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Abstract

In this paper, for solving the HIV fuzzy mathematical model, it is first transformed into a system of three nonlinear

fuzzy Atangana-Baleanu-Caputo (ABC) fractional differential equations with three unknowns and fuzzy initial
values. Then, using the generalized Hukuhara difference and ABC fractional derivative and applying the fuzzy

numerical ABC-PI method, its fuzzy solution is calculated. Moreover, some theorems are defined to prove the

existence and uniqueness of the solution. Then, it is explained that the proposed method can be used for the
system of any equations with unknowns.

Therefore, in order to determine the solution of the fuzzy mathematical model of the transmission of COVID-19,

it is transformed into a system of six nonlinear fuzzy Atangana-Baleanu-Caputo (ABC) fractional differential
equations with six unknowns and fuzzy initial values and is solved similarly. At the end, a numerical example is

presented to verify the effectiveness of the proposed method.
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1. Introduction

Nowadays, viruses such as HIV and COVID-19 are the most dangerous viruses that have greatly affected human life.
Various mathematical models have been proposed to describe such diseases. Among them, differential equation system-
based models provide desirable results. Many studies have been performed in the field of HIV [3, 7, 13, 17, 20, 22, 25, 29].
In 2004, a system of differential equations with two equations was considered to model HIV infection, and the behavior
of the solution was studied [15]. A more general model in the form of a system of differential equations with three
equations was considered in [24], and after many investigations, it was stated that these findings not only propose a
kinetic concept of pathogenicity for HIV-1 but also provide theoretical principles for developing treatment strategies.

Then, in [26], the previous model is extended to the following form by considering the anti-virus effects and studying
the evolution of drug resistance:

dx
dt = β − kxz − dx+ by,
dy
dt = kzx− (b+ δ)x,
dz
dt = Nδx− cz.

(1.1)

In the above equations, parameters are defined as follows: x, uninfected (susceptible) cells. y, infected cells in the
eclipse phase. z, HIV virus particles in the blood cells. δ, the death rate of infected cells x; b, the rate at which
infected cells return to the uninfected class. c, the death rate of viruses. N , the average number of viral particles
produced by an infected cell, and k, the rate of infection.
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In [4], the model in (1.1) is considered under the Caputo fractional derivative, and numerical results are determined
using the extended Euler method. Recently, Nazir et al. studied system (1.1) under the Caputo-Fabrizio derivative
(CFD) with an exponential kernel. The existence and uniqueness of the solution were proved for this model using the
fixed point theorem. Furthermore, the half-analytical solution of the model was achieved by the integral transform of
Laplace coupled with the Adomian decomposition method [23]. On the other hand, according to [27], many parameters
of the model that are based on medical information can be formulated as fuzzy if-then rule statements. Therefore,
fuzzy modeling was considered in a symptomatic population infected by the HIV virus. Moreover, a comparison study
between the fuzzy and Anderson classic models was performed.

Thereafter, a fuzzy delay system is considered to determine the fuzzy expected curve of HIV-positive individuals
who receive antiretroviral therapy [28]. Zarei et al. introduced a system of linear differential equations with fuzzy
parameters describing the ambiguous behavior of CD4+ T cells and CTL level and the load of HIV virus in patients
with weak, moderate, and strong immune systems. Moreover, by determining the implicit solution of the model, they
claimed that despite the simplicity of the proposed model, it is able to determine the effect of antiretroviral therapy
in preventing the spread of the HIV virus [32].

Another destructive virus is the coronavirus. Corona viruses are a large family of viruses that have a specified
crown of sugary proteins. They were called Corona for the first time in 1960 due to their appearance. These kinds
of viruses cause common diseases, such as the common cold, and fatal diseases. Middle East respiratory syndrome
(MERS-CoV) and severe respiratory syndrome (SARS-CoV) are members of the Corona virus family. One of the new
Corona viruses is COVID-19, which has recently affected various aspects of human life. Different approaches have
been proposed to discuss and investigate this virus [6, 11, 12, 14, 18, 19, 21, 31, 33].

In [16], dynamic modeling of the Corona Virus (2019-nCov) was proposed using the Atangana-Baleanu derivative,
and a numerical method was presented to solve it. Baleanu et al. proposed a fractional order model for transmission
of COVID-19 under the Caputo-Fabrizio derivative. Using the homotopy analysis transformation method, which is a
hybrid combination of homotopy analysis and Laplace transformation, the model was solved, and the existence and
uniqueness of the solution were investigated [8]. Recently, qualitative modeling has been considered for COVID-19,
and using Laplace transformation and Adomian decomposition, numerical results of the model have been achieved [1].
Since

• Modeling based on a system of differential equations yields good results in the mathematical modeling of HIV
and COVID-19 viruses.

• It may be a good choice if one chooses a fuzzy mathematical model for HIV and COVID-19 that considers
uncertainty and ambiguity, because in such diseases both humans and viruses are simultaneously involved, and
the nature of these viruses is unknown and involves ambiguity. Additionally, in physical and environmental
aspects, humans are different from each other.

Therefore, in this paper, a fuzzy mathematical model of HIV and COVID-19 viruses in the form of a fuzzy ABC
fractional differential equations system is presented, and a numerical method is proposed to solve it.

The structure of the paper is as follows: in section 2, some necessary basic theories are represented. In section 3,
a fuzzy mathematical model is considered for HIV and COVID-19 viruses in the form of the fuzzy ABC fractional
differential equations system using the fuzzy numerical ABC-PI method. Then, a fuzzy numerical ABC-PI method is
proposed to determine its solution. Moreover, the existence and uniqueness of the solutions and solving the system
of fuzzy ABC fractional differential equations are investigated, and Ref [2] and its disadvantages are also reviewed.
A numerical example is presented in section 4 to verify the proposed method, and finally, the conclusion is given in
section 5.

2. Preliminaries

In this section, the basic definitions required for the next sections are presented.

Definition 2.1. A fuzzy number u in parametric form is a pair ũ = [u(r), u(r)] of functions u(r) and u(r), 0 ≤ r ≤ 1,
which satisfy the following requirements:

1. u(r) is a bounded non-decreasing left continuous function in (0, 1] and right-continuous at 0,
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2. u(r) is a bounded non-increasing left continuous function in (0, 1] and right-continuous at 1,
3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

Definition 2.2. For arbitrary fuzzy numbers ũ = [u(r), u(r)] and ṽ = [v(r), v(r)], we define addition and scalar
multiplication for 0 ≤ r ≤ 1 as follows:

ũ⊕ ṽ = [u(r) + v(r), u(r) + v(r)],

λ� ũ =

{
[λu(r), λu(r)], λ ≥ 0,

[λu(r), λu(r)] λ < 0.

