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Abstract

In this paper, we describe a spectral Tau approach for approximating the solutions of a system of multi-order
fractional differential equations which resulted from coronavirus disease mathematical modeling (COVID-19).
The non-singular fractional derivative with a Mittag-Leffler kernel serves as the foundation for the fractional

derivatives. Also the operational matrix of fractional differentiation on the domain [0, a] is presented. Then, the

convergence analysis of the proposed approximate approach is established and the error bounds are determined
in a weighted L2 norm. Finally, by applying the Tau method, some of the important parameters in the model’s

impact on the dynamics of the disease are graphically displayed for various values of the non-integer order of the

ABC-derivative.
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1. Introduction

Mathematical models of infectious disease transmission dynamics play a significant role in supporting the quantifi-
cation of possible infectious disease control and reduction strategies [15, 26–28, 31]. However, because each disease
expresses its unique biological characteristics, different models have been introduced to each specific case to be able
to confront real situations. Examples of these models include compartmental models, a SIR, SEIR, or other general-
purpose model starting from the very traditional SIR model [1, 5, 6, 10, 16, 39].

In the past three years, an outbreak of a new infectious disease was reported which was caused by a novel coronavirus
(SARS-CoV-2). Most persons who have COVID-19, as it is commonly known, will experience mild to moderate
symptoms and recover without hospitalization. However, some people will get seriously sick and require medical care.
So that by 28 November 2022, the number of infected cases confirmed by the World Health Organization (WHO) has
reached about 650 million people worldwide while more than 6 million people of them have died. Eradicating this
virus right now from the world is more like an impossible task. It’s unrealistic. However, if the virus is not eradicated,
then death, illness, or social isolation won’t continue on the same scales as they have in the past. The future will
depend heavily on the type of immunity people acquire through infection or vaccination and how the virus evolves. It
would seem that the virus qualifies for endemic status already because of its global spread. But despite the fact that
illnesses are spreading rapidly over the world and that a large number of people are still susceptible, scientists still
consider the situation to be pandemic. Moreover, the coronavirus may be able to avoid immunity developed during
infection and may even outsmart vaccines. Therefore, being knowledgeable about the condition and how the virus
spreads is the greatest strategy to stop or slow down transmission. For this purpose, as was already indicated, one of
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the finest approaches to improve our comprehension of the situation is the mathematical modeling of the disease. This
will make us further equipped to handle the situation and suggest effective strategies to stop the disease’s spread.

Due to the COVID-19 pandemic’s rapid spread, numerous beneficial studies on the mathematical modeling and
analysis of this illness have been organized in a short period of time [1, 3, 22, 38]. These mathematical models
try to describe the dynamics of COVID-19’s evolutionary development so that can be used to predict the future
behavior of its spread and make decisions to control it. COVID-19 is a communicable disease. According to the
epidemiological data and recognized characteristics of the COVID-19 pandemic, we know that an exposed individual
may interact with and transmit the virus to a susceptible individual. An interaction between the exposed individual
and the susceptible individual may result in the susceptible individual becoming exposed. An exposed individual may
experience an incubation period before becoming ill. Thus, an exposed person is infectious but not yet infected. An
infected individual may be lucky enough to recover, at least to some extent, after some time. Alternatively, they will
die. Hence, infectious diseases are dependent not only on the time instant but also on the previous time history. This
process can be described by a dynamical system of differential equations. For this purpose, in preliminary research,
the presented models were based on classical derivatives with some restrictions on the order of differential equations
involved [25, 36, 38].

On the other hand, the fractional derivatives are not local operators, they proved to be accurate to describe processes
with memory, i.e., calculating time-fractional derivative at point time requires the previous time, as is the case of many
biological systems just like the COVID-19 disease. Moreover, the fractional differential equation is a possible tool to
reduce the errors arising from the neglected parameters in the usual modeling of real-life phenomena. Fractional
derivatives include essential features of cell rheological behavior and have enjoyed the greatest success in the field of
rheology. Additionally, models in HIV made it clear that fractional models are more approximate than their integer
order form [7, 13, 28, 29]. Therefore, several researchers try to apply fractional calculus instead derivatives with integer
order[1, 3, 22, 23]. This led to the modeling of the COVID-19 disease using fractional differential equations (FDEs).

Numerous significant mathematical models are used in science, engineering, biology, chemistry, control theory,
psychology, and medicine use fractional differential equations [1, 12, 30, 32, 34]. Due consideration should be given to
the realistic modeling of physical phenomena that depend not only at the time instant but also on past time history,
and since differential operators in fractional calculus have memory properties, these types of derivatives can aid in the
display of many natural phenomena and facts with non-local dynamics behavior.

There are many different definitions of the generalization of the notion of differentiation to fractional orders e.g.
Riemann-Liouville, Grünwald-Letnikow, Caputo, Generalized Functions Approach and other approaches [12, 14, 30, 33]
in which the defined operators for fractional derivatives often have a weakly singular kernel and are not local. This
property caused some derivatives of the solutions of fractional differential equations to have a singularity at the origin
[17, 18]. Moreover, the corresponding integrals are not fractional integrals. To overcome this problem, recently,
introduced a new type of derivative that is called the Atangana-Baleanu fractional derivative in Caputo sense (ABC-
derivative), which is based on the generalized Mittag-Leffler function. Because it makes advantage of the Mittag-Leffler
function’s property, this definition has a non-singular and non-local kernel that may be used to many models [2, 4, 8, 9]
including the Covide-19 disease modeling [3, 22, 23].

Most fractional differential equations do not have exact solutions and so, approximate and numerical techniques
must be applied. Recently, providing various numerical methods for solving differential equations with fractional order
has been receiving more attention by many authors [12, 17, 18, 24, 30, 33, 35]. In the last decades, spectral methods
have been widely used for the numerical solving of various equations, due to their spectral rate of convergence. This
feature makes those spectral methods provide superior accuracy [11, 17, 21, 37].

