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Abstract

..

This paper addresses the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation with fractional derivative
definition. Initially, conformable derivative definitions and their features are presented. Then, by submitting
exp(–φ(ξ))-expansion, generalized (G′/G)-expansion and Modified Kudryashov methods, exact solutions of this
equation are generated. The 3D, contour, and 2D surfaces, as well as the related contour plot surfaces of some

acquired data, are used to draw the physical aspect of the obtained findings. The physical meaning of the
geometrical structures for some of these solutions is discussed. For the observation of the physical activities of the
problem, achieved exact solutions are vital. The acquired results can help to demonstrate the physical application
of the investigated models and other nonlinear physical models found in mathematical physics. Therefore, it

would appear that these approaches might yield noteworthy results in producing the exact solutions to fractional
differential equations in a wide range.
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1. Introduction

Fractional differential equations arise in many different branches of social and basic sciences and engineering. They
have gained prominence in recent years due to their crucial role in various domains involving complicated physical
processes, from control theory and electrical circuits to wave propagation. Especially, they appear in electrodynamics
of complex medium, electrical networks, signal and image processing, and electrodynamics, including porous flow,
surface water flow, land sliding, faulting, circled fuel reactor, seismic waves, compressional and shear waves, wave
motion, and distribution, transmission lines (see [10, 13–15, 18, 24–28, 31] and the references therein). They are
used for modeling, analyzing, and designing many engineering problems. Since they more clearly illustrate nonlinear
physical features and serve as a roadmap for future work, solutions to these equations have been among the most
amazing in the related areas.

In order to compute these solutions and better understand the fundamental characteristics of physical structures
in varied contexts, several authors have employed a variety of techniques. As a result, analytical methods have been
developed and it has been shown that no single technique can be used to solve all types of nonlinear problems with
precision. Therefore, many different methods have emerged, some of which are sub-equation method [2, 22, 32], Sardar
sub-equation method [34], sine-cosine method [36, 39], extended tanh-coth expansion method [4, 35], the extended
sinh-Gordon equation expansion method [37], simple equation method and its modification [11, 12], modified (G′/G)-
expansion method [5, 6, 40], etc.

High-dimensional fractional partial differential equations have attracted academics’ curiosity greatly in recent years.
They also appear in modeling many phenomena in biology, chemistry, physics, engineering, mechanics, economy, and
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many different branches. There are some derivative definitions for fractional differential equations. Some of these
are AtanganaBaleanu [20], Riemann-Liouville [17], Caputo [38], and conformable [3] approaches. The Riemann-
Liouville fractional derivative approach is the result of combining the fractional derivative approaches defined by two
famous mathematicians, Riemann and Liouville, which are frequently used today. In addition to these derivatives,
the conformable fractional derivative approach is also included in the literature; this approach is preferred by many
mathematicians because of its simplicity and reliability. Especially, Boiti–Leon–Manna–Pempinelli equation is among
them, and it is an important equation to describe incompressible liquid in fluid mechanics. Due to their unpredictable
features, the significance of these equations has become crucial in studying their analytical solutions.

First, we pay attention to the new (3+1)-dimensional BoitiLeonMannaPempinelli (BLMP) equation proposed by
Wazwaz [41]

(ux + uy + uz)t + (ux + uy + uz)xxx + (ux(ux + uy + uz))x = 0. (1.1)

Then, this equation was reduced and a (3+1)-dimensional BLMP equation was formed, consisting of potential deriva-
tives of uy and uz [33]

(uy + uz)t + (uy + uz)xxx + (ux(uy + uz))x = 0. (1.2)

In this research, the following fractional (3+1)–dimensional BLMP equation

Dω
t (uy + uz) + (uy + uz)xxx + (ux(uy + uz))x = 0, (1.3)

is considered. The main contribution of the present work is to find analytical solutions to the above fractional
differential equation, frequently used in applied mathematics to express mathematical representations of practical issues
as an excellent tool to express the memory and inherited properties of many substances and processes. Conformable
fractional derivative via exp(–φ(ξ))-expansion, generalized (G′/G)-expansion, and modified Kudryashov methods are
used to obtain analytical solutions. Moreover, theoretical results are supported by numerical experiments. On the
other hand, the results are also shown by graphs, and the physical meaning of the geometrical structures for some of
these solutions is discussed. The achieved exact solutions are vital for observing the physical activities of the problem.
The acquired results can help to demonstrate the physical application of the investigated models and other nonlinear
physical models found in mathematical physics.