Definition 2.3. [5, 30] The generalized Hukhara difference of two fuzzy numbers is defined as follows:

ũ	gh ṽ = w ⇔

{
(i)ũ = ṽ ⊕ w̃,
or (ii)ṽ = ũ⊕ (−1)w̃.

The first case is equivalent to the definition of the Hukuhara difference and is denoted by ũ 	 ṽ. If ũ = [u(r), u(r)]
and ṽ = [v(r), v(r)], there is:

ũ	gh ṽ = [min{u(r)− v(r), u(r)− v(r)},max{u(r)− v(r), u(r)− v(r)}],

and the conditions for the existence of ũ	gh ṽ = w̃ ∈ RF are:

case(i) :

{
w(r) = u(r)− v(r)and w(r) = u(r)− v(r),

with w(r) increasing, w(r) decreasing, w(r) ≤ w(r).

case(ii) :

{
w(r) = u(r)− v(r)and w(r) = u(r)− v(r),

with w(r) increasing, w(r) decreasing, w(r) ≤ w(r).

Definition 2.4. [30] If x0 ∈ (a, b) and h are such that x0+h ∈ (a, b), then the gH-derivative of a function f : (a, b)→ I
can be defined as:

f̃ ′(x0) = lim
h→0

f̃(x0 + h)	gh f̃(x0)

h
.

If f̃ ′(x0) ∈ I satisfying the above exists, it can be said that f̃ is generalized Hukuhara differentiable (gH-differentiable,
for short).

Definition 2.5.

• Case 1. (i-Differentiability)

ỹ′ = [y′(t; r), y′(t; r)], 0 ≤ r ≤ 1. (2.1)

• Case 2. (ii-Differentiability)

ỹ′ = [y′(t; r), y′(t; r)], 0 ≤ r ≤ 1. (2.2)

Definition 2.6. [2] The ABC fractional derivative in the sense of Caputo is defined in two cases as follows:

ABC
0 D

i,α

t ỹ(t) =
[
ABC
0 D

α

t y(t; r),ABC0 D
α

t y(t; r)
]
, in case(1), (2.3)

ABC
0 D

ii,α

t ỹ(t) =
[
ABC
0 D

α

t y(t; r),ABC0 D
α

t y(t; r)
]
, in case(2), (2.4)

where

ABC
0 D

∗,α
t ỹ(t) =

B(α)

1− α

∫ t

0

Eα(− α

1− α
(t− τ)α)� ỹ′(τ)dτ ∗ ∈ {i, ii}. (2.5)



4 F. BABAKORDI AND T. ALLAHVIRANLOO

On other hand

AB
0 I

α

0 (AB0 D
i,α

t ỹ(t)) = ỹ(t)	 ỹ(0),

AB
0 I

α

t (AB0 D
ii,α

t ỹ(t)) = 	(−1)(ỹ(t)	 ỹ(0)),
(2.6)

where

AB
0 I

α

t (ỹ(t)) =
1− α
B(α)

� ỹ(t)⊕ α

B(α)Γ(α)
�
∫ t

0

(t− τ)α−1 � ỹ(τ)dτ. (2.7)

3. Fuzzy ABC Fractional Differential Equations System Application in HIV

Since the parameters involved in the mathematical model of HIV are inaccurate and the estimation of parameters is
based on linguistic variables, qualitative modeling is investigated here to define a model that is meaningful and based
on medical principles. The classic form is a special case of such a model.

Remark 3.1. In all models, variables and coefficients are positive, and they are solved by assuming the existence of
a generalized Hukuhara derivative.

In this section, a HIV fuzzy mathematical model in the following form is solved:

ABC
0 D

∗1,α
t x̃(t) = ã	gh b̃� x̃(t)� z̃(t)	gh c̃� x̃(t)⊕ d̃� ỹ(t),

ABC
0 D

∗2,β
t ỹ(t) = b̃� z̃(t)� x̃(t)	gh (d̃⊕ ẽ)� x̃(t),

ABC
0 D

∗3,δ
t z̃(t) = N.ẽ� x̃(t)	gh g̃ � z̃(t),

x̃(0) = x̃0,

ỹ(0) = ỹ0,

z̃(0) = z̃0.

(3.1)

where ∗1, ∗2, ∗3 ∈ {i, ii}, 0 < α, β, δ < 1, 0 < t < T <∞, T ∈ R,

x̃(t) Uninfected (susceptible) cells
ỹ(t) Infected cells in the eclipse phase
z̃(t) HIV virus particles in the blood cells
ã Supply rate of new T cells
c̃ Rate of natural death

b̃ Rate of infected T cells
ẽ Death rate of infected T cells

d̃ Rate of return of infected cells to the uninfected class
g̃ Death rate of viruses
N Average number of particles infected by an uninfected cell

where x̃(t), ỹ(t), and z̃(t) are unknown positive fuzzy parameters, and ã, b̃, c̃, d̃, ẽ, and g̃ are known positive fuzzy
parameters, and N is a known natural number.
To solve the HIV fuzzy mathematical model (3.1), it is considered that:

f̃(t, x̃(t), ỹ(t)), z̃(t)) = ã	gh b̃� x̃(t)� z̃(t)	gh c̃� x̃(t)⊕ d̃� ỹ(t),

g̃(t, x̃(t), ỹ(t)), z̃(t)) = b̃� z̃(t)� x̃(t)	gh (d̃⊕ ẽ� x̃(t),

h̃(t, x̃(t), ỹ(t)), z̃(t)) = N.ẽ� x̃(t)	gh g̃ � z̃(t),
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As a result, the HIV mathematical model (3.1) changes to the following fuzzy ABC fractional differential equations
system:

ABC
0 D

∗1,α
t x̃(t) = f̃(t, x̃(t), ỹ(t), z̃(t)),

ABC
0 D

∗2,β
t ỹ(t) = g̃(t, x̃(t), ỹ(t), z̃(t)),

ABC
0 D

∗3,δ
t z̃(t) = h̃(t, x̃(t), ỹ(t), z̃(t)),

x̃(0) = x̃0,

ỹ(0) = ỹ0,

z̃(0) = z̃0.

