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Abstract

This paper focuses on the numerical solution of the time-fractional telegraph equation in Caputo sense with

1 < β < 2. The time-fractional telegraph equation models neutron transport inside the core of a nuclear reactor.
The proposed numerical solution consists of two stages. First, the time-discretized scheme of this equation

is obtained by the Crank-Nicolson method. The stability and convergence of results from the semi-discretized
scheme are presented. In the second stage, the numerical approximation of the unknown function at specific points

is achieved through the collocation method using the moving least square method. The numerical experiments

analyze the impact of some parameters of the proposed method.
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1. Introduction

The classical telegraph equation is used in random walk theory [2] and is approximated by some authors [1, 13].
In recent decades, many studies have addressed fractional partial differential equations [6, 9, 17, 18]. The following
partial differential equation is the time-fractional telegraph equation (TFTE) [7].

∂βu(x, y, t)

∂tβ
+
∂β−1u(x, y, t)

∂tβ−1
+ u(x, y, t) = ∆u(x, y, t) + f(x, y, t), (x, y) ∈ Ω ⊂ R2, 0 < t ≤ T. (1.1)

It simulates the neutron transport process in a nuclear reactor [22]. In this work, equation (1) with the initial and
boundary conditions

u(x, y, 0) = ϕ(x, y), (x, y) ∈ Ω = Ω ∪ ∂Ω, (1.2)

∂u(x, y, 0)

∂t
= ψ(x, y), (x, y) ∈ Ω = Ω ∪ ∂Ω, (1.3)

u(x, y, t) = h(x, y, t), (x, y) ∈ ∂Ω, t > 0, (1.4)

is considered. Where u(x, y, t) ∈ C2(Ω̄× [0, T ]) is an unknown function, ∂Ω is the boundary of Ω, 1 < β < 2,∆ is the
Laplace operator, and f(x, y), ϕ(x, y), ψ(x, y), and h(x, y, t) are continuous functions. The fractional derivatives are
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defined as follows.

∂β−1u(x, y, t)

∂tβ−1
=

1

Γ(2− β)

∫ t

0

∂u(x, y, s)

∂s
(t− s)1−βds, 1 < β < 2, (1.5)

∂βu(x, y, t)

∂tβ
=

1

Γ(2− β)

∫ t

0

∂2u(x, y, s)

∂s2
(t− s)1−βds, 1 < β < 2. (1.6)

In recent years, many authors have studied the TFTE using mesh-free methods. Kumar et al. [7] used a time
semi-discretization based on the finite difference method followed by a radial basis function for the spatial discretiza-
tion to solve the TFTE. Nikan et al. [14] considered a mesh-free spectral approach based on the local radial basis
function finite difference (LRBF-FD) to approximate the TFTE. Sepehrian and Shamohammadi [16] used a radial
basis function collocation method to solve the nonlinear TFTE. Shivanian used the meshless local Petrov Galerkin
(MLPG) scheme in [20], and the spectral meshless radial point interpolation (SMRPI) methods in [19] to solve the
TFTE. Hosseini et al. [5] approximated the solution of the TFTE by the meshless local radial point interpolation
(MLRPI) method. Mohebbi et al. [12] applied the radial basis function (RBF) technique for the TFTE. Sweilam et
al. [21] used the shifted Chebyshev polynomials of the first kind in time and the Sinc function in space to approximate
the solution of the TFTE.

When attempting to model real-world phenomena with fractional differential equations, the Riemann -Liouville
derivative may present certain drawbacks, while Caputo’s definition presents a modification of the Riemann-Liouville
definition, and it possesses the benefit of suitably handling initial value problems [15]. Therefore, to estimate the
solution of the time-fractional telegraph equation, the Caputo derivative is preferred. As the authors know, there is
no research to approximate the solution of the time-fractional telegraph equation (1.1) using a hybrid of the finite
difference method and the collocation method base on the moving least square (MLS) method. In this work, the
time discretization of equation (1.1) is given by the Crank-Nicolson method. The stability and convergence of the
semi-discretized scheme are obtained easily. Then the full discretization of equation (1.1) using the MLS method is
presented, followed by the numerical tests for evaluating the proposed scheme. In the numerical tests, we evaluate
the sensitivity of the approximate solution by choosing different values for some parameters of the proposed method,
including the number of collocation nodes, the time step size, and the support domain’s dimensionless size in the X
and Y directions. According to the results of numerical tests, we suggest suitable values for them.

