
Research Paper
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 12, No. 1, 2024, pp. 16-30
DOI:10.22034/cmde.2023.56236.2349

Analysis of a kernel-based method for some pricing financial options

Parisa Ahmadi Balootaki1, Reza Khoshsiar Ghaziani2,∗, Mojtaba Fardi2, and Majid Tavassoli Kajani1

1Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.

2Department of Mathematics, Faculty of Mathematical Science, Shahrekord University, Shahrekord, Iran.

Abstract

In this paper, we propose a kernel-based method for some pricing financial options. Based on the ideas of

the kernel-based approximation and finite-difference discretization, we present an efficient numerical method for
solving the generalized Black-Scholes option pricing models. Utilizing the reproducing property of kernels, we

introduce an efficient framework for obtaining cardinal functions. Also, we discuss the solvability of final system

to obtain some remarkable results. We provide the error estimate of the proposed kernel-based method and verify
its efficiency and accuracy by numerical experiments.
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1. Introduction

The Black-Scholes (B-S) model is a fundamental tool for option pricing (OP) in financial markets. It is a parabolic
partial differential equation that describes the behavior of financial derivatives, specifically options on equity shares.
The equation is derived by applying Itô’s calculus under the assumption that the value of the underlying share evolves
in time-based on a stochastic differential equation, and subject to further assumptions on the financial market. The
key concept of the B-S model is arbitrage-free reasoning. The model has been widely used in the pricing of options
on various commodities and payoff structures [4, 27].

In the literature, various methods have been proposed for the valuation of European and American options. For
instance, Company et al. [8] presented a finite-difference numerical scheme for nonlinear B-S equations, which models
illiquid markets where price impact in the underlying asset market affects the replication of a European contingent
claim. Lesmana and Wang [25] investigated a reliable computational method for solving the B-S model. In [10],
the authors presented the lattice procedure for OP. Hull and White [20] applied a control variate method for OP.
Valkov [31, 32] developed a fitted finite-volume technique to investigate a generalized B-S model and implemented
the convergence analysis of a fitted finite-volume element procedure preserving positivity. Cen and Le [5, 6] used
a reliable numerical approach to the linear complemental problem resulting from OP and proposed a procedure of
implicit time-stepping for a generalized B-S equation.

Furthermore, Rao [29] presented a numerical scheme approximating option prices for different option styles governed
by the generalized B-S equation in its degenerate form. In [1, 33], the authors proposed a finite volume method to
discretize the B-S equation arising from OP. In [21, 22], collocation procedures based on uniform cubic B-splines and
non-uniform B-splines were proposed for the numerical solution of the generalized B-S partial differential equation,
which was second-order convergent with respect to both variables. In [36], an implicit numerical scheme for solving time
fractional B–S model was discussed. Additionally, Prathumwan and Trachoo [28] used the LHPM for the fractional-
order B-S equation, while Baustian et al. [2] applied a Galerkin-based procedure for B-S and Heston models utilizing
orthogonal polynomial systems. Roul and Goura [30] implemented a high-order numerical procedure with a uniform
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mesh for the generalized B-S equation. Chen et al. [7] offered a solution to the generalized B-S equation utilizing the
Laguerre neural network.

In summary, the B-S equation is a crucial model for OP in financial markets. It is widely used, and various numerical
methods have been proposed in the literature to value European and American options. These methods have different
applications and advantages, and researchers are still developing new approaches to improve the accuracy and efficiency
of OP.

Generalized B-S OP models: In this paper, we consider the following generalized B-S equation.

LσU :=
∂U

∂τ
(s, τ) +

1

2
σ2s2 ∂

2U

∂s2
(s, τ) + (r −D)s

∂U

∂s
(s, τ)− rU(s, τ) = 0, (s, τ) ∈ QT . (1.1)

Here, QT = {(s, τ) : s ∈ (0,∞), τ ∈ (0, T )}, and U(s, τ) is the European option price at asset price s and current data
τ , σ > 0 indicates the underlying asset volatility, r > 0 denotes the rate of risk-free interest, and D is the dividend of
the dividend-paying asset.

European call option: Assume that at the expiry time τ = T , the payoff for option is equal to

Φ(s) = max(s− E, 0), (1.2)

for call option (CO) with the exercise price E > 0. The value of European CO is considered a solution of the Equation
(1.1) on QT under the terminal-boundary conditions

U(s, T ) = Φ(s), s ∈ [0,∞),
U(0, τ) = 0, 0 ≤ τ ≤ T,
U(s, τ) ∼ se−D(T−τ) − Ee−r(T−τ), s→∞, 0 ≤ τ ≤ T.