(3.2)

Therefore, a practical method is presented in the following to solve the system.

Proposed Method

Existence. The fuzzy ABC fractional differential equations system (3.2) with continuous fuzzy functions f̃(t, x̃(t),

ỹ(t), z̃(t)), g̃(t, x̃(t), ỹ(t), z̃(t)), and h̃(t, x̃(t), ỹ(t), z̃(t)), non-negative kernels for every t, α, β, and δ, and fuzzy number
initial values has a fuzzy solution. Consider the fuzzy ABC fractional differential equations system (3.2). Applying
the AB fractional integral on both sides of the equations, we have:

AB
0 I

α

t

(
D∗1,αt x̃(t)

)
= AB

0 I
α

t

(
f̃ (t, x̃(t), ỹ(t), z̃(t))

)
AB
0 I

α

t

(
D∗2,βt x̃(t)

)
= AB

0 I
β

t (g̃ (t, x̃(t), ỹ(t), z̃(t)))

AB
0 I

α

t

(
D∗3,δt x̃(t)

)
= AB

0 I
β

t

(
h̃ (t, x̃(t), ỹ(t), z̃(t))

) (3.3)

Now, different cases occur when solving system (3.2).

case 1 2 3 4 5 6 7 8
∗1 i i i i ii ii ii ii
∗2 i i ii ii i i ii ii
∗3 i ii i ii i ii i ii

• case 1: ∗1 = ∗2 = ∗3 = i.
In this case, using (2.6) and (2.7) results in:
x̃(t)	 x̃(0) = 1−α

B(α) � f̃(t, x̃(t), ỹ(t), z̃(t))⊕ α
B(α)Γ(α) �

∫ t
0
(t− τ)α−1 � f̃(t, x̃(t), ỹ(t), z̃(t))dτ,

ỹ(t)	 ỹ(0) = 1−β
B(β) � g̃(t, x̃(t), ỹ(t), z̃(t))⊕ β

B(β)Γ(β) �
∫ t

0
(t− τ)β−1 � g̃(t, x̃(t), ỹ(t), z̃(t))dτ,

z̃(t)	 z̃(0) = 1−δ
B(δ) � h̃(t, x̃(t), ỹ(t), z̃(t))⊕ δ

B(δ)Γ(δ) �
∫ t

0
(t− τ)δ−1 � h̃(t, x̃(t), ỹ(t), z̃(t))dτ

(3.4)

Putting t = tn = 0 + nh, where h is a constant step-size, it is obtained:

x̃(tn)	 x̃(0) = 1−α
B(α) � f̃(tn, x̃(tn), ỹ(tn), z̃(tn))⊕ α

B(α)Γ(α)

�
∑n−1
i=1

∫ ti+1

ti
(tn − τ)α−1 � f̃(τ, x̃(τ), ỹ(τ), z̃(τ))dτ,

ỹ(tn)	 ỹ(0) = 1−β
B(β) � g̃(tn, x̃(tn), ỹ(tn), z̃(tn))⊕ β

B(β)Γ(β)

�
∑n−1
i=1

∫ ti+1

ti
(tn − τ)β−1 � g̃(τ, x̃(τ), ỹ(τ), z̃(τ))dτ,

z̃(tn)	 z̃(0) = 1−δ
B(δ) � h̃(tn, x̃(tn), ỹ(tn), z̃(tn))⊕ δ

B(δ)Γ(δ)

�
∑n−1
i=1

∫ ti+1

ti
(tn − τ)δ−1 � h̃(τ, x̃(τ), ỹ(τ), z̃(τ))dτ.

(3.5)
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Now, one can approximate the function f̃(τ, x̃(τ), ỹ(τ), z̃(τ)) on [ti, ti+1] by the first-order Lagrange interpo-
lation as follows:

f̃(τ, x̃(τ), ỹ(τ), z̃(τ)) ≈ f̃(ti+1, x̃(ti+1), ỹ(ti+1), z̃(ti+1))

⊕
(
τ − ti+1

h

(
	(−1)

(
f̃(ti+1, x̃(ti+1), ỹ(ti+1), z̃(ti+1))	 f̃(ti, x̃(ti), ỹ(ti), z̃(ti))

)))
,

g̃(τ, x̃(τ), ỹ(τ), z̃(τ)) ≈ g̃(ti+1, x̃(ti+1), ỹ(ti+1), z̃(ti+1))

⊕
(
τ − ti+1

h
(	(−1) (g̃(ti+1, x̃(ti+1), ỹ(ti+1), z̃(ti+1))	 g̃(ti, x̃(ti), ỹ(ti), z̃(ti))))

)
,

h̃(τ, x̃(τ), ỹ(τ), z̃(τ)) ≈ h̃(ti+1, x̃(ti+1), ỹ(ti+1), z̃(ti+1))

⊕
(
τ − ti+1

h

(
	(−1)

(
h̃(ti+1, x̃(ti+1), ỹ(ti+1), z̃(ti+1))	 h̃(ti, x̃(ti), ỹ(ti), z̃(ti))

)))
τ ∈ [ti, ti+1].

(3.6)

By substituting (3.6) in equations of (3.5) along with some algebraic operations, the following are achieved
x̃(tn)	 x̃(0) = αhα

B(α) �
(
εn � f̃(0, x̃(0), ỹ(0), z̃(0))⊕

∑n
i=1 µn−i � f̃(ti, x̃(ti), ỹ(ti), z̃(ti))

)
,

ỹ(tn)	 ỹ(0) = βhβ

B(β) � (ε′n � g̃(0, x̃(0), ỹ(0), z̃(0))⊕
∑n
i=1 νn−i � g̃(ti, x̃(ti), ỹ(ti), z̃(ti))) ,

z̃(tn)	 z̃(0) = δhδ

B(δ) �
(
ε′′n � h̃(0, x̃(0), ỹ(0), z̃(0))⊕

∑n
i=1 γn−i � h̃(ti, x̃(ti), ỹ(ti), z̃(ti))

)
.