Therefore, considering the great importance of the Covid-19 disease and also the modeling of this disease with
fractional equations, it is necessary to solve these equations with a suitable method that can yield accurate solutions
such as the spectral methods with the spectral rate of convergence. The motivation of this paper is to present an
effective numerical procedure with improved accuracy based on the spectral Tau method for the system of fractional
differential equations derived from modeling the COVID-19 disease, together with the convergence analysis of the
proposed method. Therefore, the objective of this research is to use a system of fractional differential equations
with various orders to mathematically model this disease. To define the fractional derivatives based on the generalized
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Mittag-Leffler function, we use the ABC-derivative. Since this operator is more accurate and flexible, it can be utilized
to confidently represent such real-case issues. Then, this system of equations is solved using the spectral Tau approach
and applying the method’s convergence analysis, we demonstrate that the obtained numerical solutions have a spectral
rate of convergence. Therefore, this method provides the appropriate numerical solutions which can be used to analyze
the epidemic outcomes.

This paper is organized as follows: The next section is devoted to some required preliminaries and basic definitions
of fractional derivatives that are used in the sequel. In section 3, we formulated the model together with the description
of the parameters defined in the model. An explanation of the numerical method for solving the obtained mathematical
model is described in section 4 and a convergence analysis of the proposed scheme is established in section 5. Finally,
in section 6, some of the results and discussions of numerical simulations and the efficiency of the proposed scheme
are reported by performing a numerical example. The conclusion of the article is summarized in section 7.

2. Preliminaries

In this section, we review the essential definitions and properties that are required next.

• As mentioned in previous section, there are several definitions for derivatives of fractional order. Here, the
most common definition of fractional integration, Riemann-Liouville integral of order α ∈ (0, 1) is defined as:

RIαt f(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s)ds, (2.1)

where Γ(α) is the well known Gamma function and t ∈ Ω = [0, a] for a > 0. So, Caputo fractional derivative
operator of order α is:

CDα
t f(t) = RI1−α

t f ′(t).

Properties of the above operators can be found in [12, 30]. As one can see, the kernels of these definitions are
singular. The fractional ABC-derivative, which is a new class of fractional derivatives with a non-singular and
non-local kernel that can sometimes accurately explain the dynamics of non-local phenomena, is introduced
to state one’s own problem.

• The Atangana-Baleanu fractional derivative in Caputo sense is defined as the following [8, 9, 20]:

Definition 2.1. Let f(t) be a differentiable function on Ω such that f ′(t) ∈ L1(Ω) and α ∈ [0, 1]. The
fractional ABC-derivative of f(t) is given as:

ABCDαt f(t) =
<(α)

1− α

t∫
0

f ′(s) Ξα

[ −α
1− α

(t− s)−α
]
ds, (2.2)

where <(α) is a normalization function with the main proprieties of <(0) = <(1) = 1 and defined by:

<(α) = 1− α+
α

Γ(α)
.

Definition 2.2. Mittag-Leffler function Ξα(.) is defined as:

Ξα(t) =

∞∑
k=0

tk

Γ(kα+ 1)
.

From the definition of ABC-derivative, it is clear that it benefits Mittag-Leffler memory. Mittag-Leffler
function has been recognized as one of the most important mathematical functions in fractional calculus and
has many applications in various fields [2, 9, 20].
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• The Atangana-Baleanu fractional integral operator of order α corresponding to ABC-derivative is defined as
follows:

ABCIαt f(t) =
1− α
<(α)

f(t) +
α

Γ(α)<(α)

t∫
0

f(s)(t− s)α−1ds. (2.3)

• According to these definitions, some of the useful relations for such derivatives which are applied in this article
are as: (for more details see [2, 8, 9, 20])

ABCIαt ABCD
α
t f(t) = f(t)− f(0),

ABCDαt tβ = <(α)
1−α tβ Ξα,β

[
−α
1−α t

α
]
, β > [α],

(2.4)

where:

Ξα,β

[ −α
1− α

tα
]

= Γ(1 + β)

∞∑
k=0

( −α
1− α

)k tαk

Γ(1 + αk + β)
.

Furthermore, we can have the following Lemma for ABC-derivative.

Lemma 2.3. Let T = [1, t, t2, t3, ..., tN ]T be a standard basis vector. Then, we have:

ABCDαt T = Hα
t T ,

where Hα
t is a diagonal matrix whose first row (j = 0) is zero and diagonal entries are:(

Hα
t

)
j,j

=
<(α)Γ(j + 1)

1− α

∞∑
k=0

( −α
1− α

)k tαk

Γ(j + 1 + αk)
, j = 1, 2, .... (2.5)

Proof. Applying the definition of ABC-derivative of order α and the second relation of Eq. (2.4), we will have:

ABCDαt T =
[
ABCDαt 1,ABCDαt t, · · · ,ABCD

α

t t
N
]T

=

[
0,
<(α)Γ(2)

1− α

∞∑
k=0

( −α
1− α

)k tαk+1

Γ(2 + αk)
, · · · , <(α)Γ(N + 1)

1− α

∞∑
k=0

( −α
1− α

)k tαk+N

Γ(N + 1 + αk)

]T

=


0 0 0 . . .

0 <(α)Γ(2)
1−α

∑∞
k=0

(
−α
1−α

)k
tαk

Γ(2+αk) 0 . . .

...
...

...
. . .

 T
= Hα

t T ,

where Hα
t is a diagonal matrix denoted in Eq. (2.5). �

Also, we need to recall some useful definitions and lemmas for norms that will be used in the sequel. These
concepts can be found in references [11, 37].

• The space L2
α̃,β̃

(Ω) is the space of all functions ϑ(t) over Ω with respect to the Jacobi weight function ωα̃,β̃(t) =(
2
a

)α̃+β̃
tα̃(a− t)β̃ with parameters α̃, β̃ > −1 for which ‖ϑ‖2

α̃,β̃
<∞. Therefore:

‖ϑ‖2
α̃,β̃

=

∫
Ω

|ϑ(t)|2 ωα̃,β̃ dt.