The outline of this work is as follows. Section 2 is dedicated to the semi-discretization of equation (1.1). In
this section, the stability and convergence of the proposed semi-discretization scheme are addressed. In Section 3, the
collocation method with the MLS method in detail, including the shape function and the weight function, is described.
The full discretization of equation (1.1) is presented in Section 4. In Section 5, we analyze numerical test results to
validate the proposed method. Finally, we summarize our findings and suggest future work in Section 6.

2. The time semi-discretization

In this section, we develop and analyze a semi–discrete scheme for equation (1.1) based on the Crank–Nicolson
method by using our previous work [4].
Consider the grid size in time is ∆t = T

N , where N is a positive integer. By using reference [4], the discretization of

equations (1.5) and (1.6) at the time steps
(
1− 1

2

)
and

(
n− 1

2

)
are as follows.

∂β−1u(x, y, t)

∂tβ−1
|1− 1

2 =
(∆t)1−β

Γ(3− β)
× 1

22−β
[
u1 − u0

]
+O(∆t)3−β , (2.1)

∂β−1u(x, y, t)

∂tβ−1
|n−

1
2 =

(∆t)1−β

Γ(3− β)

{
−bn−1u0 −

n−2∑
k=1

(bn−k−1 − bn−k)uk −(
1

22−β
− b1)un−1 +

1

22−β
un
}

+O(∆t)3−β , n ≥ 2,

(2.2)
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∂βu(x, y, t)

∂tβ

∣∣∣∣1−
1
2

=
(∆t)1−β

Γ(3− β)
× 1

22−β

[
u1 − u0

∆t
− ∂u

∂t

∣∣∣∣0
]

+O(∆t)2−β , (2.3)

∂βu(x, y, t)

∂tβ
|n− 1

2 =
(∆t)1−β

Γ(3− β)

{
−bn−1

∂u

∂t

∣∣∣∣0 − n−2∑
k=1

(bn−k−1 − bn−k)
uk − uk−1

∆t

−(
1

22−β
− b1)

un−1 − un−2

∆t
+

1

22−β
un − un−1

∆t

}
+O(∆t)2−β , n ≥ 2,

(2.4)

where bs =
(
s+ 1

2

)2−β − (s− 1
2

)2−β
, s = 1, 2, . . . , 1 < β < 2. By using Taylor expansion, we have

u(x, y, tn− 1
2
) =

un−1 + un

2
+O(∆t)2, n ≥ 1, (2.5)

∆u(x, y, tn− 1
2
) =

∆un−1 + ∆un

2
+O(∆t)2, n ≥ 1. (2.6)

Using the relations (2.1), (2.3), (2.5), and (2.6), the discretization of equation (1.1) at the time step
(
1− 1

2

)
is as

follows.

(∆t)1−β

Γ(3− β)
× 1

22−β

[
u1 − u0

∆t
− ∂u

∂t

∣∣∣∣0
]

+
(∆t)1−β

Γ(3− β)
× 1

22−β
(
u1 − u0

)
+

1

2

(
u1 + u0

)
=

∆u1 + ∆u0

2
+ f1−

1
2 +O(∆t)2−β .

(2.7)

Using the relations (2.2), (2.4), (2.5), and (2.6), the discretization of equation (1.1) at the time step
(
n− 1

2

)
for n ≥ 2

is as follows.

(∆t)1−β

Γ(3− β)

{
−bn−1

∂u

∂t

∣∣∣∣0 − n−2∑
k=1

(bn−k−1 − bn−k)
uk − uk−1

∆t
− (

1

22−β
− b1)

un−1 − un−2

∆t
+

1

22−β
un − un−1

∆t

}

+
(∆t)1−β

Γ(3− β)

{
−bn−1u0 −

n−2∑
k=1

(bn−k−1 − bn−k)uk − (
1

22−β
− b1)un−1 +

1

22−β
un
}

+
un−1 + un

2

=
∆un−1 + ∆un

2
+ fn−

1
2 +O(∆t)2−β , n ≥ 2.

