 3.4, we obtain

F (n) =
1

(λn,α − λ)

(−1)n22nΓ(n+ 3
2 )

(2n)!

n∑
k=0

(−1)k
(
n

k

)
2α

Γ(n+ k + 1)

(k + 1)Γ(k + 3
2 )
.

Using relation (4.2), the particular solution of the nonhomogeneous fractional Equation (4.9) is obtained as follows:

f(x) =

∞∑
n=0

(−1)n22n+1Γ(n+ 3
2 )Tn,α(x)

π(2n)!(λn,α − λ)

(
n∑
k=0

(−1)k
(
n

k

)
Γ(n+ k + 1)

(k + 1)Γ(k + 3
2 )

)
.

We may truncate the series to approximate the solution f(x) by fN (x). For α = 0.9, 1.5 and different values of N ,
the graphs of fN (x) are plotted in Figure 1. The Infinity norm and Chebyshev norm of fN − f18 for different values
of N are computed in Tables 1 and 2 .



234 Z. KAVOUSI KALASHAMI, K. GHANBARI, AND H. MIRZAEI

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-0.4

-0.3

-0.2

-0.1

0

0.1

f N
(x

)
(a)

N=4

N=12

N=18

-1.5 -1 -0.5 0 0.5 1 1.5

x

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

f N
(x

)

(b)

N=4

N=12

N=18

Figure 1. Graphs of truncated solutions fN (x) for Example 4.5 in the interval [−α, α]. (a) with α = 0.9,

λ = 8 and (b) with α = 1.5, λ = 8.

5. Conclusions

Fractional differential equations with non-uniform intervals depending on fractional order α appear in approximating
time-dependent fractional differential equations by the corresponding finite difference equations.There are applications
in the Chaos theory. In this paper we define a fractional Chebyshev differential equation on a symmetric interval
[−α, α], where α is the order of FCDE. We produce a family of orthogonal polynomials Qn,α(x) on the interval
[−α, α]. For α = 1 we prove that Qn,1(x) is identical to the classical Chebyshev polynomials of the third kind.
Moreover, we solve some nonhomogeneous fractional differential equations by using suitable integral transforms.
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