In this paper, for simplicity, we apply the notation (L2(Ω), ‖.‖) when α̃ = β̃ = 0.
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• Sm(Ω) is the non-uniform Sobolev space of all functions ϑ(t) over Ω which is defined by:

Sm(Ω) = {ϑ(t) | ‖ϑ‖m <∞},

associated with the following norm and semi-norm:

‖ϑ‖2m =

m∑
k=0

∥∥ϑ(k)
∥∥2

m,m
, |ϑ|m =

∥∥ϑ(m)
∥∥
m,m

.

• Assume that the symbol
〈
., .
〉

stands for the inner product defined by [21, 37]:

〈
f, g
〉

=

∫
Ω

f(t)g(t) dt, (2.6)

and
〈
., .
〉
N

shows the discrete Legendre Gauss inner product defined by:

〈
f, g
〉
N

=

N∑
j=0

f(tj) g(tj) ωj ,

where {tj , ωj}Nj=0 are the shifted Legendre Gauss nodal points and corresponding weights over Ω, respectively
[21, 37].

• Let PN be the space of all polynomials with a maximum degree of N on Ω and suppose that Li(t) = J0,0
i ( 2t−a

a )

denotes the shifted Legendre polynomials on t ∈ Ω so that J0,0
i is i−th Jacobi polynomial which is mutually

orthogonal with respect to the uniform weight function ω(t) = 1. Then, clearly:

PN = Span{L0(t),L1(t), · · · ,LN (t)},

consequently, for any function ϑ(t) ∈ L2(Ω), we have the following unique expansion:

ϑ(t) =

∞∑
i=0

ϑi Li(t), ϑi =

〈
ϑ,Li

〉
‖Li‖2

,

and the orthogonal projection PN (ϑ(t)) : L2(Ω)→ PN is defined by:

PN (ϑ(t)) =

N∑
i=0

ϑi Li(t),

which has the following property:〈
PN (ϑ)− ϑ, ψ

〉
= 0, ∀ ψ ∈ PN .

Lemma 2.4. [18, 37] Suppose that ϑ(t) ∈ Sm(Ω) for some m ∈ N0. Then we have:∥∥PN (ϑ)− ϑ
∥∥ ≤ C N−m |ϑ|m,

Lemma 2.5. [18, 30] The Riemann-Liouville fractional integral operator RIαt is bounded on L2(Ω). On the
other hand, for any ϑ ∈ L2(Ω), we have:∥∥∥ RIαt (ϑ(t))

∥∥∥ ≤ C ‖ϑ(t)‖.

Now, these preliminary steps are applied to model COVID-19 disease in the following.
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Table 1. Used notations and their meaning.

Parameter Description

τ Transfer rate of S to Q
β Contact rate between S and E
δ Mortality rate in Is
γ transfer rate of E to Q
η transfer rate of E to Is
σ transfer rate of E to Ia
θ transfer rate of Q to Ia
ζ1 Recovery rate of Ia
ζ2 Recovery rate of Is
Λ Recruitment (natality) rate
µ Natural mortality rate

3. Model Formulating

In December 2019, the new coronavirus was discovered for the first time in the world. Numerous researchers have
attempted to quantitatively analyze this problem because of the rapid spread of this disease and how important it is
[3, 6, 23, 25], as mentioned in previous sections.

Due to that virus spreads when a healthy person comes into a contact with the virus carried out by an infected
person. Some approximate solutions of the time-fractional equations involving fractional integrals without singular
kernels can be used to heed some light on the expected time development. The researchers have shown that fractional
derivatives in fact are defined utilizing convolutions that contain ordinary derivatives as a special case. Besides, the
geometry of fractional derivatives tells us about the accumulation of the whole function. In fact, fractional operators
are nonlocal with a memory effect, unlike ordinary differential operators which are local in nature. The memory
property allows more knowledge from the past to be added, which predicts and translates models more accurately.
The global dynamics of the relevant problems, which contain the integer order derivative as a special case, are produced
by further exploring dynamics problems under fractional derivatives rather than integer order derivatives. On the other
hand, due to the increased degree of freedom, mathematical models constructed with the aid of fractional operators
are frequently more accurate and dependable than the integer-order case. According to these facts, the fractional
order models provide a better understanding and give more insights into the pandemic. Therefore, in this paper, we
use one of these models [3] which is formulated with the impact of quarantine, isolation, and environmental effects on
the transmission dynamics of coronavirus with the application of ABC-derivative.

Suppose that the total population of humans is denoted by ℵ(t) at time t which is classified into seven categories:
S(t) as susceptible individuals, E(t) as exposed individuals, Ia(t) as asymptotically infected individuals, Is(t) as
symptomatic infected individuals, Q(t) as quarantined individuals, and R(t) are individuals that have recovered or
remove from disease. Based on these assumptions, the total population is ℵ(t) = S(t)+E(t)+Q(t)+Ia(t)+Is(t)+R(t).
Due to that, we take a random community where the total population is divided into these seven sub-populations.
Therefore, each of the sub-populations can be represented as a percentage of the total population.

Also, we will denote the natural human natality rate by Λ and the mortality rate by µ. The parameters β and
τ represent the rates of susceptible individuals getting infected by enough contact with exposed individuals or just
traveling to quarantined classes, respectively. The exposed individuals may first, with the rate γ, join the quarantined
class or get infected without symptoms (asymptomatic) with the rate σ or be placed in a symptomatic infected class
at the rate of η. Also, quarantined individuals may pass to the infected through a test with symptoms or without
symptoms at the rates of υ and θ, respectively. The asymptomatic infected individuals may recover at the rate of ζ1
and the symptomatic infected individuals at the rate of ζ2. The biological explanation of these parameters is given in
Table 1.
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Now, the system of multi-order fractional differential equations governed by these assumptions can be described in
ABC-derivative operator form for COVID-19 disease as follows:

ABCDα1

t S(t) = Λ− (τ + µ) S(t)− β S(t) E(t),

ABCDα2

t E(t) = β S(t) E(t)− (γ + µ+ η + σ) E(t),

ABCDα3

t Q(t) = τ S(t) + γ E(t)− (µ+ υ + θ) Q(t),

ABCDα4

t Ia(t) = σ E(t) + θ Q(t)− (µ+ ζ1) Ia(t),

ABCDα5

t Is(t) = η E(t) + υ Q(t)− (µ+ δ + ζ2) Is(t),

ABCDα6

t R(t) = ζ1 Ia(t) + ζ2 Is(t)− µ R(t),

(3.1)

subject to the non-negative initial conditions:

S(0) = S0, E(0) = E0, Q(0) = Q0, Ia(0) = Ia0, Is(0) = Is0, R(0) = R0.