To obtain the above-mentioned novelties, the structure of the paper is designed as follows. Section 2 is reserved
for the basic definitions. The exp(-φ(ξ))-expansion method is explained in section 3, (G′/G)-expansion method is
introduced in section 4. The modified Kudryashov method is introduced in section 5. The solutions of the governing
equation are given in section 6. Finally, the paper concludes in section 7.

2. Basic Definitions

Definition 1. A function’s conformable derivative, g : [0,∞) → R, t > 0, ω ∈ (0, 1) of order ω is defined as follows:

Dω
t (g)(t) = lim

β→0

g(t+ βt1−ω)− g(t)

β
. (2.1)

Also, if g is ω-differentiable in some range (0, k), where k > 0 and the limt→0+ Dω
t (g)(t) exists, then definition becomes

Dω
t (g)(0) = lim

t→0+
Dω

t (g)(t). (2.2)

Lemma 1. For 0 < ω ≤ 1, let g1 and g2 be ω-differentiable at t > 0 [16, 23, 29]. Then,

• Dω
t (t

h1) = h1t
h1−ω, h1 ∈ R,
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• Dω
t (h1g1 + h2g2) = h1Dω

t (g1) + h2Dω
t (g2), h1, h2 ∈ R,

• Dω
t (

g1
g2
) =

g1.D
ω
t (g2)−g2.D

ω
t (g1)

g2
2

,

• Dω
t (g1.g2) = g1.Dω

t (g2) + g2.Dω
t (g1),

• Since w is also differentiable, Dω
t (g1)(t) = t1−ω dg1(t)

dt ,

• Dω
t (C) = 0, where C is a constant.

3. The exp(−φ(ξ))-expansion method

Consider the nonlinear evolution equation given in the following form:

P(u,Dω
t ,Dxu,Dyu,D

2
xu,D

2
yu, · · · ) = 0. (3.1)

Here, Dω
t stands for the arbitrary order conformable derivative operator. P is a polynomial in u(x, y, · · · , t) and its

derivatives, u = u(x, y, · · · , t) is an unknown function and the subscripts denote partial derivatives. When employing
the exp(–φ(ξ))-expansion approach [1, 19, 21] to get solitary wave solutions of Eq. 3.1, it is imperative to execute the
following actions.

• By using a compound variable called ξ, we combine the actual variables x, y, · · · , t

ξ = kx+ wy + · · ·+ c
tω

ω
, u(x, y, · · · , t) = u(ξ). (3.2)

• Eq. 3.1 is reduced to the following ordinary differential equation

K (u(ξ), u′(ξ), u′′(ξ), · · · ) = 0. (3.3)

• The exact solutions can be built as the following finite series:

u(ξ) =
N∑
r=0

ar(exp(−φ(ξ)))r, aN ̸= 0, 0 ≤ r ≤ N. (3.4)

• φ = φ(ξ) satisfies the following ordinary differential equation

φ′(ξ) = exp(−φ(ξ)) + ηexp(φ(ξ)) + λ. (3.5)

• Depending on the relevant parameters, Eq. 3.5 has the following solutions
for λ2 − 4η > 0 and η ̸= 0,

u1(ξ) = ln(
−
√

(λ2 − 4η) tanh(

√
(λ2−4η)

2 (ξ + h))− λ

2η
), (3.6)

for λ2 − 4η < 0 and η ̸= 0,

u2(ξ) = ln(

√
(4η − λ2) tan(

√
(4η−λ2)

2 (ξ + h))− λ

2η
), (3.7)
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for λ2 − 4η > 0, λ ̸= 0 and η = 0,

u3(ξ) = − ln

(
λ

sinh(λ(h+ ξ)) + cosh(λ(h+ ξ))− 1

)
, (3.8)

for λ2 − 4η = 0, λ ̸= 0, and η ̸= 0,

u4(ξ) = ln(−2(λ(ξ + h) + 2)

λ2(ξ + h)
), (3.9)

for λ2 − 4η = 0, λ = 0, and η = 0,

u5(ξ) = ln(ξ + h), (3.10)

where h is an integration constant.
• The positive integer N in Eq. 3.4 is calculated by taking into account the homogeneous balance between the
largest nonlinear terms and the highest order derivatives of u(ξ) in Eq. 3.3. Substituting Eq. 3.4 with Eq. 3.5
into Eq. 3.3 and collecting all terms with the same powers of exp(-φ) together, the left-hand side of Eq. 3.3
is converted into a polynomial. We get a series of algebraic equations in terms of Br(r = 0, 1, 2, · · · , N), c, λ
and η. After setting each coefficient of this polynomial to zero, the solutions obtained by solving the system
of algebraic equations and then substituting the outcomes into equation Eq. 3.4 result in solutions of Eq. 3.3.