(2.8)

Neglecting the truncation errors, equations (2.7) and (2.8) are as follows.

(∆t)1−β

Γ(3− β)
× 1

22−β

[
u1 − u0

∆t
− ∂u

∂t

∣∣∣∣0
]

+
(∆t)1−β

Γ(3− β)
× 1

22−β
(
u1 − u0

)
+

1

2

(
u1 + u0

)
=

∆u1 + ∆u0

2
+ f1−

1
2 ,

(2.9)
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and

(∆t)1−β

Γ(3− β)

{
−bn−1

∂u

∂t

∣∣∣∣0 − n−2∑
k=1

(bn−k−1 − bn−k)
uk − uk−1

∆t
− (

1

22−β
− b1)

un−1 − un−2

∆t
+

1

22−β
un − un−1

∆t

}

+
(∆t)1−β

Γ(3− β)

{
−bn−1u0 −

n−2∑
k=1

(bn−k−1 − bn−k)uk − (
1

22−β
− b1)un−1 +

1

22−β
un
}

+
un−1 + un

2

=
∆un−1 + ∆un

2
+ fn−

1
2 , n ≥ 2,

(2.10)

respectively. Now, we consider the stability of this semi–discrete scheme. Let ũn (n ≥ 1) be the approximate solution
of equations (2.9) and (2.10) with respect to the round-off error, and un (n ≥ 1) be the exact solution of equations
(2.9) and (2.10). Define

en = un − ũn, (n = 0, 1, . . .).

We obtain the following round-off error equations.

(∆t)1−β

Γ(3− β)
× 1

22−β

{[
e1 − e0

∆t
− δe0

]
+ (e1 − e0)

}
+

1

2
(e1 + e0) =

1

2
(∆e1 + ∆e0), (2.11)

(∆t)1−β

Γ(3− β)

{
−bn−1δe0 −

n−2∑
k=1

(bn−k−1 − bn−k)
ek − ek−1

∆t
−(

1

22−β
− b1)

en−1 − en−2

∆t
+

1

22−β
en − en−1

∆t

}

+
(∆t)1−β

Γ(3− β)

{
−bn−1e0 −

n−2∑
k=1

(bn−k−1 − bn−k) ek − (
1

22−β
− b1)en−1

+
1

22−β
en
}

+
en−1 + en

2
=

∆en−1 + ∆en

2
, n ≥ 2,

(2.12)

where δe0 = ∂u
∂t

∣∣0 − ∂ũ
∂t

∣∣0. Round-off error equations (2.11) and (2.12) in this work are the same as round-off error
equations (19) and (20) in reference [4]. Therefore, similar to theorem 5 in reference [4] the following theorem can be
easily proved.

Theorem 2.1. If ek ∈ H1
0 (Ω), then the solutions of the finite difference approaches (2.9) and (2.10) are unconditionally

stable.

Now, we consider the convergence of our proposed semi–discrete scheme. Let un(n ≥ 1) be the exact solution of
(2.9) and (2.10), and let Un (n ≥ 1) be the exact solution of (2.7) and (2.8). Define ξn = Un− un, (n ≥ 1). Then, we
obtain

(∆t)1−β

Γ(3− β)
× 1

22−β
ξ1

∆t
+

(∆t)1−β

Γ(3− β)
× 1

22−β
ξ1 +

1

2
ξ1 =

∆ξ1

2
+O(∆t)2−β , (2.13)

and

(∆t)1−β

Γ(3− β)

{
−
n−2∑
k=1

(bn−k−1 − bn−k)
ξk − ξk−1

∆t
− (

1

22−β
− b1)

ξn−1 − ξn−2

∆t
+

1

22−β
ξn − ξn−1

∆t

}

+
(∆t)1−β

Γ(3− β)

{
−
n−2∑
k=1

(bn−k−1 − bn−k) ξk − (
1

22−β
− b1)ξn−1 +

1

22−β
ξn

}
+
ξn−1 + ξn

2

=
∆ξn−1 + ∆ξn

2
+O(∆t)2−β , n ≥ 2.

