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Abstract

A numerical technique for the solution of the one-phase Stefan problem for the non-classical heat equation with a
convective condition is discussed. This approach is based on a scheme introduced in [15]. The compatibility and

convergence of the method are proven. Numerical examples round out the discussion.
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1. Introduction

A large number of problems in various areas of applied science appear as moving boundary or phase change
problems. These can arise in heat conduction situations in conjunction with a change of phase and initial and moving
boundary conditions and need to be solved in a time-dependent space domain with a moving boundary condition.
Since the moving boundary is a function of time and its location has to be determined as a part of the solution, such
problems are inherently nonlinear. In general, the nonlinearity associated with the moving boundary significantly
complicates the analysis of this class of problems. A common example is the problem of melting ice that was first
treated by Stefan [1] and after whom such problems are widely referred to as Stefan problems [4, 5, 12]. A simple
model of the Fuzzy one-phase Stefan problem is studied in [13]. Some numerical methods have been applied to the
heat equation and reaction-diffusion systems [7, 11]. Some fractional partial differential equations were studied in
[1–3, 6]. The discussion of phase-change and free boundary problems appears in industrial processes and in other
problems of technological interest because of its widespread use in various dimensions, some of which are mentioned in
[8–10, 14, 16]. Motivated by [8] the following free boundary problem which we want to consider consists of numerical
determining the temperature U = U(x, t) and the free boundary x = S(t) which satisfy the conditions:

Ut − Uxx = −F (U(0, t)), 0 < x < S(t), 0 < t < T, (1.1)

Ux(0, t) = g(t)[U(0, t)− f(t)], f(t) ≥ 0, 0 < t < T, (1.2)

U(S(t), t) = 0, 0 < t < T, (1.3)

U(x, 0) = φ(x) ≥ 0, 0 < x ≤ b, (1.4)

Ux(S(t), t) = −Ṡ(t), 0 < t < T, (1.5)
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S(0) = b > 0. (1.6)

where f, g ∈ C0(R+), φ ∈ C1[0, b], φ(b) = 0, φ̇(0) = g(0)[φ(0) − f(0)] ,and F ∈ C1(R+). The function F referred to
as the control function, is assumed to satisfy the condition F (0) = 0. The function g(t) is the heat transfer coefficient
and f(t) is the temperature of the external fluid, both of which depend on time. The existence and uniqueness, local
in time, of a solution for the problem (1.1)-(1.6) has been proved in [10]. The goal of this paper is to find numerical
solution of a solution for the problem (1.1)-(1.6). We are only concerned with the variable space grid technique. These
are reviewed in detail in the subsequent sections and applied to the one-phase Stefan problem given by Eqs. (1.1). The
outline of this paper is as follows. Standard numerical techniques based on explicit finite-difference approximations
are derived in section 2. The compatibility of the method is studied in section 3. The convergence of the method is
studied in section 4 and finally, in section 5, we present the numerical result of two examples.

2. Numerical solution

In order to network the semi-infinite region, the number of distances between the fixed boundary x = 0, and the
moving boundary x = S(t) is considered constant and equal to N so that the moving boundary is always in the Nth

network. By network lines and based on time changes, the following result was obtained. ∆x = S(t)
N and xi = i∆x,

for ith grid point similar to [15]

∂U

∂t

∣∣∣∣
i

=
∂U

∂x

∣∣∣∣
t

dx

dt

∣∣∣∣
i

+
∂U

∂t

∣∣∣∣
x

, (2.1)

for the node xi, the following expression was obtaned

dxi
dt

= i
∆xi
dt

=
i

N
× dS

dt
=
i∆x

S(t)
× dS(t)

dt
=

xi
S(t)

× dS(t)

dt
, (2.2)

in which the suffices t, i, and x are to be kept constant during the differentiation processes. Thus, in the dimensionless
model problem, the heat conduction equation (1.1) takes the form

∂U

∂t
=
∂2U

∂x2
+
xiṠ(t)

S(t)

∂U

∂x
− F (U(0, t)), 0 < x < S(t), 0 < t < T. (2.3)