4. Generalized (G′/G)-expansion method

We provide a thorough explanation of our method in this section as (G′/G). Now, let us say that a nonlinear
equation is given by [42, 43]

B(n, nt, nx, ny, nxx, nyy, · · · ) = 0. (4.1)

We seek its solutions in a more general form

n = a0 +
N∑
i=1

ai

(
G′(ξ)

G(ξ)

)i

, (i = 1, 2, ..., N), (4.2)

with G(ξ) that satisfies the following ordinary differential equation:

ξ = kx+ wy + sz + h
tω

ω
, G′′(ξ) + λG′(ξ) + µG(ξ) = 0, (4.3)

where λ and µ are real constants. The following are the main steps we conduct using the (G′/G)-expansion approach
to better explain.

• Identify the number N .
• The algebraic equation relating to N may be obtained by substituting Eq. 4.2 and Eq. 4.3 into Eq. 4.1 and
balancing the highest order derivative term with the nonlinear components in Eq. 4.1.

• Solve the system of nonlinear partial differential equations.
• The explicit expressions can be found via symbolic computation of a0, ai(i = 1, 2, · · · , N) and ξ.
• Depending on the solution G(ξ) of Eq. 4.1, we can derive a number of basic solutions of Eq. 4.1 by substituting
the findings acquired in the aforementioned phases of Eq. 4.3.
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5. Modified Kudryashov method

Take the following nonlinear partial differential equation

Fω

(
v,

∂v

∂ξ
,
∂2v

∂ξ2
, · · · , ∂

ωv

∂tω
,
∂2ωv

∂t2ω

)
= 0, (5.1)

where v = v(x, y, z, t) is the transformation

ξ = kx+ wy + sz + c
tω

ω
, v(x, y, z, t) = v(ξ), (5.2)

will transform Eq. 5.2 in the form of an ordinary differential equation

F (v(ξ), v′(ξ), v′′(ξ), · · · ) = 0. (5.3)

Suppose the solution to Eq. 5.3 has the structure of

v(ξ) =

N∑
r=0

Brφ
r(ξ), BN ̸= 0. (5.4)

In the Eq. 5.4, the function φ(ξ) satisfies the ODE

φ′(ξ) = log(a)φ(ξ)(φ(ξ)− 1). (5.5)

The solution to the Eq. 5.5 is provided by

φ(ξ) =
1

daξ + 1
, a > 0, a ̸= 0, (5.6)

where d is constant. Substituting 5.4 and 5.5 into Eq. 5.3 results in the polynomial in φr(ξ), where (r =
0, 1, 2, · · · , N). A set of algebraic equations in k, c and Br are produced by setting all of the coefficients of φr(ξ)
zero [30]. After resolving this system, we obtain the equation’s unsolved variables. Last but not least, by entering
these values into 5.4 and Eq. 5.6, the exact solutions to Eq. 5.1 are obtained.

6. Solutions for the governing equation

Consider the following (3+1)-dimensional BLMP equation which is the fractional version of Eq. 1.2

Dω
t (uy + uz) + (uy + uz)xxx + (ux(uy + uz))x = 0. (6.1)

Letting the transformations u(x, y, z, t) = u(ξ), ξ = kx+ wy + sz + c t
ω

ω and integrating we obtain

csu′ + cwu′ + k3su(3) + k3u(3)w + k2s (u′)
2
+ k2w (u′)

2
= 0. (6.2)

Balancing u(3) = N + 3, (u′)2 = 2(N + 1) one get N = 1. If we substitute it in Eq. 5.4 and Eq. 3.4, the results are
given in the following subsections
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6.1. Analytical solutions by exp(−φ(ξ))-expansion method. Since N = 1, when we substitute Eq. 3.4, the
series of sums comes as follows:

u = a0 + a1exp(−φ(ξ)). (6.3)

The following algebraic system of equations is formed when combined with Eq. 3.5.