The discussions of the existence and uniqueness of the solutions for the proposed model and stability analysis of
the equilibrium points are explained in the reference [3]. For this purpose, they apply the basic reproduction number
denoted by R0 which is the expected value of infection rate per time unit. This number defines as:

R0 =
β Λ

(γ + µ+ η + σ)(τ + µ)
.

In all cases, R0 < 1 implies that disease will decline, whereas R0 > 1 implies that disease will persist within a
community and R0 = 1 requires further investigation. The following two theorems were addressed by authors in [3]
in relation to stability:

Theorem 3.1. The disease free equilibrium is globally asymptotically stable if R0 < 1.

Theorem 3.2. The endemic equilibrium is globally asymptotically stable.

Thus, in this article, we focus on the solutions of these equations that can be useful to analyze the dynamic behavior
and spread of the disease which can help to predict the future situation and even control of COVID-19 pandemic. Due
to the fact that the system of fractional differential equations does not have an exact solution, in the following, we
provide a numerical scheme for solving such equations.

4. Numerical Method

The main goal of this section is to demonstrate a spectral Tau method based on the shifted Legendre functions on
Ω for approximating the numerical solutions of (3.1). In this case, we assume that the approximate solutions of (3.1)
are given by:

SN (t) ∼=
∑N
i=0 siLi(t) = S L = S L T ,

EN (t) ∼=
∑N
i=0 eiLi(t) = E L = E L T ,

QN (t) ∼=
∑N
i=0 qiLi(t) = Q L = Q L T ,

IaN (t) ∼=
∑N
i=0 aiLi(t) = A L = A L T ,

IsN (t) ∼=
∑N
i=0miLi(t) = M L = M L T ,

RN (t) ∼=
∑N
i=0 riLi(t) = R L = R L T ,

(4.1)
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where T = [1, t, t2, ..., tN ]T is the standard basis and:

L =
[
L0(t),L1(t), ...,LN (t)

]T
= L T ,

in which L is a nonsingular lower triangular coefficient matrix of order N + 1 given by:

L :=



1
−1 2

a
1 − 6

a
6
a2

−1 12
a − 30

a2
20
a3

1 − 20
a

90
a2 − 140

a3
70
a4

...
...

...
...

...
. . .


.

Also, S = [s0, s1, ..., sN ], E = [e0, e1, ..., eN ], Q = [q0, q1, ..., qN ], A = [a0, a1, ..., aN ], M = [m0,m1, ...,mN ] and
R = [r0, r1, ..., rN ] are the unknown vectors. Substituting the approximate solutions (4.1) into (3.1) yields:

S L ABCDα1

t (T ) = Λ IN+1 − (τ + µ) S L T − β S L Φ(E,L) T ,

E L ABCDα2

t (T ) = β S L Φ(E,L) T − (γ + µ+ η + σ) E L T ,

Q L ABCDα3

t (T ) = τ S L T + γ E L T − (µ+ υ + θ) Q L T ,

A L ABCDα4

t (T ) = σ E L T + θ Q L T − (µ+ ζ1) A L T ,

M L ABCDα5

t (T ) = η E L T + υ Q L T − (µ+ δ + ζ2) M L T ,

R L ABCDα6

t (T ) = ζ1 A L T + ζ2 M L T − µ R L T ,

(4.2)

where IN+1 is the identity matrix of order N + 1 and Φ(E,L) is an infinite upper triangular Toeplitz matrix [19]
having the following structure:

Φ(E,L) =


E L0 E L1 E L2 . . .

0 E L0 E L1 . . .
0 0 E L0 . . .
...

...
...

. . .

 ,
and {Li}∞i=0 is the i−th column of the coefficient matrix L. Here, we choose only the N + 1 row and column of the
Toeplitz matrix, in order to match its rank with the other matrices utilized in the system described above. By using
Lemma 2.3 in (4.2), we have:

S L Hα1
t T = Λ IN+1 − (τ + µ) S L T − β S L Φ(E,L) T ,

E L Hα2
t T = β S L Φ(E,L) T − (γ + µ+ η + σ) E L T ,

Q L Hα3
t T = τ S L T + γ E L T − (µ+ υ + θ) Q L T ,

A L Hα4
t T = σ E L T + θ Q L T − (µ+ ζ1) A L T ,

M L Hα5
t T = η E L T + υ Q L T − (µ+ δ + ζ2) M L T ,

R L Hα6
t T = ζ1 A L T + ζ2 M L T − µ R L T .

(4.3)
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Applying the Tau method, unknown vectors are computed by using the orthogonal property of shifted Legendre
polynomials on Ω. Hence, by utilizing the definition of inner product (2.6), we will have:〈

Hαi
t T ,Lw(t)

〉
=
[〈

(Hαi
t T )j ,Lw(t)

〉]N
j=1

=
[<(αi)Γ(j + 1)

1− αi

∞∑
k=0

( −αi
1− αi

)k 1

Γ(j + 1 + αik)
×
∫

Ω

tj+αikLw(t) dt
]N
j=1

=
[
(Hαi)j

]N
j=1

= Hαi , i = 1, 2, ..., 6, w = 0, 1, ..., N,

and (Hαi)0 = 0. Additionally, we assume that the infinite series of the Mittag-Leffler function is considered up to
20 term in numerical examples. In view of the exactness of Legendre Gauss quadrature for all polynomials with a
maximum degree of 2N + 1, we have:〈

T ,Lw(t)
〉

=

∫
Ω

T Lw(t) dt =
[ ∫

Ω

tjLw(t) dt
]N
j=0

=
[〈
tj ,Lw(t)

〉
N

]N
j=0

= T .