(1.3)

Here, the value of European CO is considered to be a solution of Equation (1.1) defined on the truncated domain
QT,smax

= {(s, τ) : s ∈ (0, smax), τ ∈ (0, T )} under the terminal-boundary conditions
U(s, T ) = Φ(s), 0 ≤ s ≤ smax,
U(0, τ) = 0, 0 ≤ τ ≤ T,
U(smax, τ) = smaxe

−D(T−τ) − Ee−r(T−τ), 0 ≤ τ ≤ T,
(1.4)

where smax is a suitably selected positive number.
The existence and uniqueness of solution for the Equation (1.1) under the terminal-boundary conditions (1.4) were

investigated in [3, 18, 35]. It is proved that if U1 and U2 are solutions (1.1),(1.3), (1.1), and (1.4), respectively, then

for any (s, τ) ∈ (0, smax)× [0, T ] that satisfies in the condition ln(
smax

s
) ≥ −d(T − τ), we have

|U2(s, τ)−U1(s, τ)| ≤ ‖U2 −U1‖L∞(Λ×(τ,T ))(exp(−
(ln

smax

s
)((T − τ)×min{0, d}+ ln(

smax

s
)

2(T − τ)σ2
)),

where d = 2D− 2r+ σ2 and Λ = {0, smax}. Note that the above problem is a backward-time problem. Therefore, we
can use a time reversal via the change of variable t = T − τ to convert it into a forward-time problem. Now, it is easy
to change the variable s to x by

x = ln(s), (1.5)

and the variable U(s, τ) to U(x, t) by

U(s, τ) = U(ex, T − t) = U(x, t). (1.6)

Applying Equations (1.5) and (1.6) to Equations (1.1) and (1.3) we obtain the following non-degenerate problem
∂U
∂t (x, t) = (r −D − 1

2σ
2)∂U∂x (x, t) + 1

2σ
2 ∂2U
∂x2 (x, t)− rU(x, t), (x, t) ∈ QT,xmax ,

U(x, 0) = Φ(ex), −∞ < x < xmax,
limx→−∞ U(x, t) = 0, 0 ≤ t ≤ T,
U(xmax, t) = exmaxe−Dt − Ee−rt, 0 ≤ t ≤ T,

(1.7)

where QT,xmax = {(x, t) : x ∈ (−∞, xmax), t ∈ (0, T )}. Note that (1.1) is degenerate at s = 0. For computations, we
transform the infinite interval (−∞, xmax) into the finite interval (xmin, xmax). This localization decreases the influence
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of the condition limx→−∞ U(x, t) = 0. If xmin be sufficiently small, then, we obtain the following representation of the
B-S model. 

∂U
∂t (x, t) = (r −D − 1

2σ
2)∂U∂x (x, t) + 1

2σ
2 ∂2U
∂x2 (x, t)− rU(x, t), (x, t) ∈ QT,xmin,xmax ,

U(x, 0) = Φ(ex), xmin < x < xmax,
U(xmin, t) = 0, 0 ≤ t ≤ T,
U(xmax, t) = exmaxe−Dt − Ee−rt, 0 ≤ t ≤ T.

(1.8)

Here, QT,xmin,xmax
= {(x, t) : x ∈ (xmin, xmax), t ∈ (0, T )}.

Since the derivative of max(y, 0) is discontinuous at y = 0, we can construct an approximation Ψ(y) of max(y, 0) to
modify the above model. To do so, we construct a polynomial %(ζ) = k0 + k1ζ + · · ·+ k9ζ

9 on the interval (−ε, ε) that
satisfies %(−ε) = %′(−ε) = %′′(−ε) = %′′′(−ε) = %(4)(−ε) = 0, %(ε) = ε, %′(ε) = 1 and %′′(ε) = %′′′(ε) = %(4)(ε) = 0.
Now, define

Ψ(ζ) =

 ζ, ζ > ε,
%(ζ), −ε ≤ ζ ≤ ε,
0, ζ < −ε.

(1.9)

According to (1.8), the modified B-S model can be written as
∂U
∂t (x, t) = (r −D − 1

2σ
2)∂U∂x (x, t) + 1

2σ
2 ∂2U
∂x2 (x, t)− rU(x, t), (x, t) ∈ QT,xmin,xmax

,
U(x, 0) = Ψ(ex − E), xmin < x < xmax,
U(xmin, t) = 0, 0 ≤ t ≤ T,
U(xmax, t) = exmaxe−Dt − Ee−rt, 0 ≤ t ≤ T.

(1.10)

Define the transformation

u(x, t) = U(x, t) + ϑ(x, t), (1.11)

where

ϑ(x, t) = −(exmaxe−Dt − Ee−rt) x−xmin

xmax−xmin
.

