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Abstract - \

In this paper, we propose a kernel-based method for some pricing financial options. Based on the ideas of
the kernel-based approximation and finite-difference discretization, we present an efficient numerical method for
solving the generalized Black-Scholes option pricing models. Utilizing the reproducing property of kernels, we
introduce an efficient framework for obtaining cardinal functions. Also, we discuss the solvability of final system
to obtain some remarkable results. We provide the error estimate of the proposed kernel-based method and verify
its efficiency and accuracy by numerical experiments.
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1. INTRODUCTION

The Black-Scholes (B-S) model is a fundamental tool for option pricing (OP) in financial markets. It is a parabolic
partial differential equation that describes the behavior of financial derivatives, specifically options on equity shares.
The equation is derived by applying Ito’s calculus under the assumption that the value of the underlying share evolves
in time-based on a stochastic differential equation, and subject to further assumptions on the financial market. The
key concept of the B-S model is arbitrage-free reasoning. The model has been widely used in the pricing of options
on various commodities and payoff structures [4, 27].

In the literature, various methods have been proposed for the valuation of European and American options. For
instance, Company et al. [8] presented a finite-difference numerical scheme for nonlinear B-S equations, which models
illiquid markets where price impact in the underlying asset market affects the replication of a European contingent
claim. Lesmana and Wang [25] investigated a reliable computational method for solving the B-S model. In [10],
the authors presented the lattice procedure for OP. Hull and White [20] applied a control variate method for OP.
Valkov [31, 32] developed a fitted finite-volume technique to investigate a generalized B-S model and implemented
the convergence analysis of a fitted finite-volume element procedure preserving positivity. Cen and Le [5, 6] used
a reliable numerical approach to the linear complemental problem resulting from OP and proposed a procedure of
implicit time-stepping for a generalized B-S equation.

Furthermore, Rao [29] presented a numerical scheme approximating option prices for different option styles governed
by the generalized B-S equation in its degenerate form. In [1, 33], the authors proposed a finite volume method to
discretize the B-S equation arising from OP. In [21, 22], collocation procedures based on uniform cubic B-splines and
non-uniform B-splines were proposed for the numerical solution of the generalized B-S partial differential equation,
which was second-order convergent with respect to both variables. In [36], an implicit numerical scheme for solving time
fractional B—S model was discussed. Additionally, Prathumwan and Trachoo [28] used the LHPM for the fractional-
order B-S equation, while Baustian et al. [2] applied a Galerkin-based procedure for B-S and Heston models utilizing
orthogonal polynomial systems. Roul and Goura [30] implemented a high-order numerical procedure with a uniform
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mesh for the generalized B-S equation. Chen et al. [7] offered a solution to the generalized B-S equation utilizing the
Laguerre neural network.

In summary, the B-S equation is a crucial model for OP in financial markets. It is widely used, and various numerical
methods have been proposed in the literature to value European and American options. These methods have different
applications and advantages, and researchers are still developing new approaches to improve the accuracy and efficiency
of OP.

Generalized B-S OP models: In this paper, we consider the following generalized B-S equation.

2
LU= %‘TJ(S,T) n %(,282 %3‘3(577) +(r— D)s%—tj(sm) —rU(s,7) =0, (5,7) € Qr. (1.1)
Here, Qr = {(s,7) : s € (0,00), 7 € (0,T)}, and U(s, 7) is the European option price at asset price s and current data
7, 0 > 0 indicates the underlying asset volatility, 7 > 0 denotes the rate of risk-free interest, and D is the dividend of
the dividend-paying asset.
European call option: Assume that at the expiry time 7 = T, the payoff for option is equal to

®(s) = max(s — E,0), (1.2)

for call option (CO) with the exercise price E > 0. The value of European CO is considered a solution of the Equation
(1.1) on Qr under the terminal-boundary conditions

U(s, T) = ®(s), s € [0,00),
u(o,7) =0, 0<7<T, (1.3)
U(s,7) ~se ™ PT=7) — BemmT=7) s 500, 0<7<T.