Thereby, projecting (4.3) on {Lw(t)}Nw=0 and using the above relations yield:

S L Hα1 = Λ− (τ + µ) S L T − β S L Φ(E,L) T ,

E L Hα2 = β S L Φ(E,L) T − (γ + µ+ η + σ) E L T ,

Q L Hα3 = τ S L T + γ E L T − (µ+ υ + θ) Q L T ,

A L Hα4 = σ E L T + θ Q L T − (µ+ ζ1) A L T ,

M L Hα5 = η E L T + υ Q L T − (µ+ δ + ζ2) M L T ,

R L Hα6 = ζ1 A L T + ζ2 M L T − µ R L T .

(4.4)

Now, we have a (6N + 6) × (6N + 6) system of nonlinear algebraic equations in which the unknown vectors and
consequently the discrete approximations SN , EN , QN , IsN , IaN and RN can be determined by imposing the initial
conditions:

S L e1 = S0, E L e1 = E0, Q L e1 = Q0,

A L e1 = Ia0, M L e1 = Is0, R L e1 = R0,

where e1 = [1, 0, 0, ..., 0]T is a column vector of order N + 1. For this purpose, we replace the first column of each of
the system equations (4.4) with one of the boundary conditions, respectively.

Now, a natural question is to investigate whether the obtained solutions in this section are convergent to the exact
solutions of such a system of fractional differential equations or not. This issue will be discussed in the next section.

5. Convergence Analysis

In this section, we consider the convergence of described approach in section 4 by making the error bounds of
the approximate solutions in L2 norm. The next theorem presents suitable bounds for the error functions of Tau
approximations of system (3.1).

Theorem 5.1. Suppose that the following conditions are exist:

• S(t) ∈ Sm1(Ω), E(t) ∈ Sm2(Ω), Q(t) ∈ Sm3(Ω),
• Ia(t) ∈ Sm4(Ω), Is(t) ∈ Sm5(Ω), R(t) ∈ Sm6(Ω),
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for m1,m2, ...,m6 ≥ 0. Moreover, let relations given by (4.1) be the Tau approximations of (3.1). Then, for sufficiently
large N , we have:∥∥eS(t)

∥∥ ≤ C1N
−m1

∣∣ABCDα1

t (S)
∣∣
m1

+ C2N
−m2

∣∣ABCDα2

t (E)
∣∣
m2
,∥∥eE(t)

∥∥ ≤ C3N
−m1

∣∣ABCDα1

t (S)
∣∣
m1

+ C4N
−m2

∣∣ABCDα2

t (E)
∣∣
m2
,∥∥eQ(t)

∥∥ ≤ C5N
−m1

∣∣ABCDα1

t (S)
∣∣
m1

+ C6N
−m2

∣∣ABCDα2

t (E)
∣∣
m2

+ C7N
−m3

∣∣ABCDα3

t (Q)
∣∣
m3
,∥∥eIa(t)

∥∥ ≤ C8N
−m1

∣∣ABCDα1

t (S)
∣∣
m1

+ C9N
−m2

∣∣ABCDα2

t (E)
∣∣
m2

(5.1)

+ C10N
−m3

∣∣ABCDα3

t (Q)
∣∣
m3

+ C11N
−m4

∣∣ABCDα4

t (Ia)
∣∣
m4
,∥∥eIs(t)∥∥ ≤ C12N

−m1
∣∣ABCDα1

t (S)
∣∣
m1

+ C13N
−m2

∣∣ABCDα2

t (E)
∣∣
m2

+ C14N
−m3

∣∣ABCDα3

t (Q)
∣∣
m3

+ C15N
−m5

∣∣ABCDα4

t (Is)
∣∣
m5
,∥∥eR(t)

∥∥ ≤ C16N
−m1

∣∣ABCDα1

t (S)
∣∣
m1

+ C17N
−m2

∣∣ABCDα2

t (E)
∣∣
m2

+ C18N
−m3

∣∣ABCDα3

t (Q)
∣∣
m3

+ C19N
−m4

∣∣ABCDα4

t (Ia)
∣∣
m4

+ C20N
−m5

∣∣ABCDα5

t (Is)
∣∣
m5

+ C21N
−m6

∣∣ABCDα6

t (R)
∣∣
m6
,

where eϑ(t) = ϑ(t)− ϑN (t) is the error function and Ci s are constants which do not depend on N .

Proof. According to the described strategy in previous section, the Tau approximations (4.1) satisfy in the following
system:

PN
(ABCDα1

t SN (t)
)

= Λ− (τ + µ) SN (t)− β SN (t) EN (t),

PN
(ABCDα2

t EN (t)
)

= β SN (t) EN (t)− (γ + µ+ η + σ) EN (t),

PN
(ABCDα3

t QN (t)
)

= τ SN (t) + γ EN (t)− (µ+ υ + θ) QN (t),

PN
(ABCDα4

t IaN (t)
)

= σ EN (t) + θ QN (t)− (µ+ ζ1) IaN (t),

PN
(ABCDα5

t IsN (t)
)

= η EN (t) + υ QN (t)− (µ+ δ + ζ2) IsN (t),

PN
(ABCDα6

t RN (t)
)

= ζ1 IaN (t) + ζ2 IsN (t)− µ RN (t).