Using this transformation, the model (1.10) can be written in the following equivalent form.
∂u
∂t (x, t) = (r −D − 1

2σ
2)∂u∂x (x, t) + 1

2σ
2 ∂2u
∂x2 (x, t)− ru(x, t) + f(x, t), (x, t) ∈ QT,xmin,xmax

,
u(x, 0) = Ψ(x), xmin < x < xmax,
u(xmin, t) = 0, 0 ≤ t ≤ T,
u(xmax, t) = 0, 0 ≤ t ≤ T.

(1.12)

Herein, {
Ψ(x) = Ψ(ex − E)− (exmax − E) x−xmin

xmax−xmin
,

f(x, t) = ∂ϑ
∂t (x, t)− (r −D − 1

2σ
2)∂ϑ∂x (x, t)− 1

2σ
2 ∂2ϑ
∂x2 (x, t) + rϑ(x, t).

The history of the finite element method (FEM) dates back to the early 1940s. In fact, eight decades have passed
since the invention of the FEM method. The first development of the method was observed in Courant and Hrennikoff
works [9, 19]. This method has influenced basic approaches in scientific modeling and engineering design. In general,
the FEM method has become a computational workhorse for solving every imaginable problem in partial differential
equations (PDEs). In [26], many researches related to the applications of this method in different fields have been
collected. The approaches utilized by researchers are different, but their common feature is the discretization of a
continuous domain into discrete subdomains called elements. In recent years, the development of meshless methods has
attracted a lot of interest. Meshless methods require approximations of given differential equations which form a set
of unstructured nodes, without any pre-defined connections among the nodes. Kansa [23, 24] introduced a collocation
method for solving partial differential equations. The method was based on radial basis functions. The advantage of
the meshless method over its predecessors was the capability to use amorphous nodes that needed to be neither of a
certain shape nor of a certain pattern [14–17].
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1.1. Outline. The aim of this paper is to apply a kernel-based method for pricing financial options. The main
contribution of this paper consists of:

1): Presenting an efficient method based on reproducing kernels for the pricing of options.
2): We obtain the approximation error bound based on the interpolation error in the reproducing kernel Hilbert

space (RKHS).

The outline of the paper is as follows:
In section 2, we first present the background material and preliminaries of the RKHS that will be used in the forth-
coming sections. In the mentioned section, we present the main results and an error analysis related to our method. In
section 3, we examine the presented method in different cases and compare the results with some well-known methods.
Also, temporal and spatial convergence rates are provided to emphasize the accuracy of the method. Finally, we
present some concluding remarks in section 4.

2. A kernel-based method for pricing financial options

Now, we provide preliminaries which will be utilized in the paper. The contents of this section are taken from
[11, 12, 34].

Definition 2.1. (RKHS) Let Ω be an arbitrary non-empty set. Denote by F(Ω) the set of all complex-valued
functions on Ω. A RKHS on the set Ω is a Hilbert space W ⊂ F(Ω) with a function K(x, y) : Ω × Ω →W, which is
called the reproducing kernel, satisfying the following properties.

• K(x, .) ∈W, ∀x ∈ Ω.
• u(x) = 〈K(x, .), u(.)〉W, ∀u ∈W, ∀x ∈ Ω.

We define the Hilbert space by WK(Ω) in which K is the kernel function.

Theorem 2.2. Suppose that WK is a RKHS with reproducing kernel K : Ω × Ω −→ R. Then, K(x, .) is positive

definite. Moreover, K(x, .) is strictly positive definite if and only if the point evaluation functionals

{
Ix : WK −→ R,
Ix(u) = u(x),

are linearly independent in W∗K , where W∗K is the space of bounded linear functionals on WK .

The RKHS WK contains all functions of the form u =
∑n
j=1 cjK(., xj) provided that xj ∈ Ω. Using the properties

of RKHS, we obtain

‖u‖ = 〈u, u〉WK
=

n∑
i=1

n∑
j=1

cicjK(xi, xj). (2.1)

Theorem 2.3. (RKHS on the closed interval [a, b]) Define K1 : [a, b]× [a, b]→ R by

K1(x, y) =

{ ∑m−1
i=0

1
(i!)2 (x− a)i(y − a)i + 1

((m−1)!)2

∫ x
a

(x− z)m−1(y − z)m−1dz, x < y,∑m−1
i=0

1
(i!)2 (x− a)i(y − a)i + 1

((m−1)!)2

∫ y
a

(x− z)m−1(y − z)m−1dz, y ≤ x.