Here, the value of European CO is considered to be a solution of Equation (1.1) defined on the truncated domain
QT s = {(5,7) : 5 € (0, Smax), 7 € (0,T)} under the terminal-boundary conditions

U(s, T) = ®(s), 0< 5 < Smax,
U(0,7) =0, 0<7<T, (1.4)
U(Smasz) = smaxe_D(T_T) — Ee_T(T_T), 0 <7< T,

where spax is a suitably selected positive number.
The existence and uniqueness of solution for the Equation (1.1) under the terminal-boundary conditions (1.4) were
investigated in [3, 18, 35]. It is proved that if U; and Uy are solutions (1.1),(1.3), (1.1), and (1.4), respectively, then

max

for any (s,7) € (0, Smax) X [0, T] that satisfies in the condition ln(ST) > —d(T — 1), we have

(In 222 (7 — 7) % min{0, d} + In(222%)
|Uz(s,7) — Ui(s, 7)| < [|[Us = Ut||pee(ax(r,1)) (exp(— 5 2T —7)o? 5—)),
where d = 2D — 2r + 02 and A = {0, Sax }. Note that the above problem is a backward-time problem. Therefore, we
can use a time reversal via the change of variable t = T'— 7 to convert it into a forward-time problem. Now, it is easy
to change the variable s to x by

x = In(s), (1.5)
and the variable U(s, ) to U(x,t) by
U(s,7) =U(e*, T —t) = Uz, t). (1.6)
Applying Equations (1.5) and (1.6) to Equations (1.1) and (1.3) we obtain the following non-degenerate problem

2
637[{(3371;) = (T - D - %02)%(l‘,t) + %0—2 %afz] (l‘,t) - ’I"U(J?,t), ('Tat) € QT,wmaxa

U(z,0) = &(e*), —00 < & < Tmax, (1.7)
lim, o U(z,t) =0, 0<t<T, '
U(Tmax, t) = e*maxe= Pt — Fe=rt 0<t<T,

where Qr.4,... = {(z,t) : ¢ € (=00, Tmax),t € (0,T)}. Note that (1.1) is degenerate at s = 0. For computations, we
transform the infinite interval (—o0, Zmax) into the finite interval (Zmin, Tmax). This localization decreases the influence
[c ][]
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of the condition lim,_, o, U(x,t) = 0. If 2, be sufficiently small, then, we obtain the following representation of the
B-S model.

9P x7t) = (T -D— %02)%[]( ) + 102 ?i)wU (l‘,t) - ’I"U(l‘,t), (x’t) € QT,ﬂfmimxmam

ot

U(x,0) = &(e%), Tmin < T < Tmaxs (1.8)
U(xminat) = 07 0 S t S Ta '
U(Tmax,t) = e*maxe= Pt — pe=rt, 0<t<T.

Here, Q7 zimzmex = 1(Z:1) 1 & € (Tmins Tmax), t € (0,T)}.

Since the derivative of max(y,0) is discontinuous at y = 0, we can construct an approximation ¥(y) of max(y,0) to
modify the above model. To do so, we construct a polynomial o(¢) = ko + k1 + - - -+ ko(? on the interval (—¢,¢) that
satisfies o(—¢) = ¢/(—¢) = o"(—¢) = 0" (—¢) = 0 (—¢) = 0, 0(¢) = ¢, ¢() = 1 and ¢"(¢) = ¢"'(¢) = 0W(e) = 0.
Now, define

¢ ¢>e,
U(()=4q oQ), —e<(<e, (1.9)
0, (< —e.