(5.2)

Subtracting (5.2) from (3.1) together with some simple computations, we will have:

ABCDα1

t eS(t) = −(τ + µ) eS(t)− β E(t) eS(t)− β SN (t) eE(t) + ePN
(ABCDα1

t SN
)
,

ABCDα2

t eE(t) = β E(t) eS(t) + β SN (t) eE(t)− (γ + µ+ η + σ) eE(t) + ePN
(ABCDα2

t EN
)
,

ABCDα3

t eQ(t) = τ eS(t) + γ eE(t)− (µ+ υ + θ) eQ(t) + ePN
(ABCDα3

t QN
)
,

ABCDα4

t eIa(t) = σ eE(t) + θ eQ(t)− (µ+ ζ1) eIa(t) + ePN
(ABCDα4

t IaN
)
,

ABCDα5

t eIs(t) = η eE(t) + υ eQ(t)− (µ+ δ + ζ2) eIs(t) + ePN
(ABCDα5

t IsN
)
,

ABCDα6

t eR(t) = ζ1 eIa(t) + ζ2 eIs(t)− µ eR(t) + ePN
(ABCDα6

t RN
)
,

(5.3)

where ePN (ϑ) = ϑ − PN (ϑ). By applying the fractional integral operator ABCIα1

t on both sides of the first equation
(5.3) and using the first relation in (2.4), we conclude that:

eS(t) = −(τ + µ) ABCIα1

t (eS(t))− β ABCIα1

t (E(t) eS(t))− β ABCIα1

t (SN (t) eE(t)) + ABCIα1

t

(
ePN

(ABCDα1

t SN
))
.

(5.4)
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Due to the definition of Riemann-Liouville integral operator (2.1) and using (2.3) in (5.4), we get:

eS(t) =
−(τ + µ) (1− α1)

<(α1)
eS(t)− α1(τ + µ)

<(α1)
RI

α1

t (eS(t))− β(1− α1)

<(α1)
E(t)eS(t)− β α1

<(α1)
RI

α1

t (E(t) eS(t))

− β(1− α1)

<(α1)
SN (t) eE(t)− β α1

<(α1)
RI

α1

t (SN (t) eE(t)) +
1− α1

<(α1)
ePN

(ABCDα1

t SN
)

+
α1

<(α1)
RI

α1

t

(
ePN

(ABCDα1

t SN
))
. (5.5)

Now, by taking a 2−norm of both sides of (5.5) and applying the boundedness property of Riemann-Liouville
integral, i.e., Lemma 2.5, we achieve:∥∥eS(t)

∥∥ ≤ d11

∥∥eS(t)
∥∥+ d12

∥∥eE(t)
∥∥+

∣∣∣ 1

<(α1)

∣∣∣ ∥∥∥ePN (ABCDα1

t SN
)∥∥∥, (5.6)

where

d11 =
∣∣∣ τ + µ

<(α1)

∣∣∣+
∣∣∣ β

<(α1)

∣∣∣max
t∈Ω
‖E(t)‖,

d12 =
∣∣∣ β

<(α1)

∣∣∣max
t∈Ω
‖SN (t)‖,

and similarly, for the second equation of (5.3), it follows that:∥∥eE(t)
∥∥ ≤ d21

∥∥eS(t)
∥∥+ d22

∥∥eE(t)
∥∥+

∣∣∣ 1

<(α2)

∣∣∣ ∥∥∥ePN (ABCDα2

t EN
)∥∥∥,

such that:

d21 =
∣∣∣ β

<(α2)

∣∣∣max
t∈Ω
‖E(t)‖,

d22 =
∣∣∣ β

<(α2)

∣∣∣max
t∈Ω
‖SN (t)‖+

∣∣∣γ + µ+ η + σ

<(α2)

∣∣∣,
and consequently:∥∥eE(t)

∥∥ ≤ d21

1− d22

∥∥eS(t)
∥∥+

∣∣∣ 1

(1− d22)<(α2)

∣∣∣ ∥∥∥ePN (ABCDα2

t EN
)∥∥∥. (5.7)

Substituting (5.7) into (5.6) and assuming u =
∣∣∣1− d11 − d12d21

1−d22

∣∣∣ 6= 0 gives:∥∥eS(t)
∥∥ ≤ K1

∥∥∥ePN (ABCDα1

t SN
)∥∥∥+K2

∥∥∥ePN (ABCDα2

t EN
)∥∥∥, (5.8)

where

K1 =
1

|<(α1)| u
, K2 =

∣∣∣ d12

<(α2)(1− d22)u

∣∣∣.
According to the hypotheses of this theorem and definition of ABC-derivatives (2.2), we can see, obviously

ABCDα1

t SN (t) =
<(α1)

1− α1

∞∑
j=0

( −α1

1− α1

)j 1

Γ(α1j + 1)

∫ t

0

S′N (x)(t− x)α1jdx ∈ Sm1(Ω), (5.9)

and similarly ABCDα2

t EN (t) ∈ Sm2(Ω). Therefore, by using Lemma 2.4, one can imply:∥∥∥ePN (ABCDα1

t SN
)∥∥∥ ≤ C N−m1

∣∣ABCDα1

t SN
∣∣
m1

(5.10)

≤ CN−m1

(∣∣ABCDα1

t S
∣∣
m1

+
∣∣ABCDα1

t eS
∣∣
m1

)
,∥∥∥ePN (ABCDα2

t EN
)∥∥∥ ≤ CN−m2

(∣∣ABCDα2

t E
∣∣
m2

+
∣∣ABCDα2

t eE
∣∣
m2

)
,
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and thereby, inserting relations (5.10) into (5.8) and ignoring some unnecessary terms for sufficiently large values of
N , the desired error estimation (5.1) for S(t) can be obtained. Also, replacing the error boundary of S(t) and property
(5.9) into (5.7) leads to the favorable result of error estimation (5.1) for E(t). In the same way, by applying the
fractional integral operator ABCIα3

t on both sides of the third equation (5.3), we conclude that:

∥∥eQ(t)
∥∥ ≤ τ∥∥eS(t)

∥∥+ γ
∥∥eE(t)

∥∥+
∣∣∣µ+ υ + θ

<(α3)

∣∣∣ ∥∥eQ(t)
∥∥+

∣∣∣ 1

<(α3)

∣∣∣ ∥∥∥ePN (ABCDα3

t QN
)∥∥∥,

so that by assumptions 1−
∣∣∣µ+υ+θ
<(α3)

∣∣∣ 6= 0 and Q(t) ∈ Sm3(Ω) and inserting obtained error boundaries of functions S(t)

and E(t), the following inequality holds:∥∥eQ(t)
∥∥ ≤ C5 N

−m1
∣∣ABCDα1

t (S)
∣∣
m1

+ C6 N
−m2

∣∣ABCDα2

t (E)
∣∣
m2

+ C7 N
−m3

∣∣ABCDα3

t (Q)
∣∣
m3
.