Then, we obtain the expression Wm
K1

[a, b] = {u|u(x), u
′
(x), ..., u(m−1)(x) ∈ AC[a, b], u(m)(x) ∈ L2[a, b], x ∈ [a, b]} of

the RKHS Wm
K1

[a, b] as a set, and the inner product is given by

〈u, v〉Wm
K1

=

m−1∑
j=0

u(j)(a)v(j)(a) +

∫ b

a

u(m)(x)v(m)(x)dx, (2.2)

where u, v ∈Wm
K1

.

Theorem 2.4. (The subspace Wm
K2

[a, b] of Wm
K1

[a, b]) Define K2 : [a, b]× [a, b]→ R by

K2(x, y) = K1(x, y)− O1,xK1(x, y)O1,yK1(x, y)

O1,xO1,yK1(x, y)
, O1,xO1,yK1(x, y) 6= 0,
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where

K1(x, y) = K1(x, y)− BxK1(x, y)O2,yK1(x, y)

O2,xO2,yK1(x, y)
, O2,xO2,yK1(x, y) 6= 0, K1(x, y) ∈Wm

K1
[a, b],

and the subscript x of the operators O1,x and O2,x indicates that these operators apply to the function of x. Then, we
obtain the expression Wm

K2
[a, b] = {u|u(x) ∈Wm

K1
[a, b], A(u) = u(a) = 0, B(u) = u(b) = 0} of the RKHS Wm

K2
[a, b].

2.1. Temporal and spatial discretization. To discretize the time variable, assume that tk := k TN = kτ, k =
0, 1, . . . , N and use the finite-difference scheme to analogize the time derivative term

∂u

∂t
(x, tk)− u(x, tk)− u(x, tk−1)

τ
= O(τ),

where u(x, t0) = Ψ(x).
Replacing u(x, tk) with the approximate solution uk, we obtain a semi-discrete system for (1.12), which can be stated
as follows.

Find uk(k = 1, 2, . . . , N) such that
uk−uk−1

τ = (r −D − 1
2σ

2)∂u
k

∂x + 1
2σ

2 ∂2uk

∂x2 − ruk + fk, k ≥ 1, x ∈ (xmin, xmax),
uk|x=xmin

= 0, 0 ≤ k ≤ N,
uk|x=xmax = 0, 0 ≤ k ≤ N.

(2.3)

Now, we find the representation of the numerical treatment for the problem (2.3) in the RKHS Wm
K2

[xmin, xmax].
For the sake of convenience, the linear operator L from the space Wm

K2
[xmin, xmax] to U([xmin, xmax]) is defined as

follows

Lσuk = uk − τ((r −D − 1

2
σ2)

∂uk

∂x
+

1

2
σ2 ∂

2uk

∂x2
− ruk), k ≥ 1. (2.4)

Then, the semi-discrete system (2.3) can be considered in the following form, from space Wm
K2

[xmin, xmax] to space
U([xmin, xmax]).

Lσuk = F k, (2.5)

where

F k = τfk + uk−1, k ≥ 1, (2.6)

uk ∈Wm
K2

[xmin, xmax], and F k ∈ U([xmin, xmax]) when uk ∈Wm
K2

[xmin, xmax].
Suppose that Θn = {xi}ni=1 ⊂ [xmin, xmax] is a distinct subset of [xmin, xmax]. Consider the basis function space Vn

defined by

Vn = HK2
([xmin, xmax]) = span{uj(x) = K2(x, xj), xj ∈ Θn} ⊂Wm

K2
[xmin, xmax], (2.7)

in which is a finite-dimensional space. An approximation ukn to uk will be gained via computation a truncated series
according to the trial functions

uk(x) ≈ ukn(x) :=

n∑
j=1

γkj uj(x) = [u1(x) u2(x) . . . un(x)]


γk1
γk2
...
γkn

 . (2.8)

A set of collocation conditions to specify the interpolation coefficients {γkj }nj=1 is utilized via applying (2.5) to Θn.
Therefore, we can obtain

µi[u
k
n] := Lukn(xi) =

n∑
j=1

γkj Luj(xi) = F k(xi), i = 1, 2, . . . , n, (2.9)
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where utilizing the differential operator and a point assessment at xi ∈ Θn the functional µi (1 ≤ i ≤ n) is defined.
Generally, a single set Πn := {µi}ni=1 functionals is inclusive types of differential operators. The final collocation
matrix KΠn,Θn

is not symmetric. The ij-entries of the collocation matrix is as follows

(KΠn,Θn)ij := µi[uj ] = µxiK2(x, xj), 1 ≤ i, j ≤ n, (2.10)

in which the superscript x in µxj means that µxj applies to the function of x. Therefore, the unknown coefficients

γkj , j = 1, 2, . . . , n, are obtained by using the final system:

Kk
Πn,Θn

[γ]k = Fk,

where [γ]k = [γk1 γk2 . . . γkn]T , FkΘn
= [F k(x1) F k(x2) . . . F k(xn)]T and

KΠn,Θn
=


µx1K2(x, x1) µx2K2(x, x1) · · · µxnK2(x, x1)
µx1K2(x, x2) µx2K2(x, x2) · · · µxnK2(x, x2)

...
...