We note that the grid size ∆x = S(t)
N waries with time t in each time step ∆t, since N is constant. An explicit numerical

solution based on finite difference to the problem (1.1)-(1.4) is obtained by substituting the time and temperature
derivatives at the nodes (xi, tj) by the forward and central differences as following form

ui,j+1 = rui−1,j +

(
1− 2r − kxiṡj

hsj

)
ui,j +

(
r +

kxiṡj
hsj

)
ui+1,j − kF (u0,j), (2.4)

j = 0, 1, . . . , i = 0, 1, 2, . . . , N − 1, since
·
sj =

sj+1−sj
k then we have from (2.4)

ui,j+1−
i

sj
(ui+1,j−ui,j)sj+1 = rui−1,j +(1−2r+ i)ui,j +(r− i)ui+1,j−kF (u0,j), i = 0, 1, 2, · · · , N−1, (2.5)

u1,j = (1 + hgj)u0,j + hgjfj , j = 0, 1 , 2 · · · , (2.6)

ui,j = 0, i = N, j = 0, 1 , 2 · · · , (2.7)

ui,0 = hi, i = 0, 1, 2, · · · . (2.8)

In the above equations ui,j ≈ U(xi, tj) and sj ≈ S(tj), xi = ih, (h ≈ ∆x), tj = jk is the grid size at the jth time step,
k = T/M is the time step, and r = k/h2. By using the following three-term backward difference for the temperature
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gradient at the free interface (x = S(t) = N∆x).

∂u

∂x

∣∣∣∣
x=S(t)

=
3uN,j − 4uN−1,j + uN−2,j

2h
+O(h2). (2.9)

For the Stefan condition (1.5), we can write:(
3uN,j − 4uN−1,j + uN−2,j

2h

)
= −sj+1 − sj

k
, (2.10)

or

sj+1 = sj −
k

2h
(3uN,j − 4uN−1,j + uN−2,j) , j = 0, 1, 2, · · · , (2.11)

and for the condition (1.6), we can write s0 = b.

3. Compatibility

We now show that the finite difference method is compatible with the one-phase Stephen problem for a non-classical
thermal equation and convective boundary conditions. To make this goal by applying the finite difference method to
equation (2.4), we have:

ui,j+1 − ui,j
k

=
ui−1,j − 2ui,j + ui+1,j

h2
+

(
ui+1,j − ui,j

h

)
xiṡj
sj
− F (u0,j), (3.1)

for j = 0, 1, 2, · · · , i = 1 , 2 , · · · , N − 1 . By Taylor extension,

Ui−1,j = Ui,j − h
(
∂U

∂x

)
i,j

+
h2

2!

(
∂2U

∂x2

)
i,j

− h3

3!

(
∂3U

∂x3

)
i,j

+
h4

4!

(
∂4U(xi + θ1, tj)

∂x4

)
i,j

, (3.2)

Ui+1,j = Ui,j + h

(
∂U

∂x

)
i,j

+
h2

2!

(
∂2U

∂x2

)
i,j

+
h3

3!

(
∂3U

∂x3

)
i,j

+
h4

4!

(
∂4U(xi + θ2, tj)

∂x4

)
i,j

, (3.3)

Ui,j+1 = Ui,j + k

(
∂U

∂t

)
i,j

+
k2

2!

(
∂2U(xi, tj + θ3)

∂t2

)
i,j

. (3.4)

Hence

Ti,j =
1

k

(
Ui,j + k

(
∂U

∂t

)
i,j

+
k2

2!

(
∂2U

∂t2

)
i,j

+ · · · − Ui,j

)
(3.5)

− 1

h2

(
Ui,j − h

(
∂U

∂x

)
i,j

+
h2

2!

(
∂2U

∂x2

)
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− h3

3!

(
∂3U

∂x3

)
i,j

+ · · · − 2Ui,j

+ Ui,j + h

(
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)
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2!

(
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)
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+
h3

3!
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)
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)
+ . . .

− 1

h

(
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(
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)
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+
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2!