Finally, in order to find the error boundary of functions Ia(t), Is(t) and R(t), it is enough to take ABC-integrals
ABCIα4

t , ABCIα5

t and ABCIα6

t from the sides of the last three equations (5.3), respectively. Then, proceeding in the
same manner, based on the appropriate assumptions and the previous obtained estimations, the boundaries (5.1) are
derived. �

Since that the rate of convergence is exponential, the analysis presented above clearly demonstrates that the
proposed Tau approximations for the system of fractional differential equations of various orders, (3.1), produce a
highly accurate numerical solution.

6. Numerical Examples

To illustrate the effectiveness of the mathematical analysis of the ABC-derivative COVID-19 model (3.1), some
numerical examples are presented using the proposed Tau method. Before implementing Tau method for model (3.1),
we give a simple test problem to explain the power of the described approach for solving a system of fractional
differential equations with multi-order. To demonstrate the effectiveness of our presented technique, we compare
our scheme to the numerical scheme given forward by [3, 22]. Note that all the calculations were supported by
Mathematicar software.

Example 6.1. Consider the following system of multi-order fractional differential equation
ABCD0.5

t x(t) = x(t)− y(t) + ϕ1(t),

ABCD0.3
t y(t) = 2x(t) + y(t) + ϕ2(t),

t ∈ [0, 1], (6.1)

where the functions ϕ1(t) and ϕ2(t) are obtained such that the exact solutions are x(t) = y(t) = t2. In first, we
implement the the described Legendre Tau method for the numerical solution of (6.1). Suppose that:

xN (t) =

N∑
i=0

xiLi(t), yN (t) =

N∑
i=0

yiLi(t),

as the approximate solutions of (6.1) that are obtained by using the proposed method in the section 4.
To compare our method with the other approaches and to show the efficiency of our proposed method, we apply the

recent numerical scheme proposed in the references [3, 22]. For this task, using the Atangana-Baleanu fractional integral
operator (2.3) on both sides of the equations (6.1) and applying the two points Lagrange interpolation polynomial for



846 M. BIDARIAN, H. SAEEDI, AND M. BALOOCH SHAHRYARI

Table 2. The numerical errors of the our proposed method with different values of N for Example 6.1.

N e(x) e(y) CPU time

2 2.5376× 10−4 6.5752× 10−4 20.607
4 2.6538× 10−5 6.9767× 10−5 48.298
6 5.6572× 10−6 1.5560× 10−5 89.858
8 1.7324× 10−6 5.0320× 10−6 148.232
10 6.6964× 10−7 2.0383× 10−6 232.522
12 8.0949× 10−8 2.5809× 10−7 331.044

Table 3. The numerical errors of the proposed method in [3, 22] with different values of N for Example 6.1.

N ẽ(x) ẽ(y) CPU time

2 5.3465× 10−1 8.5971× 10−1 15.460
4 1.3529× 10−2 6.8774× 10−2 45.287
6 4.2679× 10−3 5.5291× 10−3 100.839
8 4.6131× 10−4 5.9876× 10−4 168.324
10 2.3458× 10−4 3.8459× 10−4 272.003
12 1.3589× 10−5 2.0058× 10−4 425.071

the simplification of the obtained integrals, we will have for k = 0, 1, 2, ...

x(tk+1) = x(t0) +
0.5(x(tk)− y(tk) + ϕ1(tk))

<(0.5)
+

0.5

<(0.5)
×

k∑
m=0

[h0.5(x(tm)− y(tm) + ϕ1(tm))

Γ(2.5)

[
(k + 1−m)0.5

× (k −m+ 2.5)− (k −m)0.5(k −m+ 3)
]
− h0.5(x(tm−1)− y(tm−1) + ϕ1(tm−1))

Γ(2.5)

×
[
(k + 1−m)1.5 − (k −m)0.5(k −m+ 1.5)

]]
,

y(tk+1) = y(t0) +
0.7(2x(tk) + y(tk) + ϕ2(tk))

<(0.3)
+

0.7

<(0.3)
×

k∑
m=0

[h0.3(2x(tm) + y(tm) + ϕ2(tm))

Γ(2.3)

[
(k + 1−m)0.3

× (k −m+ 2.3)− (k −m)0.3(k −m+ 2.6)
]
− h0.3(2x(tm−1) + y(tm−1) + ϕ2(tm−1))

Γ(2.3)

×
[
(k + 1−m)1.3 − (k −m)0.3(k −m+ 1.3)

]]
,

therefore, we obtain the approximate solutions x̃N (t) = x(tN ) and ỹN (t) = y(tN ) for different values N = k+ 1 of the
above system. We assume that the error functions for these methods are calculated by:

e(x) =
∥∥x(t)− xN (t)

∥∥, e(y) =
∥∥y(t)− yN (t)

∥∥,
ẽ(x) =

∥∥x(t)− x̃N (t)
∥∥, ẽ(y) =

∥∥y(t)− ỹN (t)
∥∥.

Then, the results for different values of the approximation degree N are reported in Table 2, Table 3 and Figure 1.
Comparing the reported results approves the superiority and reliability of the our proposed scheme over the presented
method in [3, 22].

In overall, Figure 1 confirms that the spectral accuracy is achieved for the Tau method, because the logarithmic
representation of errors has almost linear behavior versus N as well as predicted by Theorem 5.1. In addition, the
used CPU time based on second, for the different values of N , is listed in Table 2 and Table 3.

Now, we are ready to implement Tau method to the mathematical model of COVID-19.