According to (1.8), the modified B-S model can be written as

%l{ (3j t) (T -D - 20 )%g( )+ 102 %IU (.’L‘,t) - TU(.’L‘,t), (SC,t) € QT,Imimwmaxv

U(z,0) = T(e” — E), ZTmin < T < Tmax;, (1.10)
U(Zmin, t) = 0, 0<t<T, '
U(Tmax, t) = e*maxe= Pt — Be=rt, 0<t<T.
Define the transformation
u(z,t) = U(x,t) + 9(z, 1), (1.11)
where
W(x,t) = —(ePmaxe= Pt — Eemrt) 2=Zon_
Using this transformation, the model (1.10) can be written in the following equivalent form.
2
8t (‘T t) (T7D7 30 )gz( ,t)+%0’2%(33,t) 7Tu(z,t)+f(1',t), (Iat) € QTﬂCmin,ﬂEmaxa
u(z,0) = \If(x), ZTmin <% < Tmax; (1.12)
(-Tmm; ) 0, 0<t< T, '
U(Tmax, t) =0, 0<t<T.

Herein,

ZTmax ~ZLmin

V(z) = U(e® — B) — (e¥max — E)iw*“” ,
fl,t) =2 (z,t) = (r— D — $062) %2 (2,t) — 2023 U (x,t) +rd(x, t).

The history of the finite element method (FEM) dates back to the early 1940s. In fact, eight decades have passed
since the invention of the FEM method. The first development of the method was observed in Courant and Hrennikoff
works [9, 19]. This method has influenced basic approaches in scientific modeling and engineering design. In general,
the FEM method has become a computational workhorse for solving every imaginable problem in partial differential
equations (PDEs). In [26], many researches related to the applications of this method in different fields have been
collected. The approaches utilized by researchers are different, but their common feature is the discretization of a
continuous domain into discrete subdomains called elements. In recent years, the development of meshless methods has
attracted a lot of interest. Meshless methods require approximations of given differential equations which form a set
of unstructured nodes, without any pre-defined connections among the nodes. Kansa [23, 24] introduced a collocation
method for solving partial differential equations. The method was based on radial basis functions. The advantage of
the meshless method over its predecessors was the capability to use amorphous nodes that needed to be neither of a
certain shape nor of a certain pattern [14-17].

(=)=
E)NE
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1.1. Outline. The aim of this paper is to apply a kernel-based method for pricing financial options. The main
contribution of this paper consists of:

1): Presenting an efficient method based on reproducing kernels for the pricing of options.

2): We obtain the approximation error bound based on the interpolation error in the reproducing kernel Hilbert

space (RKHS).

The outline of the paper is as follows:
In section 2, we first present the background material and preliminaries of the RKHS that will be used in the forth-
coming sections. In the mentioned section, we present the main results and an error analysis related to our method. In
section 3, we examine the presented method in different cases and compare the results with some well-known methods.
Also, temporal and spatial convergence rates are provided to emphasize the accuracy of the method. Finally, we
present some concluding remarks in section 4.

2. A KERNEL-BASED METHOD FOR PRICING FINANCIAL OPTIONS

Now, we provide preliminaries which will be utilized in the paper. The contents of this section are taken from
[11, 12, 34].

Definition 2.1. (RKHS) Let  be an arbitrary non-empty set. Denote by F(€2) the set of all complex-valued
functions on Q. A RKHS on the set § is a Hilbert space W C F(Q) with a function K (z,y) : Q@ x Q — W, which is
called the reproducing kernel, satisfying the following properties.

o K(x,.) e W, Vz Q.

o u(x) = (K(z,.),u(.))w, Yu € W, Vz € Q.
We define the Hilbert space by Wi (Q) in which K is the kernel function.
Theorem 2.2. Suppose that Wi is a RKHS with reproducing kernel K : Q x Q@ — R. Then, K(z,.) is positive
I, : WK — R,

definite. Moreover, K (x,.) is strictly positive definite if and only if the point evaluation functionals { L(u) = u(x)
€T - b

are linearly independent in W, where Wi is the space of bounded linear functionals on Wg.

The RKHS W contains all functions of the form u = "

i=1 ¢ K (., ;) provided that z; € €. Using the properties
of RKHS, we obtain

||u|| = u u chzc] xul'j (2.1)

i=1 j=1

Theorem 2.3. (RKHS on the closed interval [a,b]) Define K; : [a,b] X [a,b] = R by

pOvire (ﬂl)Z (r—a)(y—a) + W [ @ =2y — 2)" Yz, © <y,
Z;i_ol (z‘!l)Z (x—a)(y—a)+ W fay(o: —2)" Yy — )z, y < 2.