(2.14)
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Equations (2.13) and (2.14), in this work, are the same as equations (34) and (35) in reference [4], except for error
terms. The right side of equations (34) and (35) in reference [4] contains (O(∆x)2 +O(∆y)2 +O(∆t)(2−β)), and the
right side of equations (2.13) and (2.14) in this work contains O(∆t)(2−β). Therefore, similar to theorem 6 in reference
[4] the following theorem can be easily proved.

Theorem 2.2. If ξk ∈ H1
0 (Ω), then the solutions of the finite difference approaches (2.9) and (2.10) are unconditionally

convergent.

3. The collocation method

In this section, the collocation method is explained generally. To approximate the solution of partial differential
equations, using the mesh-free collocation method, the partial differential equation is usually discretized at collocation
nodes by a form of collocation method. The collocation points could be different from the field nodes, but they are
the same in our work.

In a collocation method, to approximate the unknown function and its derivatives at the collocation nodes x ∈ Ω (
xT = [x, y]), the following formulae are used.

ûx = φT (x).Usx ,

∂2ûx

∂x2
=
∂2φT (x)

∂x2
.Usx ,

∂2ûx

∂y2
=
∂2φT (x)

∂y2
.Usx ,

(3.1)

where ûx is the approximation of u at node x, Usx is a vector of values u at nodes of support domain of x, including
x1,x2, ...,xnx , and φ is the vector of shape functions (The shape function is explained in subsection 3.1.) as follows.

φT (x) = [φ1(x) φ2(x) ... φnx(x)],

UT
sx = [ux1

ux2
... uxnx

],

which nx is the number of nodes in the support domain of interest node x.

3.1. The shape function. This subsection explains the shape function and its derivatives for the MLS method. The
MLS method was described by [8]. In the MLS method, the unknown function u at x ∈ Ω is defined as follows.

ûx = Σmj=1pj(x).aj(x) = PT (x).a(x), (3.2)

where xT = [x, y], P(x) is a vector of basis functions as

PT (x) = [p1(x) p2(x) ... pm(x)],

a(x) is a vector of coefficients as

aT (x) = [a1(x) a2(x) ... am(x)],

and m is the number of the basis functions.
The coefficient a is obtained by minimizing the following weighted residual.

J = Σnx
i=1Ŵi(x)[PT (xi).a(x)− ui]2,

where Ŵi is a weight function (The weight function is described in subsection 3.2), xi (i = 1, 2, ..., nx) is a node in

the support domain of x, nx is the number of nodes in the support domain of x that the weight functions Ŵi 6= 0, ui
is the value of u at node xi.
The stationarity of J with respect to a(x) is

∂J

∂a
= 0⇒ Σnx

i=1Ŵi(x).PT (xi).[P
T (xi).a(x)− ui] = 0,
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which results in

A(x)a(x) = B(x)Usx , (3.3)

where

Usx = [ux1 ux2 ... unx ]T ,

A(x) = Σnx
i=1Ŵi(x).P(xi).P

T (xi),

B(x) = [Ŵ1(x)P(x1) Ŵ2(x)P(x2) ... Ŵnx(x)P(xnx)].

Solving (3.3) for a(x) gives

a(x) = A−1(x).B(x).Usx , (3.4)

then by substituting a(x) in relation (3.2), we have

û(x) = φT .Usx ,

where

φT = PT (x).A−1(x).B(x) = [φ1(x) φ2(x) ... φnx(x)]. (3.5)

For obtaining the partial derivatives of φT , by using euation (3.5), we have [3]

φT = γT (x).B(x),

where A.γ = P. Therefore we have [10]

φTxx = γTxx.B + 2γTx .Bx + γT .Bxx,

φTyy = γTyy.B + 2γTy .By + γT .Byy.

3.2. The weight function. In this subsection, we describe our weight function. In this work, the rectangular support
domains are used and the weight function is as follows [10].