CMDE Vol. 11, No. 4, 2023, pp. 834-850 847

2 4 6 8 10 12

-6

-4

-2

0

N

L
o
g

1
0
H

E
rr

o
rL

Errors of xHtL

2 4 6 8 10 12

-6

-4

-2

0

N

L
o
g

1
0
H

E
rr

o
rL

Errors of yHtL

Figure 1. Comparison of the obtained errors between our method (solid lines) and the method of
[3, 22] (dashed lines) with different values of N for Example 6.1.

Table 4. Values of the parameters used in model (3.1).

Parameter value

τ 0.002
β 0.0805
δ 1.6728× 10−5

γ 2.0138× 10−4

η 0.4478
σ 0.0668
θ 0.0101
ζ1 5.734× 10−5

ζ2 1.6728× 10−5

Λ 0.02537
µ 0.0106

Example 6.2. Consider the system of multi-order fractional differential equations (3.1) for the COVID-19 disease
model with the approximate solutions (4.1) for N = 4. To generate the simulation results for this system, the biological
parameters determined from the real data presented in reference [3] which are supplied in Table 4 are used. Also, the
initial conditions for the model variables are S(0) = 0.5, E(0) = 0.2, Q(0) = 0.1, Ia(0) = 0.1, Is(0) = 0.1, R(0) = 0 in
[3] and days are used as the measure of time.

First, assuming t ∈ [0, 30], we simulate the COVID-19 model (3.1) for various values of fractional orders αi for all
of the state variables. The results are plotted in Figure 2. These representations show that the approximate solutions
of the system of fractional differential equations (3.1) tend to the exact solutions as αi tends to 1. This demonstrates
the effectiveness and dependability of the Tau method for approximating practical models. As we can see, increasing
the fractional order of the parameters causes the population of a community to become more infected. It should be
noted that the other orders are considered to be constant and equal to 0.5 when one of the orders αi tends to one.

Figure 2 show the effect of fractional exponent on the behavior of the populations S, E, Q, Ia, Is, and R over
time. COVID-19 spread through social contact, contact with infected individuals, and contact with infected surfaces.
As can be seen, the population of those who have been exposed, infected, quarantined, recovered, or removed grows
exponentially over time. According to Figure 2, the number of susceptible people will exhibit fluctuating behavior
over time since they may end up in an exposed or infected class. Data from global statistics up to the present can be
used to see these patterns because the number of infected persons is increasing along with this exponential behavior.
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Figure 2. Graphical representation for behavior of each state variable with different fractional order
for N = 4.
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Figure 3. Behavior of Is(t) and Ia(t) with different transfer rates for N = 4.

These findings concur with those reported in the references [22, 23]. As a result, it is clear that the proposed method
in this paper is effective and appropriate.

In the following step, we simulate model (3.1) by increasing the transfer rate of persons from exposed class to
symptomatic and asymptomatic infective individuals in order to investigate the impact of the contact rate on COVID-
19 disease. In contrast, we use the Tau method with N = 4 to approximate the solutions to (3.1) at various rates
of η and σ. The results are graphed in Figure 3. This figure shows that, as we predicted, when the transfer rate
increases, the number of symptomatic and asymptotically infected people increases. On the other hand, increasing
the transmission rate causes more people to become infected in less time. As shown in Figure 3, the number of
symptomatic and asymptomatic infected people does not change over time when the transfer rates η and σ are zero.

7. Conclusion

In this article, we presented a spectral Tau method to simulate the numerical results of the COVID-19 pandemic
which is modeled by using factors like the number of susceptible, exposed, asymptotically and symptomatic infected,
quarantined, recovered individuals and transfer rates between them in the form of fractional differential equations
with ABC-derivatives. We were able to construct a form of operational matrix for fractional differentiation with the
Mittag-Leffler kernel. This paper’s most important achievement is that we can exponentially explain the errors of Tau
approximations, which is a desired property for spectral approaches. Then, the accuracy of the suggested Tau approach
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in this study is demonstrated by an illustrative example. Additionally, we depicted and discussed the simulation results
for various values of fractional orders in the mathematical model of COVID-19 disease, which indicated the coronavirus
influence on different variables over time. Also, the effect of increased transfer rates between exposed and infected
individuals is examined, and the results show a significant impact, with the result that the number of infected people
increases as transfer rates rise. These numerical results can be applied to manage the infection. Future studies using
fractional models can identify how COVID-19 epidemics are influenced by vaccination and other controlling factors.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

[1] M. A. Aba Oud, A. Ali, H. Alrabaiah, S. Ullah, M. A. Khan, and S. Islam, A fractional order mathematical model
for COVID-19 dynamics with quarantine, isolation, and environmental viral load, Adv. Differ. Equ., 106 (2021),
1–12.

[2] T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative
with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107.

[3] I. Ahmed, G. U. Modu, A. Yusuf, P. Kumam, and I. Yusuf, A mathematical model of Coronavirus Disease
(COVID-19) containing asymptomatic and symptomatic classes, Results. Phys., 21 (2021), 103776.

[4] B. S. T. Alkahtani, Chuás circuit model with Atangana-Baleanu derivative with fractional order, Chaos. Solitons.
Fractals, 89 (2016), 547–551.

[5] E. S. Allman and J. A. Rhodes, Mathematical models in biology: An Introduction, Cambridge University Press,
2003.

[6] R. M. Anderson and R. M. May, Helminth infections of humans: mathematical models, population dynamics, and
control, Adv. Parasitol., 24 (1985), 1–101.

[7] A. A. M, Arafa, I. M. Hanafy, and M. I. Gouda, Stability analysis of fractional order HIV infection of +T cells
with numerical solutions, J. Fract. Calc. Appl., 7 (2016), 36–45.

[8] A. Atangana, On the new fractional derivative and application to nonlinear Fisher reaction-diffusion equation,
Appl. Math. Comput., 273 (2016), 948–956.

[9] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and
application to heat transfer model, Therm. Sci., 20 (2016), 763–769.
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