Then, we obtain the expression W, [a,b] = {ulu(z),u (), ...,u(™ D (z) € AC[a,b], u(™ (z) € L?[a,b], z € [a,b]} of
the RKHS WY [a,b] as a set, and the inner product is given by

b
Zum )09 (a /u(m)(x)u(m)(m)dx, (2.2)

Kl(xay) = {

where u,v € Wi,
Theorem 2.4. (The subspace WY, [a,b] of W [a,b]) Define Ky : [a,b] % [a,b] = R by

Ol,mKl (LU, y)Ol,yKl (l‘, y)
Ol,xOl,yKl (:L'7 y)

KQ(xay) = Kl(xay) - y Ol,zOl,yKl(zay) 7é 0,
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where
BzKl (.’L‘, y)OZ,yKl ((E, y)
OQ,xOZ,yKl (l‘, y)

and the subscript x of the operators Oy, and Oz, indicates that these operators apply to the function of x. Then, we
obtain the expression Wy, [a,b] = {u|u(z) € W [a,b], A(u) =u(a) =0, B(u) = u(b) =0} of the RKHS WY, [a,b].

Ky (z,y) = Ki(x,y) —

) OZ,mOQ,yKl(:E?y) 7é 07 Kl(xvy) € WTIr(ll [avb]a

2.1. Temporal and spatial discretization. To discretize the time variable, assume that t; := k% =kr, k =
0,1,..., N and use the finite-difference scheme to analogize the time derivative term
ou u(x, ty) — u(x, ty—1)
t ’ ) -0 ’
S t) - ")

where u(x,tg) = ¥(z).
Replacing u(z, t;) with the approximate solution u

as follows.
Find u*(k = 1,2,..., N) such that

k¥ we obtain a semi-discrete system for (1.12), which can be stated

Wt (D - Lo?) O 128 gk R B> 1 2 € (Tanin Tmax),
U |y = 0, 0<k<N, (2.3)
“k|r:zmx =0, 0<k<N.

Now, we find the representation of the numerical treatment for the problem (2.3) in the RKHS W} Ko [Zmins Tmax]-
For the sake of convenience, the linear operator I from the space W%, [Zmin, Zmax] t0 U([Zmin, Tmax]) is defined as
follows

1 ouk 1 282uk

k_ ok
Lou® =u _T((T_D_ia)ﬁx +§0' 92

Then, the semi-discrete system (2.3) can be considered in the following form, from space W, [Zmin, Zmax] to space
U([Q:min7 xmax])~

—ruf), k> 1. (2.4)

Lou® = F*, (2.5)
where
Ferffrd* T k>, (2.6)

uF € WE, [Zmin, Tmax]; and F* € U([Zmin, Tmax]) when u* € WE, [Zmin, Tmax]-
Suppose that ©,, = {z;}"_; C [Tmin, Tmax] is a distinct subset of [Zpin, Tmax]. Consider the basis function space V),
defined by

Vn = Hi, ([Tmin, Tmax)) = span{u;(z) = Ka(x,2;5), r; € ©,} C W, [Tmin, Tmax), (2.7)

in which is a finite-dimensional space. An approximation u* to u* will be gained via computation a truncated series
according to the trial functions

o
" vk

u*(z) ~ ub(2) = vauj(l”) = [ur(@) ua(z) .. un()] [ |- (2.8)
2k

A set of collocation conditions to specify the interpolation coefficients {%k 7_1 is utilized via applying (2.5) to ©,,.
Therefore, we can obtain

piluk] == Z*ykLuJ x;) = FF(z),i=1,2,...,n, (2.9)

(=)=
E)NE
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where utilizing the differential operator and a point assessment at x; € ©,, the functional p; (1 < i < n) is defined.