Ŵi(x) = Ŵ (rix).Ŵ (riy),

where

rix =
|x− xi|
dsx

, riy =
|y − yi|
dsy

,

where

dsx = αsx .dcx , dsy = αsy .dcy ,

in which αsx and αsy are the dimensionless size of the support domain in the X and Y direction. When the nodes are
uniformly distributed, dcx and dcy are distances between two neighboring nodes in the X and Y directions, respectively.
We use the quadratic spline weight function which is [11]

Ŵ (ri) =

{
1− 6r2i + 8r3i − 3r4i , ri ≤ 1,

0, ri > 1.
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4. The full discretization

In this section we want to present the full discretization of equation (1.1) with initial and boundary conditions
(1.2)-(1.4). The time discretization of equation (1.1) with initial conditions (1.2) and (1.3) is given in relations (2.9)
and (2.10). The time discretization of equation (1.4) is assumed as follows.

un(x, y) = h(x, y, n∆t), (x, y) ∈ ∂Ω. (4.1)

As it is explained in section 3.1, we have

ûnxI
= φTUn

sxI
, n ≥ 1, I = 1, 2, ..., nd,

∆ûnxI
= ∆φTUn

sxI
, n ≥ 1, I = 1, 2, ..., nd,

(4.2)

where n is the number of the time steps, xI is a collocation node (which the value of u at xI is unknown.), nd is the
number of collocation nodes, ûnxI

is the approximation value of u in xI and at time step n, φ is the shape function.
For n = 1, for all nodes xI(I = 1, 2, ..., nd), by substituting (4.2) in equation (2.9) and using (4.1) the following system
of equations resulted.

K1U1
S = F 1, (4.3)

where U1
S is a nd × 1 vector of unknown values of the function u at collocation points at time step 1, K is a nd × nd

coefficient matrix at time step 1, and F is a nd × 1 vector of known values. Solving the system of equations (4.3)
results in the unknown U1

S . Similar to (4.3), for n ≥ 2, for all nodes xI(I = 1, 2, ..., nd), by substitution (4.2) in
equation (2.10) and using (4.1), we have the following system of equations.

KnUn
S = Fn, n ≥ 2, (4.4)

where Un
S is a nd × 1 vector of unknown values of the function u at collocation points at time step n, K is a nd × nd

coefficient matrix at time step n, and F is a nd × 1 vector of known values. Solving the system of equations (4.4)
results in the unknown Un

S for n ≥ 2.

5. Numerical experiments

In this section, some numerical tests are presented to analyze our proposed method. To evaluate the accuracy of
our proposed scheme, we use the maximum absolute error as follows.

L∞ = max
1≤i≤I,1≤j≤J

∣∣∣Ũi,j(T )− Ui,j(T )
∣∣∣ ,

where Ũi,j(T ) and Ui,j(T ) denote the numerical solution and the exact solution of equation (1.1) with initial and
boundary conditions (1.2)-(1.4) at (xi, yj) and time T , respectively.

Example 5.1. Consider u(x, y, t) = t4 sin(πx+πy) [7] is the exact solution of equation (1.1) on Ω = [0, 1]× [0, 1] with

f(x, t) =

(
24t4−β

Γ(5− β)
+

24t5−β

Γ(6− β)
+ 2t4π2

)
sin(πx+ πy) + t4 sin(πx+ πy).

The function ϕ(x, y), ψ(x, y), and h(x, y) in the initial and boundary conditions (1.2)-(1.4) are known using this exact
solution.

For this example, we choose the complete polynomial basis of order 6 (m = 6) as follows.

PT (x) = [1 x y x2 y2 xy].
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Figure 1 displays the rectangular domain Ω = [0, 1] × [0, 1] with uniform points and a node with its rectangular
support domain. In the following tests, the uniform points with rectangular support domain are used.
In the MLS approximation, the number of nodes in a support domain is usually larger than the number of unknown
coefficients m [10]. If 1 < αsx , αsy ≤ 1.5, then there are nine points in the support domain of every xI . Therefore, the
number of nodes in a support domain is larger than the number of unknown coefficients (m = 6). If 2 < αsx , αsy < 3,
then the number of nodes in a support domain is 25. According to our experience, it does not give valid results.
Reference [10] states that αsx = αsy ∈ [2, 3] results in a good approximation for many problems. In the following
tests, we show that 1 < αsx , αsy < 1.5 are suitable. Also, we show that in some tests, 2.1 < αsx , αsy ≤ 2.9 are not
suitable. The next tests show that the size of the time step and the number of collocation points are effective for an
accurate solution. The following experiments demonstrate that a higher number of collocation points on Ω is required
for smaller time steps.