. . .
...

µx1K2(x, xn) µx2K2(x, xn) · · · µxnK2(x, xn)

 . (2.11)

2.2. Solvability of the final system.

Lemma 2.5. ([11]) Let K2(x, y) be the reproducing kernel of the space Wm
K2

[xmin, xmax]. Then,

∂i+jK2(x, y)

∂xi∂yj
, 0 ≤ i+ j ≤ 2m− 2. (2.12)

Lemma 2.6. Assume that {xj}∞j=1 is a dense set in the domain [xmin, xmax]. Further, suppose that {µxjK2(x, .)}nj=1

are linearly independent on the RKHS Wm
K2

[xmin, xmax]. Then, the vectors

{(µxjK2(x, x1) µxjK2(x, x2) µxjK2(x, x3) · · · )T }nj=1,

are linearly independent.

Proof. If {bj}nj=1 satisfies
∑n
j=1 bj(µ

x
jK2(x, x1) µxjK2(x, x2) µxjK2(x, x3) · · · )T = 0, then we deduce that

n∑
j=1

bjµ
x
jK2(x, xi) = 0, i ≥ 1. (2.13)

It follows that the functions µxjK2(x, .), µj ∈ Πn, are continuous by using Lemma 2.5. We know that {xi}i≥1 is a
dense set, Then we obtain

n∑
j=1

bjµ
x
jK2(x, .) = 0.

It gives results bj = 0 (j = 1, 2, . . . , n) and here the proof is complete. �

From Lemma 2.6 we obtain the following theorem.

Theorem 2.7. Assume that the functions {µxjK2(x, .)}nj=1 are linearly independent on Wm
K2

[xmin, xmax]. Therefore,
there exists a set of points Θn = {xj}nj=1 such that the final collocation matrix KΠn,Θn

is nonsingular.

Lemma 2.8. Suppose that the functionals {µj}nj=1 are linearly independent on Wm
K2

[xmin, xmax]. Then, the functions
{µxjK(x, .)}nj=1 are linearly independent.

Proof. suppose that
∑n
j=1 bjµ

x
jK2(x, .) = 0, therefore

0 = 〈u(.),

n∑
j=1

bjµ
x
jK(x, .)〉Wm

K2
[xmin,xmax] =

n∑
j=1

bjµ
x
j 〈u(.),K(x, .)〉Wm

K2
[xmin,xmax]

=

n∑
j=1

bjµj [u], ∀u ∈Wm
K2

[xmin, xmax], (2.14)
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showing that bj = 0 (j = 1, 2, . . . , n) which shows the end of the proof. �

Finally, by using Lemma 2.8 and Theorem 2.7, the following theorem is fulfilled.

Theorem 2.9. If the functionals {µj}nj=1 are linearly independent on Wm
K2

[xmin, xmax], then, there exists a set of
points Θn = {xj}nj=1 such that the obtained collocation matrix KΠn,Θn

is nonsingular.

2.3. Error analysis. Suppose that Θn = {xi}ni=1 and Vn = Span{u1, u2, . . . , un}. Using the Gram-Schmidt (G-S)
orthogonalization approach to {u1, u2, . . . , un}, we can write

us(x) =

s∑
k=1

βskuk(x), (βs > 0, s = 1, 2, . . . , n). (2.15)

Therefore, {u1, u2, . . . , un} is an orthonormal basis for Vn. Hence, the interpolant ukn(x) to uk at Θn, is rewritten as
follows

uk(x) ≈ ukn(x) =

n∑
i=1

uk(xi)ui(x). (2.16)

Theorem 2.10. Suppose that ukn(x) ∈Wm
K2

[xmin, xmax] and uk(x) are the approximate solution and the exact solution
to (2.4), respectively. Then, we have

|uk(x)− ukn(x)| ≤ ‖uk‖Wm
K2

[xmin,xmax]|K2(x, x)−
n∑
i=1

u2
i (x)|, ∀uk(x) ∈Wm

K2
[xmin, xmax]. (2.17)

Proof. The reproducing property allows us to write

ukn(x) =

n∑
i=1

uk(xi)ui(x)