(3.7)

Finally, by solving the above system, where B(x), εn, ε
′
n, ε
′′
n, µj , νj , γj > 0 are defined as follows, the solution

of the system of fuzzy ABC fractional differential equations is determined.

s(x) = 1− x+
x

Γ(x)
, x = α or β or δ,

εn =
(n− 1)α+1 − nα(n− α− 1)

Γ(α+ 2)
,

ε′n =
(n− 1)β+1 − nβ(n− β − 1)

Γ(β + 2)
,

ε′′n =
(n− 1)δ+1 − nδ(n− δ − 1)

Γ(δ + 2)
,

µj =

{
1

Γ(α+2) + 1−α
αhα j = 0,

(j−1)α−1−2jα+1+(j+1)α+1

Γ(α+2) j = 1, 2, . . . , n− 1,

νj =

{
1

Γ(β+2) + 1−β
βhβ

j = 0,
(j−1)β−1−2jβ+1+(j+1)β+1

Γ(β+2) j = 1, 2, . . . , n− 1,

γj =

{
1

Γ(δ+2) + 1−δ
δhδ

j = 0,
(j−1)δ−1−2jδ+1+(j+1)δ+1

Γ(δ+2) j = 1, 2, . . . , n− 1,

(3.8)

• case 2: ∗1 = i, ∗2 = i, ∗3 = ii.
In this case, substituting (2.6) and (2.7) in (3.3) results in:
x̃(t)	 x̃(0) = 1−α

B(α) � f̃(t, x̃(t), ỹ(t), z̃(t))⊕ α
B(α)Γ(α) �

∫ t
0
(t− τ)α−1 � f̃(t, x̃(t), ỹ(t), z̃(t))dτ,

ỹ(t)	 ỹ(0) = 1−β
B(β) � g̃(t, x̃(t), ỹ(t), z̃(t))⊕ β

B(β)Γ(β) �
∫ t

0
(t− τ)β−1 � g̃(t, x̃(t), ỹ(t), z̃(t))dτ,

	(−1)(z̃(t)	 z̃(0)) = 1−δ
B(δ) � h̃(t, x̃(t), ỹ(t), z̃(t))⊕ δ

B(δ)Γ(δ) �
∫ t

0
(t− τ)δ−1 � h̃(t, x̃(t), ỹ(t), z̃(t))dτ.

(3.9)
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Therefore, the solution of system (3.2) can be achieved similar to the previous case by solving the following
system:
x̃(tn)	 x̃(0) = αhα

B(α) �
(
εn � f̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 µn−i � f̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

ỹ(tn)	 ỹ(0) = βhβ

B(β) � (ε′n � g̃(0, x̃(0), ỹ(0), z̃(0))⊕
∑n
i=1 νn−i � g̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

	(−1)(z̃(tn)	 z̃(0)) = δhδ

B(δ) �
(
ε′′n � h̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 γn−i � h̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

(3.10)

in which coefficients are obtained from (3.8).
• case 3: ∗1 = i, ∗2 = ii, ∗3 = i.

In this case, substitution of (2.6) and (2.7) in (3.3) yields:
x̃(t)	 x̃(0) = 1−α

B(α) � f̃(t, x̃(t), ỹ(t), z̃(t))⊕ α
B(α)Γ(α) �

∫ t
0
(t− τ)α−1 � f̃(t, x̃(t), ỹ(t), z̃(t))dτ,

	(−1)(ỹ(t)	 ỹ(0)) = 1−β
B(β) � g̃(t, x̃(t), ỹ(t), z̃(t))⊕ β

B(β)Γ(β) �
∫ t

0
(t− τ)β−1 � g̃(t, x̃(t), ỹ(t), z̃(t))dτ,

z̃(t)	 z̃(0) = 1−δ
B(δ) � h̃(t, x̃(t), ỹ(t), z̃(t))⊕ δ

B(δ)Γ(δ) �
∫ t

0
(t− τ)δ−1 � h̃(t, x̃(t), ỹ(t), z̃(t))dτ.

(3.11)

Therefore, the solution of system (3.2) can be achieved similar to the previous case by solving the following
system:
x̃(tn)	 x̃(0) = αhα

B(α) �
(
εn � f̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 µn−i � f̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

	(−1)(ỹ(tn)	 ỹ(0)) = βhβ

B(β) � (ε′n � g̃(0, x̃(0), ỹ(0), z̃(0))⊕
∑n
i=1 νn−i � g̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

z̃(tn)	 z̃(0) = δhδ

B(δ) �
(
ε′′n � h̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 γn−i � h̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

(3.12)

in which coefficients are obtained from (3.8).
• case 4: ∗1 = i, ∗2 = ii, ∗3 = ii.

In this case, substituting (2.6) and (2.7) in (3.3) leads to:
x̃(t)	 x̃(0) = 1−α

B(α) � f̃(t, x̃(t), ỹ(t), z̃(t))⊕ α
B(α)Γ(α) �

∫ t
0
(t− τ)α−1 � f̃(t, x̃(t), ỹ(t), z̃(t))dτ,

	(−1)(ỹ(t)	 ỹ(0)) = 1−β
B(β) � g̃(t, x̃(t), ỹ(t), z̃(t))⊕ β

B(β)Γ(β) �
∫ t

0
(t− τ)β−1 � g̃(t, x̃(t), ỹ(t), z̃(t))dτ,

	(−1)(z̃(t)	 z̃(0)) = 1−δ
B(δ) � h̃(t, x̃(t), ỹ(t), z̃(t))⊕ δ

B(δ)Γ(δ) �
∫ t

0
(t− τ)δ−1 � h̃(t, x̃(t), ỹ(t), z̃(t))dτ

(3.13)

Therefore, the solution of system (3.2) can be achieved similar to the previous case by solving the following
system:
x̃(tn)	 x̃(0) = αhα

B(α) �
(
εn � f̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 µn−i � f̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

	(−1)(ỹ(tn)	 ỹ(0)) = βhβ

B(β) � (ε′n � g̃(0, x̃(0), ỹ(0), z̃(0))⊕
∑n
i=1 νn−i � g̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

	(−1)(z̃(tn)	 z̃(0)) = δhδ

B(δ) �
(
ε′′n � h̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 γn−i � h̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

(3.14)

in which coefficients are obtained from (3.8).
• case 5: ∗1 = ii, ∗2 = i, ∗3 = i.