(
∂2U

∂x2

)
i,j

+ · · · − Ui,j

)
xi ṡj
Sj

+ F (U0,j),

or equivalently

Ti,j =

(
∂U

∂t

)
i,j

−
(
∂2U

∂x2

)
i,j

−
(
∂U

∂x

)
i,j

× xiṠj

Sj
+ F (U0,j) +O(h2) +O(k). (3.6)

Now, from (3.5), when h→ 0 and k → 0 we have Ti,j → 0. Therefore, the finite difference method is compatible with
the non-classical heat problem
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4. The discussion of numerical solution

In this section, we analyze the convergence of the explicit finite difference method for the problem (1.1)-(1.6). For
this purpose, we have from (2.4)

ui,j+1 = ui,j + r(ui−1,j − 2ui,j + ui+1,j) +
k

h
(ui+1,j − ui,j)

xiṡj
sj
− kF (u0,j). (4.1)

At the mesh points,

ui,j = Ui,j − ei,j , ui−1,j = U(xi − h, tj)− ei−1,j = Ui−1,j − ei−1,j , (4.2)

ui+1,j = U(xi + h, tj)− ei+1,j = Ui+1,j − ei+1,j ,

ui,j+1 = U(xi, tj + k)− ei,j+1 = Ui,j+1 − ei,j+1.

By replacing the expressions (4.2) in to (2.4) leads to

ei,j+1 = ei,j +
k

h2
(ei+1,j − 2ei,j + ei−1,j) +

k

h
(ei+1,j − ei,j)

xiṡj
sj

(4.3)

+Ui,j+1 − Ui,j −
k

h2
(Ui+1,j − 2Ui,j + Ui−1,j)−

k

h
(Ui+1,j − Ui,j)

xiṡj
sj

+ kF (U0,j − e0,j),

or

ei,j+1 = rei−1,j +

(
1− 2r − kxiṡj

hsj

)
ei,j +

(
r +

kxiṡj
hsj

)
ei+1,j (4.4)

+Ui,j+1 − Ui,j −
k

h2
(Ui+1,j − 2Ui,j + Ui−1,j)−

k

h
(Ui+1,j − Ui,j)

xiṡj
sj

+ kF (U0,j − e0,j).

By Taylor’s expansion,

Ui,j+1 = U(xi, tj + k) = Ui,j + k

(
∂U

∂t

)
(xi, tj + θ1k),

Ui+1,j = U(xi + h, tj) = Ui,j + h

(
∂U

∂x

)
i,j

+
h2

2!

(
∂2U

∂x2

)
(xi + θ2h, tj), (4.5)

Ui−1,j = U(xi − h, tj) = Ui,j − h
(
∂U

∂x

)
i,j

+
h2

2!

(
∂2U

∂x2

)
(xi + θ3h, tj),

where , 0 < θ1 < 1, 0 < θ2 < 1 and 0 < θ3 < 1. Substitution into (4.3) gives

ei,j+1 = rei−1,j +

(
1− 2r − kxiṡj

hsj

)
ei,j +

(
r +

kxiṡj
hsj

)
ei+1,j − ke0,jF

′(θ) (4.6)

+k

[(
∂U

∂t

)
(xi, tj + θ1k)−

(
∂2U

∂x2

)
(xi + θ4h, tj)−

xiṡj
sj

(
∂U

∂x

)
(xi + θ5h, tj) + F (U0,j)

]
, (4.7)

where , −1 < θ4 < 1, 0 < θ5 < 1 and θ is between U0,j − e0,j and U0,j . We have for the increasing free boundary

s(t), r +
kxiṡj
hsj

≥ 0. For k < 1
2
h2 +

xiṡj
hsj

, j = 0, 1, 2, ..., i = 1, 2, ...N − 1, we have 1 − 2r − kxiṡj
hsj

> 0. Suppose that

Ej be the largest value of error |ei,j | along the jth time-row, N1 is the largest absolute value of e0,jF
′(θ), and

suppose that M1 is the largest value in bracket in (4.7) for all values of i, j. So for each step size h and k, where
k < 1

2
h2 +

xiṡj
hsj

, j = 0, 1, 2, ..., i = 1, 2, ...N − 1, we can write:

|ei,j+1| ≤ r|ei−1,j |+
[
1− 2r − kxiṡj

hsj

]
|ei,j |+

[
r +

kxiṡj
hsj

]
|ei+1,j |+ kM1 + kN1 (4.8)

≤ rEj +

[
1− 2r − kxiṡj

hsj

]
Ej +

[
r +

kxiṡj
hsj

]
Ej + k(M1 +N1) = Ej + k(M1 +N1),
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so we can write,

Ej+1 ≤ Ej + k(M1 +N1) (4.9)

≤ (Ej−1 + k(M1 +N1)) + k(M1 +N1)

= Ej−1 + 2k(M1 +N1)

≤ · · · ≤ E0 + jk(M1 +N1).