=

n∑
i=1

〈uk, ui〉Wm
K2

[xmin,xmax]ui(x)

= 〈uk,
n∑
i=1

ui(x)ui〉Wm
K2

[xmin,xmax]. (2.18)

Thus,

|uk(x)− ukn(x)|2 = |〈uk,K2(x, .)−
n∑
i=1

ui(x)ui〉Wm
K2

[xmin,xmax]|

≤ ‖uk‖Wm
K2

[xmin,xmax]‖K2(x, .)−
n∑
i=1

ui(x)ui‖Wm
K2

[xmin,xmax]. (2.19)

We know that

〈K2(x, .)−
n∑
i=1

ui(x)ui,

n∑
i=1

ui(x)ui〉Wm
K2

[xmin,xmax] = 0. (2.20)

Therefore, we obtain

‖K2(x, .)‖Wm
K2

[xmin,xmax] = ‖K2(x, .)−
n∑
i=1

ui(x)ui +

n∑
i=1

ui(x)ui‖Wm
K2

[xmin,xmax]

= ‖K2(x, .)−
n∑
i=1

ui(x)ui‖Wm
K2

[xmin,xmax] + ‖
n∑
i=1

ui(x)ui‖Wm
K2

[xmin,xmax]. (2.21)
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By using (2.19) and (2.21), it is straightforward to show that

|uk(x)− ukn(x)| ≤ ‖uk‖Wm
K2

[xmin,xmax]|K2(x, x)−
n∑
i=1

u2
i (x)|. (2.22)

�

Lemma 2.11. ([13]) Suppose that u ∈ Cm[xmin, xmax], and Θn = {xi}ni=1 ⊂ [xmin, xmax] is a distinct subset of
[xmin, xmax]. Then

‖u‖L2[xmin,xmax] ≤ d max
xj∈Θn

|u(xj)|+ chm‖u(m)‖L2[xmin,xmax], (2.23)

where c and d are real constants and h = supx∈[xmin,xmax] minxj∈Θn ‖x− xj‖.

Theorem 2.12. If ukn is the approximate solution of (2.4) in the space Wm
K2

[xmin, xmax], then

‖uk − ukn‖Wm
K2

[xmin,xmax] ≤ chm‖uk‖Wm
K2

[xmin,xmax], (2.24)

where c is a real constant.

Proof. By Lemma 2.11, we can obtain

‖uk − ukn‖Wm
K2

[xmin,xmax] ≤ c1 max
xj∈Θn

|uk(xj)− ukn(xj)|+ c2h
m‖(uk − ukn)(m)‖L2[xmin,xmax]

≤ chm‖uk − ukn‖Wm
K2

[xmin,xmax]. (2.25)

We know that

‖uk‖2Wm
K2

[xmin,xmax] ≤ ‖u
k
n‖Wm

K2
[xmin,xmax] + ‖uk − ukn‖Wm

K2
[xmin,xmax] + 2〈uk − ukn, ukn〉Wm

K2
[xmin,xmax].

Since < uk − ukn, ukn >Wm
K2

[xmin,xmax]= 0, then we have

‖uk‖2Wm
K2

[xmin,xmax] ≤ ‖u
k
n‖Wm

K2
[xmin,xmax] + ‖uk − ukn‖Wm

K2
[xmin,xmax]. (2.26)

Now, from (2.25) and (2.26) we obtain

‖uk − ukn‖Wm
K2

[xmin,xmax] ≤ chm‖uk‖Wm
K2

[xmin,xmax], (2.27)

where c is a real constant. Therefore, the proof is complete. �

3. Numerical Results

We used some experimental tests to demonstrate the accuracy and effectiveness of the proposed method. In the
process of computation, all the symbolic and numerical computations were performed by using Maple 18 on a computer
with Corei3 and 4.00 GB memory RAM. In this section, we compare the results obtained by using the proposed method
with those exact solutions and the corresponding experimental results obtained by the methods presented in [21, 22].

Example 3.1. In this example, we consider the generalized B-S equation (1.1)-(1.3) with the parameters

Test I : (r,D, σ) = (0.06, 0.02, 0.4),

T est II : (r,D, σ) = (0.08, 0.02, 0.3).

The exact solution is given by

U(s, τ) = sN(d1)e−D(T−τ) − EN(d2)e−r(T−τ),
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where

N(x) =
1√
2π

∫ x

−∞
e−

1
2y

2

dy,

d1(s, τ) =
ln( sE ) + (r −D + 1

2σ
2)(T − τ)

σ
√
T − τ

,

d2(s, τ) =
ln( sE ) + (r −D − 1

2σ
2)(T − τ)

σ
√
T − τ

.