Generally, a single set I, := {u;}?", functionals is inclusive types of differential operators. The final collocation
matrix K, e, is not symmetric. The ij-entries of the collocation matrix is as follows
(K, 0, )i = palu;] = pi Ka(z,25), 1<d,j <n, (2.10)

in which the superscript z in pj means that pj applies to the function of z. Therefore, the unknown coefficients
'y]’?,j =1,2,...,n, are obtained by using the final system:

Klliln,e)n [7]k = Fkv
where [’y]k = [’yf 'yéf ’yﬂT, Flén = [Fk(xl) FF(zy) ... Fk(a:n)]T and

pi Koz, an)  psKa(w o) oo Ko, @)
piKo(z,w9)  psKa(w,2) - Ko, 22)
K, e, = . . _ . (2.11)
UZIEKQ('rvmn) U%KQ(J;?Z‘H) uflKg(x,xn)
2.2. Solvability of the final system.
Lemma 2.5. ([11]) Let Ky(x,y) be the reproducing kernel of the space W, [Zmin, Tmax). Then,
i+7 K.
TR Y) it <om—o. (2.12)

OxtOyJ
Lemma 2.6. Assume that {z;}32, is a dense set in the domain [Tmin, Tmax|. Further, suppose that {ujKo(w,.)}7_,
are linearly independent on the RKHS W, [Tmin, Tmax]. Then, the vectors
{(MfK2(1‘7 371) M?KQ(J:’ .132) /,L]zKQ(Jj, 1‘3) e )T ;L:h
are linearly independent.
Proof. 1f {b;}}_, satisfies Z;;l b (s Ka(z,21) pf Ko, 2) pf Ko(x, 3) )T =0, then we deduce that

> b Koz, ) =0, i > 1. (2.13)

j=1
It follows that the functions uf Kz (x,.), p; € I, are continuous by using Lemma 2.5. We know that {z;};>1 is a
dense set, Then we obtain

ijﬂ?KQ(l’, ) = 0.
j=1

It gives results b; =0 (j = 1,2,...,n) and here the proof is complete. O

From Lemma 2.6 we obtain the following theorem.

Theorem 2.7. Assume that the functions {ujKa(x,.)}7_, are linearly independent on Wi, [Tmin, Tmax]. Therefore,
there exists a set of points ©,, = {x;}7_; such that the final collocation matriz K, e, is nonsingular.

Lemma 2.8. Suppose that the functionals {11;}7_; are linearly independent on WY, [Tmin; Tmax]. Then, the functions
{u5 K (x,.)}7-, are linearly independent.

Proof. suppose that Z?Zl bjuf Ka(,.) = 0, therefore

0= (u(-), Y b5 K (2 Wi o) = D 0t () K (@ DWW, i ]
j=1 j=1
= > biplul, Vi € W, [Zemin, Tmax], (2.14)
j=1

(&)
ENE
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showing that b; =0 (j = 1,2,...,n) which shows the end of the proof. a

Finally, by using Lemma 2.8 and Theorem 2.7, the following theorem is fulfilled.

Theorem 2.9. If the functionals {u;}}_, are linearly independent on WY, [Tmin, Tmax|, then, there exists a set of
points ©,, = {x;}}_; such that the obtained collocation matriz K, e, is nonsingular.

2.3. Error analysis. Suppose that ©,, = {z;}?, and V,, = Span{ui,us,...,u,}. Using the Gram-Schmidt (G-S)

orthogonalization approach to {uy,us,...,u,}, we can write

Zﬁskuk (Bs >0, s=1,2,...,n). (2.15)
Therefore, {T1, s, . .., U, } is an orthonormal basis for V,,. Hence, the interpolant uf (x) to u* at ©,,, is rewritten as
follows

uf (z) = uk(z) = Z uf ()T (). (2.16)

Theorem 2.10. Suppose that ul(z) € W, [Tmin, Tmax] and u*(z) are the approzimate solution and the exact solution
to (2.4), respectively. Then, we have

n
|uk( )_u ( )‘ < ”u ”Wm [Zmin,Tmax] |K2 €T, 'r Z Vu ( ) € WKZ [xmlmxma)c] (2'17)