In this case, substituting (2.6) and (2.7) in (3.3) results in:
	(−1)(x̃(t)	 x̃(0)) = 1−α

B(α) � f̃(t, x̃(t), ỹ(t), z̃(t))⊕ α
B(α)Γ(α) �

∫ t
0
(t− τ)α−1 � f̃(t, x̃(t), ỹ(t), z̃(t))dτ,

ỹ(t)	 ỹ(0) = 1−β
B(β) � g̃(t, x̃(t), ỹ(t), z̃(t))⊕ β

B(β)Γ(β) �
∫ t

0
(t− τ)β−1 � g̃(t, x̃(t), ỹ(t), z̃(t))dτ,

z̃(t)	 z̃(0) = 1−δ
B(δ) � h̃(t, x̃(t), ỹ(t), z̃(t))⊕ δ

B(δ)Γ(δ) �
∫ t

0
(t− τ)δ−1 � h̃(t, x̃(t), ỹ(t), z̃(t))dτ.

(3.15)
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Therefore, the solution of system (3.2) can be achieved similar to the previous case by solving the following
system:
	(−1)(x̃(tn)	 x̃(0)) = αhα

B(α) �
(
εn � f̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 µn−i � f̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

ỹ(tn)	 ỹ(0) = βhβ

B(β) � (ε′n � g̃(0, x̃(0), ỹ(0), z̃(0))⊕
∑n
i=1 νn−i � g̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

z̃(tn)	 z̃(0) = δhδ

B(δ) �
(
ε′′n � h̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 γn−i � h̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

(3.16)

in which coefficients are obtained from (3.8).
• case 6: ∗1 = ii, ∗2 = i, ∗3 = ii.

In this case, substitution of (2.6) and (2.7) in (3.3) yields:
	(−1)(x̃(t)	 x̃(0)) = 1−α

B(α) � f̃(t, x̃(t), ỹ(t), z̃(t))⊕ α
B(α)Γ(α) �

∫ t
0
(t− τ)α−1 � f̃(t, x̃(t), ỹ(t), z̃(t))dτ,

ỹ(t)	 ỹ(0) = 1−β
B(β) � g̃(t, x̃(t), ỹ(t), z̃(t))⊕ β

B(β)Γ(β) �
∫ t

0
(t− τ)β−1 � g̃(t, x̃(t), ỹ(t), z̃(t))dτ,

	(−1)(z̃(t)	 z̃(0)) = 1−δ
B(δ) � h̃(t, x̃(t), ỹ(t), z̃(t))⊕ δ

B(δ)Γ(δ) �
∫ t

0
(t− τ)δ−1 � h̃(t, x̃(t), ỹ(t), z̃(t))dτ.

(3.17)

Therefore, the solution of system (3.2) can be achieved similar to the previous case by solving the following
system:
	(−1)(x̃(tn)	 x̃(0)) = αhα

B(α) �
(
εn � f̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 µn−i � f̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

ỹ(tn)	 ỹ(0) = βhβ

B(β) � (ε′n � g̃(0, x̃(0), ỹ(0), z̃(0))⊕
∑n
i=1 νn−i � g̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

	(−1)(z̃(tn)	 z̃(0)) = δhδ

B(δ) �
(
ε′′n � h̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 γn−i � h̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

(3.18)

in which coefficients are obtained from (3.8).
• case 7: ∗1 = ii, ∗2 = ii, ∗3 = i.

In this case, substituting (2.6) and (2.7) in (3.3) results in:
	(−1)(x̃(t)	 x̃(0)) = 1−α

B(α) � f̃(t, x̃(t), ỹ(t), z̃(t))⊕ α
B(α)Γ(α) �

∫ t
0
(t− τ)α−1 � f̃(t, x̃(t), ỹ(t), z̃(t))dτ,

	(−1)(ỹ(t)	 ỹ(0)) = 1−β
B(β) � g̃(t, x̃(t), ỹ(t), z̃(t))⊕ β

B(β)Γ(β) �
∫ t

0
(t− τ)β−1 � g̃(t, x̃(t), ỹ(t), z̃(t))dτ,

z̃(t)	 z̃(0) = 1−δ
B(δ) � h̃(t, x̃(t), ỹ(t), z̃(t))⊕ δ

B(δ)Γ(δ) �
∫ t

0
(t− τ)δ−1 � h̃(t, x̃(t), ỹ(t), z̃(t))dτ.

(3.19)

Therefore, the solution of system (3.2) can be achieved similar to the previous case by solving the following
system:
	(−1)(x̃(tn)	 x̃(0)) = αhα

B(α) �
(
εn � f̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 µn−i � f̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

	(−1)(ỹ(tn)	 ỹ(0)) = βhβ

B(β) � (ε′n � g̃(0, x̃(0), ỹ(0), z̃(0))⊕
∑n
i=1 νn−i � g̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

z̃(tn)	 z̃(0) = δhδ

B(δ) �
(
ε′′n � h̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 γn−i � h̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

(3.20)

in which coefficients are obtained from (3.8).
• case 8: ∗1 = ii, ∗2 = ii, ∗3 = ii.

In this case, substituting (2.6) and (2.7) in (3.3) leads to:
	(−1)(x̃(t)	 x̃(0)) = 1−α

B(α) � f̃(t, x̃(t), ỹ(t), z̃(t))⊕ α
B(α)Γ(α) �

∫ t
0
(t− τ)α−1 � f̃(t, x̃(t), ỹ(t), z̃(t))dτ,

	(−1)(ỹ(t)	 ỹ(0)) = 1−β
B(β) � g̃(t, x̃(t), ỹ(t), z̃(t))⊕ β

B(β)Γ(β) �
∫ t

0
(t− τ)β−1 � g̃(t, x̃(t), ỹ(t), z̃(t))dτ,

	(−1)(z̃(t)	 z̃(0)) = 1−δ
B(δ) � h̃(t, x̃(t), ỹ(t), z̃(t))⊕ δ

B(δ)Γ(δ) �
∫ t

0
(t− τ)δ−1 � h̃(t, x̃(t), ỹ(t), z̃(t))dτ.

(3.21)
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Therefore, the solution of system (3.2) can be achieved similar to the previous case by solving the following
system:
	(−1)(x̃(tn)	 x̃(0)) = αhα

B(α) �
(
εn � f̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 µn−i � f̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

	(−1)(ỹ(tn)	 ỹ(0)) = βhβ

B(β) � (ε′n � g̃(0, x̃(0), ỹ(0), z̃(0))⊕
∑n
i=1 νn−i � g̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

	(−1)(z̃(tn)	 z̃(0)) = δhδ

B(δ) �
(
ε′′n � h̃(0, x̃(0), ỹ(0), z̃(0)

)
⊕
∑n
i=1 γn−i � h̃(ti, x̃(ti), ỹ(ti), z̃(ti)),

(3.22)

in which coefficients are obtained from (3.8). In solving the fuzzy mathematical model (3.1), if the types
of difference and derivative are not determined, all cases must be taken into consideration, and at the end,
choosing the unique solution is up to the decision-maker.