Let xmin be sufficiently small, and xmax be a suitably chosen positive number. Then, by using t = T − τ and
x = ln(s), the original model can be rewritten in the form

∂U
∂t (x, t) = (r −D − 1

2σ
2)∂U∂x (x, t) + 1

2σ
2 ∂2U
∂x2 (x, t)− rU(x, t), (x, t) ∈ QT,xmin,xmax

,
U(x, 0) = max(ex − E, 0), xmin < x < xmax,
U(xmin, t) = 0, 0 ≤ t ≤ T,
U(xmax, t) = exmaxe−Dt − Ee−rt, 0 ≤ t ≤ T,

(3.1)

where QT,xmin,xmax = {(x, t) : x ∈ (xmin, xmax), t ∈ (0, T )}. Since the derivative of max(ex − E, 0) is discontinuous at
x = ln(E), we approximate max(ex − E, 0) by a sufficiently smooth function Ψ(ex − E), where

Ψ(ζ) =

 y, ζ > ε,
35
256ε+ 1

2ζ + 35
64εζ

2 − 35
128ε3 ζ

4 + 7
64ε5 ζ

6 − 5
256ε7 ζ

8, −ε ≤ ζ ≤ ε,
0, ζ < −ε.

(3.2)

Define the transformation

u(x, t) = U(x, t) + ϑ(x, t), (3.3)

where

ϑ(x, t) = −(exmaxe−Dt − Ee−rt) x− xmin

xmax − xmin
.

Using this transformation, the model (1.10) can be written in the equivalent form
∂u
∂t (x, t) = (r −D − 1

2σ
2)∂u∂x (x, t) + 1

2σ
2
1
∂2u
∂x2 (x, t)− ru(x, t) + f(x, t), (x, t) ∈ QT,xmin,xmax ,

u(x, 0) = Ψ(x), xmin < x < xmax,
u(xmin, t) = 0, 0 ≤ t ≤ T,
u(xmax, t) = 0, 0 ≤ t ≤ T,

(3.4)

where {
Ψ(x) = Ψ(ex − E)− (exmax − E) x−xmin

xmax−xmin
,

f(x, t) = ∂ϑ
∂t (x, t)− (r −D − 1

2σ
2)∂ϑ∂x (x, t)− 1

2σ
2 ∂2ϑ
∂x2 (x, t) + rϑ(x, t).

We define the RKHS W3
K2

[xmin, xmax]. Using the proposed method, taking xi = (xmax−xmin) j
n+1 +xmin, j = 1, . . . , n,

on [xmin, xmax], the approximate solution UNn (x) is given by

UNn (x) = uNn (x)− ϑ(x, tN ), (3.5)

where

uNn (x) =

n∑
j=1

γNi uj(x). (3.6)

Since the exact solution is known, the absolute error (AE) en,N (x) and the maximum error (ME) En,N can be obtained
as

en,N (x) = |UNn (x)− U(x, tN )|, (3.7)

En,N = max
1≤j≤n

|UNn (xj)− U(xj , tN )|. (3.8)
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Table 1. Maximum AE obtained by the proposed method and the methods in [21, 22] at t = 1 for
r = 0.06, D = 0.02 and σ = 0.4 (Example 3.1).

Exercise Price E = 1 E = 2 E = 3
Our method

E30,15 1.143273e-003 2.232828e-003 5.657515e-003
E30,20 5.177540e-004 3.825059e-003 3.351245e-003

Cubic B-spline collocation
method [22](θ = 1)
Mx = Nt = 10 1.132668e-002 - -
Mx = Nt = 20 3.242000e-003 - -
Mx = Nt = 40 1.088152e-003 - -
Mx = Nt = 80 4.148162e-004 - -

Cubic B-spline collocation
method [22](θ = 1

2 )
Mx = Nt = 10 9.542612e-003 - -
Mx = Nt = 20 2.438174e-003 - -
Mx = Nt = 40 6.209743e-004 - -
Mx = Nt = 80 1.554989e-004 - -

Crank-Nicolson finite-
difference method [21]

Mx = Nt = 11 2.319e-02 - -
Mx = Nt = 21 4.914e-03 - -
Mx = Nt = 41 1.175e-03 - -
Mx = Nt = 81 2.934e-04 - -

B-spline collocation method [21]
Mx = 10, Nt = 8 8.144e-03 - -
Mx = 20, Nt = 17 1.922e-03 - -
Mx = 40, Nt = 35 4.433e-04 - -
Mx = 80, Nt = 71 1.067e-04 - -

We select xmin = −2, xmax = +2 and ε = 10−3. The graphs of the obtained results of Test I and Test II are depicted
in Figure 1 and Figure 2, respectively. The MEs in our computed solutions of Test I and Test II are given in Tables
1-5, respectively. Numerical results in these tables reveal that spatial convergence rates obtained are in accordance
with the results given in Theorem 2.12. For instance, in Example 3.1, we chose m = 3, where m is the order of Sobolev
space, i.e., W3

K2
[xmin, xmax]. As one expects from Theorem 2.12, the convergence rate in the space W3

K2
[xmin, xmax],

should be O(h3), which can be deduced from the results given in Tables 4 and 5.