Proof. The reproducing property allows us to write

up(e) = Y uFe)u(e)
i=1

= Z<Uk7 UZ>W;§2 [xmirnxmax]ﬂi(x)

i=1
= Z“ T)u;) W, i (2.18)
Thus,
|uk (1‘) - qu ("T) ‘2 ‘ <U K2 Z K2 [wmiu;a:max] |
- n
< ”uk”W}'{L2 [zmimmmax]HK? Z Uz||W}22 [Zmin,Tmax]* (2~19)

We know that
(Ka(z,.) — Zm(z)ui, Zm(x)tmwgg? [ZaminTmax] = O- (2.20)

Therefore, we obtain

HKZ(’JZ, )”W}’g?‘ [ZminsTmax) = ||K2(I‘, ) Z Uz + Z Uz UZHW’" [Zmin,Tmax]

n n
= | Ka(x,) =) u Ui () Uil l W2, (i iman] T Zﬂi(x)uz'l\wygz [Eminomax] - (2:21)

i=1 =1
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By using (2.19) and (2.21), it is straightforward to show that

[u (@) = s (2)] < g rmin man] 2 (2 2) = DT ()] (2.22)
i=1
]

Lemma 2.11. (/13]) Suppose that u € C™[Zmin, Tmax], and O, = {x;}; C [Tmin, Tmax] S a distinct subset of
[Zmins Tmax)- Then

0] 2 ) < 02X ()] + ™ 0™ 2 ) (2.23)
J n

where ¢ and d are real constants and h = supPye(z,;, o] Wiz, co, |7 — 2;].

Theorem 2.12. If uk is the approzimate solution of (2.4) in the space W7, [Zmin; Tmax]), then

k k k
[0 = pllwpe, (min @] < PN W, (i i (2.24)
where ¢ is a real constant.
Proof. By Lemma 2.11, we can obtain
lu" = w W, i o] < €1 Jnax ¥ () = wl (25)] + cah™ [[(uF = uf) ™ L2 o]
€O
< ChmH“k - uﬁHW}Q‘z [Zmin,Tmax] " (2.25)
We know that
k2 k k k k ko, k
||u ||Wg2 [xmm,xmax] S ||U7’LHW7£2 [wmin;a:max] + HU - unHW?z [wminaxmax] + 2<'LL - un? un>W}'}2 [Imirﬁxmax]'
Since < uf —uk, ukf W [Zanin Tmax]) = 0, then we have
k k k k
[ P ) 717 S S [ (A Tt L PR (2.26)
Now, from (2.25) and (2.26) we obtain
||uk - qu”Wrﬁz [$111i117w1nax] S Chm”uk”Wr}?z [$x11i117w1r\ax]’ (2'27)
where c is a real constant. Therefore, the proof is complete. O

3. NUMERICAL RESULTS

We used some experimental tests to demonstrate the accuracy and effectiveness of the proposed method. In the
process of computation, all the symbolic and numerical computations were performed by using Maple 18 on a computer
with Corei3 and 4.00 GB memory RAM. In this section, we compare the results obtained by using the proposed method
with those exact solutions and the corresponding experimental results obtained by the methods presented in [21, 22].

Example 3.1. In this example, we consider the generalized B-S equation (1.1)-(1.3) with the parameters

Test I: (r,D,o) = (0.06,0.02,0.4),
Test II: (r,D,o) = (0.08,0.02,0.3).

The exact solution is given by

U(s,7) = sN(dy)e PT=7) — EN(dy)e "7,
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where
N(z) = \/—/w e %y2dy,
dy(5,7) = RE)F =D+ 50T - 7)
7 oT =1 )
do(s,7) = ME)H =D~ 30°)(T —7)

oI —1
Let znin be sufficiently small, and x,.« be a suitably chosen positive number. Then, by using t = T — 7 and
x = In(s), the original model can be rewritten in the form

Baltj (l‘ t) (T -D - 50 )(?)g( ) + 102 %zg (:L‘,t) - TU(.’)SJ), (.%',t) € QT,Imimwmax7