Theorem 3.2. Assume f̃(t, x̃(t), ỹ(t), z̃(t)), g̃(t, x̃(t), ỹ(t), z̃(t)), and h̃(t, x̃(t), ỹ(t), z̃(t)) are continuous functions on

[0, T ). Then a necessary condition for the existence of a solution to the problem (3.2) is that f̃(0, x̃(0), ỹ(0), z̃(0)) =

g̃(0, x̃(0), ỹ(0), z̃(0)) = h̃(0, x̃(0), ỹ(0), z̃(0)) = 0.

Proof. Since f̃(t, x̃(t), ỹ(t), z̃(t)), g̃(t, x̃(t), ỹ(t), z̃(t)), and h̃(t, x̃(t), ỹ(t), z̃(t)) are continuous, the following hold:

lim
t→0+

∫ t

0
∗1−ghx̃

′(τ)Eα(− α

1− α
(t− τ)α) dτ = 0,

lim
t→0+

∫ t

0
∗2−ghỹ

′(τ)Eβ(− β

1− β
(t− τ)β) dτ = 0,

lim
t→0+

∫ t

0
∗3−ghz̃

′(τ)Eδ(−
δ

1− δ
(t− τ)δ) dτ = 0.

Therefore,
ABC
0 D

∗1,α
t x̃(0+) = ABC

0 D
∗2,β
t ỹ(0+) = ABC

0 D
∗3,δ
t z̃(0+) = 0 ∗1, ∗2, ∗3 ∈ {i, ii}.

Thus, substituting the above equality in (3.2) yields

f̃(0, x̃(0), ỹ(0), z̃(0)) = g̃(0, x̃(0), ỹ(0), z̃(0)) = h̃(0, x̃(0), ỹ(0), z̃(0)), which completes the proof. �

Uniqueness. Let

Ỹ (t) =

x̃(t)
ỹ(t)
z̃(t)

 , Ỹ (0) =

x̃(0)
ỹ(0)
z̃(0)

 , Ỹ0 =

x̃0

ỹ0

z̃0

 ,
F (t, Ỹ (t)) =

f(t, x̃(t), ỹ(t), z̃(t))
g(t, x̃(t), ỹ(t), z̃(t))
h(t, x̃(t), ỹ(t), z̃(t))

 ,
ABC
0 D

∗,σ
t F (t, Ỹ (t)) =

ABC0 D
∗1,α
t f̃(t, x̃(t), ỹ(t), z̃(t))

ABC
0 D

∗2,β
t g̃(t, x̃(t), ỹ(t), z̃(t))

ABC
0 D

∗3,δ
t h̃(t, x̃(t), ỹ(t), z̃(t))

 ,
I = [0, T ].

Then the system (3.2) can be written as:

ABC
0 D

∗,σ
t F̃ (t, Ỹ (t)) = F̃ (t, Ỹ (t)), t ∈ I, Ỹ (0) = Ỹ0, (3.23)

where the problem (3.23) has at least one solution. Consequently, the considered model (3.2) has at least one solution.

Proof. Refer to [2]. �

Definition 3.3. [10] It is said that a point t0 ∈ (a, b) is a switching point for the differentiability of f̃ if gH-
differentiability changes from type (i) to type (ii) or from type (ii) to type (i).

Theorem 3.4. If x̃(0) = 0 (or ỹ(0) = 0, or z̃(0) = 0), where then x̃ (or ỹ, or z̃) are not ii-differentiable.
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Proof. The proof by contradiction method is used. Therefore, it is assumed that x̃ is ii-differentiable. Hence, the
following cases can occur:

• If the length of the support increases by increasing t, x̃ is i-differentiable.
• If the length of the support increases at first and then decreases by increasing t, x̃(t) has a switch point.
• Assume x̃ = [x(t, r), x(t, r)]. If x(t, r) = x(t, r) holds for each r and increasing t, then x̃ is a real function.

In all three cases above, the contradiction proposition is false. Therefore, the claim is true. �

Remark 3.5. In this paper, a method is proposed to solve the system of fractional differential integral equations in
the form of (3.2). The proposed method can also be applied to the general form of the system of fractional differential
integral equations as follows:


ABC
0 D

∗1,α1

t ũ1(t) = f11(t)ũ1(t) + f12(t)ũ2(t) + · · ·+ f1n(t)ũn(t),
ABC
0 D

∗2,α2

t ũ2(t) = f21(t)ũ1(t) + f22(t)ũ2(t) + · · ·+ f2n(t)ũn(t),
...
ABC
0 D

∗n,αn
t ũn(t) = fn1(t)ũ1(t) + fn2(t)ũ2(t) + · · ·+ fnn(t)ũn(t),

where ∗1, ∗2, . . . , ∗n ∈ {i, ii}, 0 < α1, α2, . . . , αn < 1, 0 < t < T < ∞, T ∈ R, ũ1(t), ũ2(t), . . . , ũn(t) ∈ CF (I) ∩
LF (I), I = [0, T ] ⊆ R and fkj(t) are real-valued functions for 1 ≤ k, j ≤ n. The value of the parameters in the
mathematical model of the transmission of COVID-19 is uncertain and varies over intervals, such as the transmission
rate from Ĩ(t) to S̃(t) or from W̃ (t) to S̃(t). Hence, a fuzzy mathematical model is considered for COVID-19, as
the parameters in a fuzzy model are fuzzy numbers. This model can effectively reveal the ambiguity in real-world
problems. Consequently, in the following, the goal is to provide a fuzzy mathematical model for the transmission of
COVID-19 as an application of a system of fuzzy ABC fractional differential equations in the following form:



ABC
0 D

∗1,α1

t S̃(t) = Λ̃	gh m̃� S̃(t)	gh β̃p � S̃(t)� (Ĩ(t)⊕ k̃ � Ã(t))	gh β̃w � S̃(t)� W̃ (t),
ABC
0 D