From which it follows that

Ej ≤ E0 + jk(M1 +N1). (4.10)

since the initial values for u and U are equal, therefore E0 = 0. When h −→ 0, k = rh2 also tends to zero and M1

tends to(
∂U

∂t
− ∂2U

∂x2
− xiṠj

Sj

∂U

∂x
+ F (U(0, t))

)
i,j

. (4.11)

Since U is an answer to equation (2.4) the limiting value of M1 and therefore of Ej is zero. Since |Ui,j − ui,j | ≤ Ej

this proves that u converges to U as h −→ 0 when k < 1
2
h2 +

xiṡj
hsj

, j = 0, 1, 2, ..., i = 1, 2, ...N − 1.

Suppose that sj+1 = Sj+1 − e′j+1, sj = Sj − e′j , for the Stefan condition (2.11), we can write,

Sj+1 − e′j+1 = Sj − e′j −
k

2h
(3UN,j − 3eN,j − 4UN−1,j + 4eN−1,j + UN−2,j − eN−2,j) ,

hence

e′j+1 = e′j + Sj+1 − Sj −
k

2h
(3UN,j − 3eN,j − 4UN−1,j + 4eN−1,j + UN−2,j − eN−2,j) . (4.12)

By using Taylor’s expansion, we have

e′j+1 = e′j + kS′(tj + θ5k)− 3k

2h
eN,j +

2k

h
eN−1,j −

k

2h
eN−2,j (4.13)

− k

2h
(3UN,j − 4UN,j + 4h(

∂U

∂x
)(xN − θ6h, tj) + UN,j − 2h(

∂U

∂x
)(xN − θ7h, tj)),

since 0 < θih < h, i = 6, 7 for sufficient small step size we can assume θ6
∼= θ7. Hence

e′j+1 = e′j + k

[
S′(tj + θ5k) +

(
∂U

∂x

)
(xN − θ6h, tj)

]
− 3k

2h
eN,j +

2k

h
eN−1,j −

k

2h
eN−2,j , (4.14)

then we have,∣∣e′j+1

∣∣ ≤ ∣∣e′j∣∣+ k

[
S′(tj + θ5k) +

(
∂U

∂x

)
(xN − θ6h, tj)

]
+

3k

2h
|eN,j |+

2k

h
|eN−1,j |+

k

2h
|eN−2,j | , (4.15)

suppose that P is the largest value in the bracket, we can write:∣∣e′j+1

∣∣ ≤ ∣∣e′j∣∣+ kP +

(
3k

2h
+

2k

h
+

k

2h

)
Ej =

∣∣e′j∣∣+ kP +

(
4k

h

)
Ej

≤
∣∣e′j−1

∣∣+ 2kP +

(
4k

h

)
(Ej−1 + 2k(M +N))

≤ · · · ≤ |e′0|+ jkP +

(
4k

h

)
(E0 + jk(M +N)),

Because the initial values for s, u and S,U are the same, i.e., e′0 = 0 and E0 = 0. When k tends to zero and P tends

to
(
Ṡ(t) + ∂U

∂x |x=S(t)

)
j
. Since (S,U) is a solution of problem (1.1)-(1.6) the limiting value of P is zero. When h and
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Figure 1. Comparison of the diagram of the moving boundary as predicted by the numerical with
the exact solution.