4. Conclusion

In this paper, a kernel-based method was developed to solve the generalized Black-Scholes option pricing model. In
addition, with discretization of the time variable we used the finite-difference scheme to analogize the time derivative
term in the European option pricing model. Then, we solved the semi-discrete problem created in the reproducing
kernel space. The successful application of this scheme demonstrated the finite-difference method was effective and
needed less computational work for solving the option pricing models. The proposed kernel-based method provides
a closed-form approximate solution on the entire domain and because of its simple implementation and sensible
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Table 2. Maximum AE and temporal convergence rate (TCR) obtained by the proposed method at
t = 1 and E = 3 for n = 20 (Example 3.1).

(r,D, σ) = (0.06, 0.02, 0.4)
N = 30 N = 60 N = 120

En,N 3.037380e− 003 1.391429e− 003 6.116744e− 004
TCR - 1.126260 1.185731

(r,D, σ) = (0.08, 0.02, 0.3)
N = 30 N = 60 N = 120

En,N 4.536742e− 003 2.025085e− 003 9.130655e− 004
TCR - 1.163498 1.149235

Table 3. Maximum AE obtained by the proposed method at t = 1 for r = 0.08, D = 0.02 and
σ = 0.3 (Example 3.1).

Exercise Price E = 1 E = 2 E = 3 E = 4
Our method

E20,15 1.228499e-003 2.872244e-003 2.938095e-003 3.773764e-003
E20,20 1.242719e-003 4.999861e-003 1.870095e-003 3.035534e-003
E20,25 1.477709e-003 3.200233e-003 1.598622e-003 2.494168e-003

Table 4. Maximum AE and spatial convergence rate (SCR) obtained by the proposed method at
t = 1 for r = 0.06, D = 0.02, σ = 0.4 with N = 30 (Example 3.1).

n = 5 n = 10 n = 20 n = 40
E = 1
En,N 2.796155e-002 4.315218e-003 5.577259e-004 1.200146e-004
SCR - 2.695983 2.953611 2.265537
E = 3
En,N 3.990749e-002 5.817834e-003 1.0373808e-003 2.326292e-004
SCR - 2.778294 2.487859 2.160219

Table 5. Maximum AE and spatial convergence rate (SCR) obtained by the proposed method at
t = 1 for r = 0.08, D = 0.02, σ = 0.3 with N = 20 (Example 3.1).

n = 5 n = 10 n = 20 n = 40
E = 1
En,N 5.079230e-002 7.024137e-003 1.211107e-003 2.135867e-004
SCR - 2.854236 2.536094 2.507274
E = 3
En,N 6.051967e-002 6.385631e-003 1.126318e-003 1.519592e-004
SCR - 3.244629 2.503479 2.898586

accuracy is computationally effective. Numerical experiments were selected in order to indicate the proposed method
convergence and stability. Also, the obtained results have high accuracy. We believe that the proposed kernel-based
method has a remarkable potential and efficiency to solve other models of the option pricing. According to Theorem
2.12, in m-order Sobolev space, convergence order is O(hm), which can also be deduced from the numerical results. In
fact, the results obtained from the tables reveal that better approximations are obtained in the higher-order Sobolev
space. In the end, we mention some future research directions as follows:
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U20
30 (x) (E = 1) e30,20(x) (E = 1)

U20
30 (x) (E = 2) e30,20(x) (E = 2)

U20
30 (x) (E = 3) e30,20(x) (E = 3)

Figure 1. Graphs of the numerical solution U20
30 (x) and AE e30,20(x) at t = 1 for r = 0.06, D = 0.02

and σ = 0.4 (Example 3.1).

i): The proposed method can be used for other famous financial models.
ii): We can use kernels based on polynomials to solve financial models.
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e20,25(x) (E = 1) e20,25(x) (E = 2)

e20,25(x) (E = 3) e20,25(x) (E = 4)

Figure 2. Graphs of the AE e20,25(x) at t = 1 for r = 0.08, D = 0.02 and σ = 0.3 (Example 3.1).
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