Test 1. In this example, our proposed method is considered by 11 × 11 uniform points on Ω and with β = 1.3 and
β = 1.9. Table 1 shows with the different values αsx , αsy (1 < αsx , αsy ≤ 1.5), different values ∆t, and β = 1.3, the
maximum absolute errors are small at T = 1.0. Table 2 shows with different values αsx , αsy (1 < αsx , αsy ≤ 1.5),
different values ∆t, and β = 1.9, the maximum absolute errors are small at T = 1.0 except for αsx = αsy = 1.5 and

∆t = 1
160 . For αsx = αsy = 1.5 and ∆t = 1

160 , the maximum absolute error is larger than 1. Increasing the number
of time steps theoretically increases the accuracy, but numerically choosing an appropriate time step is necessary.
The numerical computations need to be more accurate for smaller time steps, and hence we need a larger number
of collocation points. We repeat this test by assuming 21 × 21 uniform points on Ω and β = 1.9. Table 3 shows by
assuming 21 × 21 uniform points on Ω and β = 1.9 for different values ∆t, αsx , and αsy (1 < αsx , αsy ≤ 1.5), the
maximum absolute errors are small enough. These tests reveal that an increase in the number of collocation points
on Ω is necessary for accurate results with smaller time steps.

Test 2. This example is based on our proposed method by 21×21 uniform nodes on Ω, ∆t = 1
80 , β = 1.9, and different

values αsx and αsy . Table 4 shows for 1 < αsx = αsy ≤ 1.5 and αsx = αsy = 2.1, the maximum absolute errors
are small enough but for 2.1 < αsx = αsy ≤ 2.9, the maximum absolute errors are extremely large. The following
test shows that with suitable αsx , αsy ,∆t, and a suitable number of collocation points on Ω, the proposed method is
sufficiently accurate.

Test 3. Kumar et al. [7] considered this example with β = 1.7 and 1.9 by assuming 2025 uniform points on Ω with
different values ∆t using a local meshless method. Now, this test is repeated by our proposed method. We assume
αsx = αsy = 1.1. Table 5 presents the maximum absolute errors with β = 1.7 and 1.9, obtained by Kumar et al. [7]
and our proposed method at time T = 1.0. As this table shows, the errors of these two methods are very close.
According to Tests 1, 2, and 3, for our proposed method, it is recommended to choose 1 < αsx = αsy < 1.5, and to
increase the number of collocation points for smaller time steps to achieve accurate approximations.

Table 1. The maximum absolute errors with 11× 11 uniform points on Ω, β = 1.3, different values
αsx , αsy , and different values ∆t, at T = 1.0.

αsx , αsx ∆t = 1
10 ∆t = 1

20 ∆t = 1
40 ∆t = 1

80 ∆t = 1
160

1.1 1.1052e− 2 9.4889e− 3 6.9677e− 3 5.2616e− 3 4.2948e− 3
1.2 1.0418e− 2 8.8640e− 3 6.3530e− 3 4.6576e− 3 3.7075e− 3
1.3 9.4537e− 3 7.9162e− 3 5.4287e− 3 3.7686e− 3 2.8907e− 3
1.4 8.8707e− 3 7.3515e− 3 4.8975e− 3 3.3054e− 3 2.5854e− 3
1.5 8.8958e− 3 7.4554e− 3 5.0415e− 3 3.5485e− 3 3.0725e− 3
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Figure 1. Rectangular domain with uniform points on Ω and rectangular support domain with nine points.

Table 2. The maximum absolute errors with 11× 11 uniform points on Ω, β = 1.9, different values
αsx , αsy , and different values ∆t, at T = 1.0.