Table 1. The absolute errors of the discrete solution S at some points.

t Numerical solution Exact solution Error
0.0 0.5000 0.5000 0
0.0002 0.5003 0.5002 0.1694e-4
0.0005 0.5005 0.5005 0.2321e-4
0.0007 0.5008 0.5007 0.2747e-4
0.0010 0.5010 0.5010 0.3054e-4
0.0013 0.5013 0.5013 0.3273e-4

k tend to zero also M and N tend to zero. Hence |e′j+1| tends to zero. As |Sj+1 − sj+1| ≤ e′j+1, this proves that s
converges to S as h and k tend to zero.

5. Numerical Result

In this section, two examples are considered to show the efficiency of the method. All calculations were performed
in double precision arithmetic using MATLAB software.

Example 5.1. Consider the one-phase Stefane problem with thermal convection condition,

Ut − Uxx = 0, 0 < x < S(t), 0 < t < 0.5,

Ux(0, t) = −2U(0, t) + exp(t+ 0.5)− 2, 0 < t < 0.5,

U(S(t), t) = 0, 0 < t < 0.5,

Ux(S(t), t) = −Ṡ(t), 0 < t < 0.5,

U(x, 0) = exp(0.5− x)− 1, 0 < x ≤ 0.5,

S(0) = 0.5,

where g(t) = −2, f(t) = 1
2exp(t+ 0.5)− 1, F (W ) = 0 and T = 0.5. The exact solution is given by

U(x, t) = exp(t+ 0.5− x)− 1, S(t) = t+ 0.5,

This problem is solved by the method (2.5) and (2.8) with M = 5001 and N = 11. In Figure 1, we have plotted the
continuous moving boundary S(t) and its discrete solution s. The absolute errors of the discrete solution (s, u) are
tabulated in Tables 1, 2.
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Table 2. The absolute errors of the discrete solution U at x = 0.2480

t Numerical solution Exact solution Error
0.0 0.2866 0.2866 0
0.0002 0.2867 0.2869 0.1708e-3
0.0005 0.2869 0.2872 0.3357e-3
0.0007 0.2871 0.2876 0.5001e-3
0.0010 0.2872 0.2879 0.6646e-3
0.0013 0.2874 0.2882 0.8293e-3

Table 3. The absolute errors of the discrete solution S at some points.

t Numerical solution Exact solution Error
0.0 0.5000 0.5000 0
0.0002 0.5002 0.5002 0.1670e-4
0.0005 0.5005 0.5005 0.2275e-4
0.0007 0.5007 0.5007 0.2680e-4
0.0010 0.5010 0.5010 0.2965e-4
0.0013 0.5013 0.5013 0.3164e-4

Table 4. The absolute errors of the discrete solution U at x = 0.2480

t Numerical solution Exact solution Error
0.0 0.2520 0.2520 0
0.0002 0.2521 0.2522 0.1317e-3
0.0005 0.2522 0.2525 0.2587e-3
0.0007 0.2524 0.2527 0.3854e-3
0.0010 0.2525 0.2530 0.5120e-3
0.0013 0.2526 0.2532 0.6387e-3

Example 5.2.

Ut − Uxx = 1, 0 < x < S(t), 0 < t < 0.5,

Ux(0, t) = −2(U(0, t)− t), 0 < t < 0.5,

U(S(t), t) = 0, 0 < t < 0.5,

Ux(S(t), t) = −ṡ(t), 0 < t < 0.5,

U(x, 0) =
1

2
− x, 0 < x ≤ 0.5,

S(0) = 0.5,

where g(t) = −2, f(t) = t, F (W ) = −1 and T = 0.5. The exact solution to the problem is

U(x, t) = t− x+ 0.5, S(t) = t+ 0.5.

This problem is solved by the method (2.5) and (2.8) with M = 5001 and N = 11. In Figure 2, we have plotted the
continuous moving boundary S(t) and its discrete solution s. The absolute errors of the discrete solution (s, u) are
tabulated in Tables 3, 4.
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Figure 2. Comparison of the diagram of the moving boundary as predicted by the numerical with
the exact solution.

6. Conclusions

In this paper, we derived a numerical method based on explicit finite-difference approximation for a one-phase
Stefan problem for the non-classical heat equation with a convective condition. We have studied the convergence and
compatibility of the method. We have given two examples to show the efficiency of the method.
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