∗2,α2

t Ẽ(t) = β̃p � S̃(t)� (Ĩ(t)⊕ k̃ � Ã(t))⊕ β̃w � S̃(t)� W̃ (t)

	gh([1, 1]	gh δ̃)� ω̃ � Ẽ(t)	gh δ̃ � ω̃ � Ẽ(t)	gh m̃� Ẽ(t),
ABC
0 D

∗3,α3

t Ĩ(t) = ([1, 1]	gh δ̃)� ω̃ � Ẽ(t)	gh (γ̃ ⊕ m̃)� Ĩ(t),
ABC
0 D

∗4,α4

t Ã(t) = δ̃ � ω̃′p � Ẽ(t)	gh (γ̃′ ⊕ m̃)� Ã(t),
ABC
0 D

∗5,α5

t R̃(t) = γ̃ � Ĩ(t)⊕ γ̃′ � Ã(t)	gh m̃� R̃(t),
ABC
0 D

∗6,α6

t W̃ (t) = µ̃� Ĩ(t)⊕ µ̃′ � Ã(t)	gh ε̃� W̃ (t),

S̃(0) = S̃0, Ẽ(0) = Ẽ0, Ĩ(0) = Ĩ0,

Ã(0) = Ã0, R̃(0) = R̃0, W̃ (0) = W̃0,

(3.24)

where ∗1, ∗2, ∗3, ∗4, ∗5, ∗6 ∈ {i, ii}, 0 < α1, α2, α3, α4, α5, α6 < 1, 0 < t < T <∞, T ∈ R,
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S̃(t) Susceptible people

Ẽ(t) Exposed people

Ĩ(t) Symptomatic infected people

Ã(t) Asymptomatic infected people

R̃(t) Removed people, including recovered and dead people

W̃ (t) COVID-19 in the reservoir

Λ̃ Λ̃ = ñ�N
N refers to the total number of people, and ñ is the birth rate.

m̃ Death rate of people

β̃p Transmission rate from Ĩ(t) to S̃(t)

k̃ Multiple of the transmissible of Ã(t) to that of Ĩ(t)

β̃w Transmission rate from W̃ (t) to S̃(t)

δ̃ Proportion of asymptomatic infection rates among people
1
ω̃ Incubation period of people
1
ω̃′ Latent period of people
1
ỹ Infectious period of symptomatic infection in people
1
ỹ′ Infectious period of asymptomatic infection in people

µ̃ Shedding coefficients from Ĩ(t) to W̃ (t)

µ̃′ Shedding coefficients from Ã(t) to W̃ (t)
1
ε̃ Lifetime of the virus in W̃ (t)

By considering:

f̃1(S̃(t), Ẽ(t), Ĩ(t), Ã(t), R̃(t), W̃ (t)) = Λ̃	gh m̃� S̃(t)	gh β̃p � S̃(t)� (Ĩ(t)⊕ k̃ � Ã(t))

	gh β̃w � S̃(t)� W̃ (t),

f̃2(S̃(t), Ẽ(t), Ĩ(t), Ã(t), R̃(t), W̃ (t)) = β̃p � S̃(t)� (Ĩ(t)⊕ k̃ � Ã(t))⊕ β̃w � S̃(t)� W̃ (t)

	gh ([1, 1]	gh δ̃)� ω̃ � Ẽ(t)	gh δ̃ � ω̃ � Ẽ(t)	gh m̃� Ẽ(t),

f̃3(S̃(t), Ẽ(t), Ĩ(t), Ã(t), R̃(t), W̃ (t)) = ([1, 1]	gh δ̃)� ω̃ � Ẽ(t)	gh (γ̃ ⊕ m̃)� Ĩ(t),

f̃4(S̃(t), Ẽ(t), Ĩ(t), Ã(t), R̃(t), W̃ (t)) = δ̃ � ω̃′p � Ẽ(t)	gh (γ̃′ ⊕ m̃)� Ã(t),

f̃5(S̃(t), Ẽ(t), Ĩ(t), Ã(t), R̃(t), W̃ (t)) = γ̃ � Ĩ(t)⊕ γ̃′ � Ã(t)	gh m̃� R̃(t),

f̃6(S̃(t), Ẽ(t), Ĩ(t), Ã(t), R̃(t), W̃ (t)) = µ̃� Ĩ(t)⊕ µ̃′ � Ã(t)	gh ε̃� W̃ (t),

The model in (3.24) is transformed to a system of fuzzy ABC fractional differential equations as follows:

ABC
0 D

∗1,α1

t S̃(t) = f̃1(S̃(t), Ẽ(t), Ĩ(t), Ã(t), R̃(t), W̃ (t)),
ABC
0 D

∗2,α2

t Ẽ(t) = f̃2(S̃(t), Ẽ(t), Ĩ(t), Ã(t), R̃(t), W̃ (t)),
ABC
0 D

∗3,α3

t Ĩ(t) = f̃3(S̃(t), Ẽ(t), Ĩ(t), Ã(t), R̃(t), W̃ (t)),
ABC
0 D

∗4,α4

t Ã(t) = f̃4(S̃(t), Ẽ(t), Ĩ(t), Ã(t), R̃(t), W̃ (t)),
ABC
0 D

∗5,α5

t R̃(t) = f̃5(S̃(t), Ẽ(t), Ĩ(t), Ã(t), R̃(t), W̃ (t)),
ABC
0 D

∗6,α6

t W̃ (t) = f̃6(S̃(t), Ẽ(t), Ĩ(t), Ã(t), R̃(t), W̃ (t)),

S̃(0) = S̃0, Ẽ(0) = Ẽ0, Ĩ(0) = Ĩ0,

Ã(0) = Ã0, R̃(0) = R̃0, W̃ (0) = W̃0,

that can be solved using the proposed method. The following example demonstrates the efficiency of the proposed
method.

Review of [2]
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1. In this paper, the solution of the following fuzzy differential equation is investigated:

[
ABC
0 D

∗,α
t y(t)

]
r

= [f(t, y(t))]r 0 < t < T <∞, T ∈ R, ∗ ∈ {i, ii}.

Substituting t = 0 in both sides of the above equation, (3.23) leads to:

[
ABC
0 D

∗,α
t y(0)

]
r

= [f(0, y(0))]r.

As presented in Theorem 3.2,
[
ABC
0 D

∗,α
t y(0)

]
r

= 0 always holds. Therefore, by substituting it in the above

equation, the following result can be achieved:

[f(0, y(0))]r = 0.