αsx , αsx ∆t = 1
10 ∆t = 1

20 ∆t = 1
40 ∆t = 1

80 ∆t = 1
160

1.1 1.9166e− 2 1.2923e− 2 8.3161e− 3 5.6519e− 3 4.2409e− 3
1.2 1.8604e− 2 1.2395e− 2 7.8368e− 3 5.3025e− 3 4.3441e− 3
1.3 1.7761e− 2 1.1635e− 2 7.2644e− 3 5.3359e− 3 6.5805e− 3
1.4 1.7282e− 2 1.1286e− 2 7.3047e− 3 6.7523e− 3 1.3210e− 2
1.5 1.7425e− 2 1.1595e− 2 8.2041e− 3 9.8328e− 3 Not valid

Table 3. The maximum absolute errors with 21× 21 uniform points on Ω, β = 1.9, different values
αsx , αsy , and different values ∆t, at T = 1.0.

αsx , αsx ∆t = 1
10 ∆t = 1

20 ∆t = 1
40 ∆t = 1

80 ∆t = 1
160

1.1 1.7005e− 3 1.0820e− 3 6.2425e− 3 3.5889e− 3 2.1729e− 3
1.2 1.6862e− 3 1.0684e− 3 6.1123e− 3 3.4695e− 3 2.0817e− 3
1.3 1.6645e− 3 1.0478e− 3 5.9229e− 3 3.3207e− 3 2.0723e− 3
1.4 1.6513e− 3 1.0359e− 3 5.8313e− 3 3.3171e− 3 2.3856e− 3
1.5 1.6535e− 3 1.0391e− 3 5.8995e− 3 3.5196e− 3 3.0839e− 3

Table 4. The maximum absolute errors with 21 × 21 uniform points on Ω, β = 1.9, ∆t = 1
80 , and

different values αsx , αsy at T = 1.0.

αsx = αsy L∞ αsx = αsy L∞ αsx = αsy L∞
1.1 3.5889− 3 2.1 2.5555e− 3 2.6 1.7780e+ 103
1.2 3.4695e− 3 2.2 2.7249e+ 14 2.7 9.1916e+ 122
1.3 3.3207e− 3 2.3 1.2501e+ 39 2.8 7.7079e+ 140
1.4 3.3171e− 3 2.4 1.0461e+ 61 2.9 3.6443e+ 157
1.5 3.5196e− 3 2.5 1.7204e+ 83
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Table 5. Comparison of the maximum absolute errors with β = 1.7, 1.9, different values ∆t, αsx =
αsy = 1.1, and 2025 points on Ω at T = 1.0.

β = 1.7 β = 1.9
∆t L∞ L∞ [7] L∞ L∞ [7]
1
5 7.2126e− 3 3.0420e− 2 1.6646e− 2 5.7458e− 2
1
10 1.2581e− 2 1.2917e− 2 1.6492e− 2 2.7619e− 2
1
20 8.7169e− 3 5.4532e− 3 1.0311e− 2 1.3079e− 2
1
40 5.0766e− 3 2.3351e− 3 5.7494e− 3 6.1953e− 3

6. Conclusion

In this work, the Crank-Nicolson method was used for the time semi-discretization of the time-fractional telegraph
equation in Caputo sense with 1 < β < 2. The stability and convergence of this semi-discretized scheme were valid.
Then, the strong form of the moving least square method was used for full discretization. According to our experience,
we suggest that the dimensionless size of the support domain in the X and Y directions should be in (0, 1.5); sometimes,
larger values for them make inaccurate approximations. Our tests reveal that an increase in the number of collocation
points is necessary for accurate results with smaller time steps. The strong form of the moving least square method
for the time-fractional telegraph equation depends on the number of collocation nodes, the time step size, and the
support domain’s dimensionless size in the X and Y directions. These four parameters should be chosen proportional
to each other. Then, the numerical tests of our proposed method were sufficiently accurate. These results are related
to the Crank-Nicolson method with the collocation method based on the MLS method and can be examined for the
other meshless methods as well.

References

[1] A. Babu, et al., Numerical solution of the hyperbolic telegraph equation using cubic B-spline-based differential
quadrature of high accuracy, Computational Methods for Differential Equations, 10(4) (2022), 837–859.