U(x,0) = max( — E,0), Tmin < T < Tmax, (3.1)
U(Zmin, t) = 0<t<T, .
U(Zmax, t) = ezmaxe — Ee™"t, 0<t<T,
where Q7 .z, wmex = L& 6) 1 T € (Tmin, Tmax)st € (0,T)}. Since the derivative of max(e” — E,0) is discontinuous at
2z = In(FE), we approximate max(e®* — E,0) by a sufficiently smooth function ¥(e* — F), where
Y, (>e¢
T(C) =19 smec+ 30+ 5" — med’ + s’ — et —e<(<e, (3.2)
03 C < —€.
Define the transformation
u(z,t) = Uz, t) + Iz, t), (3.3)
where
19(58,15) — 7(ezmdx Eefrt) T — Tmin

Tmax — Tmin

Using this transformation, the model (1.10) can be written in the equivalent form

%(zﬂf) = (T -D— 50 )gz( ) + 10—% gaﬁ (Ivt) - ’I"U(LL',t) =+ f(zvt)a (Iat) € QT7rminyzmax7

u(z,0) = U(z), ZTmin < % < Tmax; (3.4)
u(-rmin;t) = Oa 0<t< T, '
u(xmax7t) - Oa O S t S T,

where

Tmax —Lmin

f(z,t) = @—f(a:,t) —(r—-D-1 50 )gz(x,t) - 5022 U (z,t) + rd(x, t).

{ U(z) = U(e® — E) — (ePmax — E)Himin’

We define the RKHS W?Q [©min, Tmax)- Using the proposed method, taking ©; = (Tmax — Tmin) =1 S+ Tmin, j=1,...,m,
ON [Tmin, Tmax), the approximate solution U (z) is given by
UN(z) = ul (z) — 9(z, ty), (3.5)

where
n
V@) => VN u;(@). (3.6)
j=1

Since the exact solution is known, the absolute error (AE) e, v () and the maximum error (ME) E,, ; can be obtained
as

enn () = |UN (2) = Uz, tn)], (3.7)
Enn = max U () = Uz, tn)]-
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TABLE 1. Maximum AE obtained by the proposed method and the methods in [21, 22] at t = 1 for
r =0.06, D = 0.02 and ¢ = 0.4 (Example 3.1).

Exercise Price E=1 E=2 E=3
Our method
Es0.15 1.143273e-003  2.232828e-003 5.657515e-003
Es0.20 5.177540e-004 3.825059e-003 3.351245e-003

Cubic B-spline collocation
method [22](6 = 1)

My =N =10 1.132668e-002 - -
M, =N, =20 3.242000e-003 - -
M, = N, =40 1.088152e-003 - -
M, =N, =80 4.148162e-004 - -

Cubic B-spline collocation
method [22](6 = 1)

M, =N, =10 9.542612e-003 - -
M, =N, =20 2.438174e-003 - -
M, =N, =40 6.209743e-004 - -
M, = N, =80 1.554989e-004 - -

Crank-Nicolson finite-
difference method [21]

M, = N, = 11 2.319¢-02 - -
M, =N, =21 4.914e-03 - -
M, =N, =41 1.175e-03 - -
M, =N, =81 2.934e-04 - -
B-spline collocation method [21]
My =10, Ny =8 8.144e-03 - -
M, =20,N, =17 1.922e-03 - -
M, =40,N; = 35 4.433e-04 - -
M, =80,N; =71 1.067e-04 - -

We select Zmin = —2, Tmax = +2 and € = 1073, The graphs of the obtained results of Test I and Test II are depicted
in Figure 1 and Figure 2, respectively. The MEs in our computed solutions of Test I and Test II are given in Tables
1-5, respectively. Numerical results in these tables reveal that spatial convergence rates obtained are in accordance
with the results given in Theorem 2.12. For instance, in Example 3.1, we chose m = 3, where m is the order of Sobolev
space, i.e., W:;(2 [Zmin, Tmax)- As one expects from Theorem 2.12, the convergence rate in the space W:;(2 [Tmin, Tmax)s
should be O(h?), which can be deduced from the results given in Tables 4 and 5.