This main condition for the existence of the solution was not indicated in [2]. Moreover, in Example 1 [2], the
sign of λ was not mentioned.

2. The general form of the nonlinear fractional differential equation was considered as [2]:

ABC
0 D

α

t y(t) = f(t, y(t)), 0 < t < T <∞, T ∈ R, y(0) = y0.

It means that the initial value was assumed to be zero and t was assumed to be positive, while in Examples 2
and 3 [2], the initial value was -1, and t < 0.

3. In Theorem 1 [2], the condition of non-negativity of Et was considered for t and α, while it was neglected in
the solving and proving procedures.

4. The type of derivative must be determined according to the problem, and if it is not determined, all cases
must be considered, and the final solution is the one that is closer to the opinion of the decision-maker. For
instance, in Example 1 [2], it is said that for λ < 0, the solution is of the second type derivative, but the
figures indicate an incremental support.

In the present paper, all the aforementioned cases have been modified.

4. Numerical Example

In this section, a numerical example is utilized to investigate the validity and effectiveness of the proposed method.
Since the data is not constant in practice and varies in intervals and is also used to determine output based on reality
for future works, the data proposed in [9] is considered to be uncertain. As a result, the following data is selected for
the model of the transmission of COVID-19:
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Λ̃ ˜1.146 = [1.1 + 0.046r, 1.2− 0.054r]
m̃ 0.034

β̃p 0.0025

k̃ 0.05

β̃w 0.001

δ̃ ˜0.25 = [0.25r, 0.4− 0.15r
ω̃ 0.071
ω̃′ 0.1
γ̃ 0.047
γ̃′ 0.1
µ̃ 0.002
µ̃′ 0.001
ε̃ 0.033

S̃(0) 3̃5 = [34.7 + 0.3r, 35.2− 0.2r]

Ẽ(0) 2̃5 = [24.5 + 0.5r, 25.1− 0.1r]

Ĩ(0) 2̃5 = [24.8 + 0.2r, 25.3− 0.3r]

Ã(0) 1̃0 = [9.9 + 0.1r, 10.2− 0.2r]

R̃(0) 0̃ = [0.0]

W̃ (0) 5̃ = [4.75 + 0.25r, 5.15− 0.15r]

Therefore, model (3.24) is transformed to:

ABC
0 D

i,α1

t S̃(t) = [1.1 + 0.046r, 1.2− 0.054r]	 0.034S̃(t)	 0.0025S̃(t)� (Ĩ(t)⊕ 0.05Ã(t))

	0.001S̃(t)� W̃ (t),
ABC
0 D

i,α2

t Ẽ(t) = 0.0025S̃(t)� (Ĩ(t)⊕ 0.05Ã(t))⊕ 0.001S̃(t)�W 	 ([1, 1]

	[0.25r, 0.4− 0.15r])� 0.071Ẽ(t)

	[0.25r, 0.4− 0.15r]� 0.1Ẽ(t)	 0.034Ẽ(t),
ABC
0 D

i,α3

t Ĩ(t) = ([1, 1]	 [0.25r, 0.4− 0.15r])� 0.071Ẽ(t)	 (0.047 + 0.034)Ĩ(t),
ABC
0 D

i4,α4

t Ã(t) = [0.25r, 0.4− 0.15r]� (0.1)� Ẽ(t)	 (0.1 + 0.034)Ã(t),
ABC
0 D

i,α5

t R̃(t) = 0.047Ĩ(t)⊕ (0.1)� Ã(t)	 0.034R̃(t),
ABC
0 D

i,α6

t W̃ (t) = 0.003Ĩ(t)⊕ 0.001Ã(t)	 0.033W̃ (t),

S̃(0) = [34.70.3r, 35.2− 0.2r], Ẽ(0) = [24.5 + 0.5r, 25.1− 0.1r],

Ĩ(0) = [24.8 + 0.2r, 25.3− 0.3r], Ã(0) = [9.9 + 0.1r, 10.2− 0.2r],

R̃(0) = [0, 0], W̃ (0) = [4.75 + 0.25r, 5.15− 0.15r].

(4.1)

Using the proposed method, the above system is solved. The results presented in Figure 1 are achieved for α = 0.96.
It can be seen that the achieved results have good accuracy, and the proposed method is more compatible with certain
environments (for r = 1) and is valid for the fuzzy system of fractional ODEs. Furthermore, the dynamics of infected,
susceptible, exposed, and asymptotically infected people can be investigated for different integer and fractional orders
in a fuzzy environment.

5. Conclusion

Mathematics is a tool for modeling many real-world problems. Whenever a mathematical model is closer to a real
system, it can provide a more accurate solution and statement of the problem. Since variables involved with HIV and
Corona viruses are linguistic and ambiguous, in this paper, qualitative mathematical modeling is considered based on
the fuzzy Atangana-Baleanu-Caputo (ABC) fractional differential equations system. A useful method is presented for
the fuzzy Atangana-Baleanu-Caputo (ABC) fractional differential equations system using the ABC derivative, and it is
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Figure 1. Simulation results corresponding to the numerical example for α = 0.96.

shown that the achieved solution is a fuzzy number. Moreover, in a numerical example for a special case, a qualitative
case study in China is considered. The results verify the performance of the proposed method. In the next study,
various numerical methods with various fractional derivatives that are used to solve the fuzzy mathematical model of
COVID-19 will be compared.
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Jahanshahi, Antiretroviral therapy of HIV infection using a novel optimal type-2 fuzzy control strategy, Alexandria
Engineering Journal, 60(1) (2021), 1545–1555.

[14] S. Djilali and B. Ghanbari, Coronavirus pandemic: A predictive analysis of the peak outbreak epidemic in South
Africa, Turkey, and Brazil, Chaos, Solitons & Fractals, 138 (2020), 109971.

[15] C. Henry and Y. Frederic, On the behavior of solutions in viral dynamical models, BioSystems, 73 (2004), 157–161.
[16] M. A. Khan and A. Atangana, Modeling the dynamics of novel coronavirus (2019-ncov) with fractional derivative,

Alex. Eng. J., 2020.
[17] H. Kheiri and M. Jafari, Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy

environment, J. Comput. Appl. Math., 346 (2019), 323–339.
[18] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, and W. Tan, Genomic characterisation and epidemiology of 2019

novel coronavirus: implications for virus origins and receptor binding, Lancet, 6736(20) (2020), 1–10.
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