[2] J. Banasiak and J. R. Mika, Singularly perturbed telegraph equations with applications in the random walk theory,
Journal of Applied Mathematics and Stochastic Analysis, 11(1) (1998), 9–28.

[3] T. Belytschko, et al., Smoothing and accelerated computations in the element free Galerkin method, Journal of
computational and applied mathematics, 74(1-2) (1996), 111–126.

[4] H. Hajinezhad and A. R. Soheili, A numerical approximation for the solution of a time–fractional telegraph
equation based on the Crank–Nicolson method, Iranian journal of numerical analysis and optimization, 12(3)
(Special Issue) (2022), 607–628.

[5] V. R. Hosseini, et al., Numerical solution of fractional telegraph equation by using radial basis functions, Engi-
neering Analysis with Boundary Elements, 38 (2014), 31–39.

[6] M. Javidi, et al., (2021). Numerical solution of fractional Riesz space telegraph equation, Computational Methods
for Differential Equations, 9(1) (2021), 187–210.

[7] A. Kumar, et al., A local meshless method to approximate the time-fractional telegraph equation, Engineering with
Computers, 37(4) (2021), 3473–3488.

[8] P. Lancaster and K. Salkauskas, Surfaces generated by moving least squares methods, Mathematics of computation,
37(155) (1981), 141–158.

[9] C. Li and A. Chen, Numerical methods for fractional partial differential equations, International Journal of Com-
puter Mathematics, 95(6-7) (2018), 1048-1099.

[10] G. R. Liu and Y. T. Gu, An introduction to meshfree methods and their programming, Springer Science and
Business Media, (2005).

[11] G. R. Liu and M. B. Liu, Smoothed particle hydrodynamics– a meshfree particle method, World Scientific, Singa-
pore, (2003).



726 REFERENCES

[12] A. Mohebbi, et al., The meshless method of radial basis functions for the numerical solution of time fractional
telegraph equation, International Journal of Numerical Methods for Heat and Fluid Flow, 24(8) (2014), 1636–1659.

[13] S. Niknam and H. Adibi, A numerical solution of two-dimensional hyperbolic telegraph equation based on moving
least square meshless method and radial basis functions, Computational Methods for Differential Equations, 10(4)
(2022), 969–985.

[14] O. Nikan, et al., Numerical approximation of the nonlinear time-fractional telegraph equation arising in neutron
transport, Communications in Nonlinear Science and Numerical Simulation, 99 (2021).

[15] Z. M. Odibat and S. Momani, An algorithm for the numerical solution of differential equations of fractional order,
Journal of Applied Mathematics and Informatics 26(1-2) (2008), 15–27.

[16] B. Sepehrian and Z. Shamohammadi, Numerical solution of nonlinear time-fractional telegraph equation by radial
basis function collocation method, Iranian Journal of Science and Technology, Transactions A: Science, 42(4)
(2018), 2091–2104.

[17] K. Shah, et al., Stable numerical results to a class of time-space fractional partial differential equations via spectral
method, Journal of Advanced Research, 2 (2020), 39–48.

[18] K. Shah, et al., Evaluation of one dimensional fuzzy fractional partial differential equations, Alexandria Engineer-
ing Journal, 59(5) (2020), 3347–3353.

[19] E. Shivanian, Spectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph
equation, Mathematical Methods in the Applied Sciences, 39(7) (2016), 1820–1835.

[20] E. Shivanian, et al., Local integration of 2-D fractional telegraph equation via moving least squares approximation,
Engineering Analysis with Boundary Elements, 56 (2015), 98–105.

[21] N. H. Sweilam, et al., (2020). Sinc-Chebyshev collocation method for time-fractional order telegraph equation,
Appl. Comput. Math, 19(2) (2020), 162–174.

[22] V. A. Vyawahare and P. Nataraj, Fractional-order modeling of neutron transport in a nuclear reactor, Applied
Mathematical Modelling, 37(23) (2013), 9747–9767.


	1. Introduction
	2. The time semi-discretization 
	3. The collocation method
	3.1. The shape function
	3.2. The weight function

	4. The full discretization
	5. Numerical experiments
	6. Conclusion
	References