4. CONCLUSION

In this paper, a kernel-based method was developed to solve the generalized Black-Scholes option pricing model. In
addition, with discretization of the time variable we used the finite-difference scheme to analogize the time derivative
term in the European option pricing model. Then, we solved the semi-discrete problem created in the reproducing
kernel space. The successful application of this scheme demonstrated the finite-difference method was effective and
needed less computational work for solving the option pricing models. The proposed kernel-based method provides
a closed-form approximate solution on the entire domain and because of its simple implementation and sensible

(&)
ENE
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TABLE 2. Maximum AE and temporal convergence rate (TCR) obtained by the proposed method at
t=1and F =3 for n = 20 (Example 3.1).

(r,D,o) = (0.06,0.02,0.4)

N =30 N =60 N =120
Enn 3.037380e — 003 1.391420¢ — 003 6.116744e — 004
TCR - 1.126260 1.185731
(r.D, o) = (0.08,0.02,0.3)
N =30 N =60 N =120
Enn 4536742¢ — 003 2.025085¢ — 003 9.130655¢ — 004
TCR - 1.163498 1.149235

TABLE 3. Maximum AE obtained by the proposed method at ¢ = 1 for » = 0.08, D = 0.02 and
o = 0.3 (Example 3.1).

Exercise Price E=1 E=2 E=3 E=4
Our method
Es0.15 1.228499e-003 2.872244e-003 2.938095e-003 3.773764e-003
E30,20 1.242719e-003  4.999861e-003 1.870095e-003 3.035534e-003
E30,25 1.477709e-003 3.200233e-003 1.598622e-003 2.494168e-003

TABLE 4. Maximum AE and spatial convergence rate (SCR) obtained by the proposed method at
t =1 for r =0.06, D = 0.02, 0 = 0.4 with N = 30 (Example 3.1).

n=2=5 n =10 n =20 n =40
E=1
E,n  2.796155e-002 4.315218e-003  5.577259e-004  1.200146e-004
SCR - 2.695983 2.953611 2.265537
E=3
En,n o 3.990749e-002  5.817834e-003 1.0373808e-003  2.326292e-004
SCR - 2.778294 2.487859 2.160219

TABLE 5. Maximum AE and spatial convergence rate (SCR) obtained by the proposed method at
t=1for r =0.08, D =0.02, 0 = 0.3 with N =20 (Example 3.1).

n=>5 n =10 n =20 n =40
E=1
E, n 5.079230e-002 7.024137¢-003 1.211107e-003 2.135867¢-004
SCR - 2.854236 2.536094 2.507274
E=3
E,n 6.051967e-002 6.385631e-003 1.126318e-003 1.519592e-004
SCR - 3.244629 2.503479 2.898586

accuracy is computationally effective. Numerical experiments were selected in order to indicate the proposed method
convergence and stability. Also, the obtained results have high accuracy. We believe that the proposed kernel-based
method has a remarkable potential and efficiency to solve other models of the option pricing. According to Theorem
2.12, in m-order Sobolev space, convergence order is O(h"), which can also be deduced from the numerical results. In

fact, the results obtained from the tables reveal that better approximations are obtained in the higher-order Sobolev
space. In the end, we mention some future research directions as follows:

(=)
BEE



CMDE Vol. 12, No. 1, 2024, pp. 16-30

Approximate solution

Absolute error
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b

7‘2 ,‘] 6

Uso (x) (B

FIGURE 1. Graphs of the numerical solution U3 (z) and AE ez 20(x) at t = 1 for r = 0.06, D = 0.02

and o = 0.4 (Example 3.1).

3)

4

Absolute error

-1 o 1 2

630’20(.T) (E = 3)

i): The proposed method can be used for other famous financial models.
i1): We can use kernels based on polynomials to solve financial models.
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FIGURE 2. Graphs of the AE egg 25(z) at t = 1 for r = 0.08, D = 0.02 and o = 0.3 (Example 3.1).
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