−a1cµs− a1cµw − a1λ
2k3µs− 2a1k

3µ2s− a1λ
2k3µw − 2a1k

3µ2w + a21k
2µ2s+ a21k

2µ2w = 0,

−a1cλs− a1cλw + a1λ
3k3(−s)− 8a1λk

3µs− a1λ
3k3w − 8a1λk

3µw + 2a21λk
2µs+ 2a21λk

2µw = 0,

−a1cs− a1cw − 7a1λ
2k3s− 8a1k

3µs− 7a1λ
2k3w − 8a1k

3µw + a21λ
2k2s+ 2a21k

2µs+ a21λ
2k2w + 2a21k

2µw = 0,

−12a1λk
3s− 12a1λk

3w + 2a21λk
2s+ 2a21λk

2w = 0,

−6a1k
3s− 6a1k

3w + a21k
2s+ a21k

2w = 0.

Here, we obtain one case and one set of solutions for a0, a1, and c.
Case 1.

a1 = 6k, c = 4k3µ− k3λ2. (6.4)

Set 1.
For λ2 − 4µ > 0, µ ̸= 0,

u1(x, y, z, t) = a0 +
12kµ

−
√

λ2 − 4µ tanh
(

1
2 (h+A1)

√
λ2 − 4µ

)
− λ

, (6.5)

for λ2 − 4µ < 0, µ ̸= 0,

u2(x, y, z, t) = a0 +
12kµ√

4µ− λ2 tan
(

1
2 (h+A1)

√
4µ− λ2

)
− λ

, (6.6)

for λ2 − 4µ > 0, λ ̸= 0 and µ = 0,

u3(x, y, z, t) = a0 +
6kλ

sinh(λ(h+A1)) + cosh(λ(h+A1))− 1
, (6.7)

for λ2 − 4µ = 0,λ ̸= 0 and µ ̸= 0,

u4(x, y, z, t) = a0 + 3kλ

(
2ω

ω(λ(h+ kx+ sz + wy) + 2)− k3λ (λ2 − 4µ) tω
− 1

)
, (6.8)

for λ2 − 4µ = 0,λ = 0 and µ = 0,

u5(x, y, z, t) = a0 +
6k

h+A1
, (6.9)

where A1 =

(
−k3(λ2−4µ)tω

ω + kx+ sz + wy

)
.
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6.2. Analytical solutions by the generalized (G′/G)-expansion method. Since N = 1, when we substitute Eq.
4.2, the series of sums comes as follows:

n = a0 + a1

(
G′(ξ)

G(ξ)

)
, a1 ̸= 0. (6.10)

The following algebraic system of equations is formed when combined with Eq. 4.3

−a1hµs− a1hµw − a1λ
2k3µs− 2a1k

3µ2s− a1λ
2k3µw − 2a1k

3µ2w + a21k
2µ2s+ a21k

2µ2w = 0,

−a1hs− a1hw − 7a1λ
2k3s− 8a1k

3µs− 7a1λ
2k3w − 8a1k

3µw + a21λ
2k2s+ 2a21k

2µs+ a21λ
2k2w + 2a21k

2µw = 0,

−a1hλs− a1hλw + a1λ
3k3(−s)− 8a1λk

3µs− a1λ
3k3w − 8a1λk

3µw + 2a21λk
2µs+ 2a21λk

2µw = 0,

−12a1λk
3s− 12a1λk

3w + 2a21λk
2s+ 2a21λk

2w = 0,

−6a1k
3s− 6a1k

3w + a21k
2s+ a21k

2w = 0.

Here, we obtain one case and one set of solutions for a0, a1, and h.
Case 2.

a1 = 6k, h = 4k3µ− k3λ2. (6.11)

Set 2.
For λ2 − 4µ > 0,

n1(x, y, z, t) = a0 + 6k

(
ϑ1 −

λ

2

)
, (6.12)

for λ2 − 4µ < 0,

n2(x, y, z, t) = a0 + 6k

(
ϑ2 −

λ

2

)
, (6.13)

for λ2 − 4µ = 0,

n3(x, y, z, t) = a0 + 6k

(
c2

c2 (ξ) + c1
− λ

2

)
. (6.14)

Here, c1 and c2 are arbitrary constants, where,

ϑ1 =

√
λ2 − 4µ

(
c2 sinh

(
1
2ξ
√
λ2 − 4µ

)
+ c1 cosh

(
1
2ξ
√

λ2 − 4µ
))

2
(
c1 sinh

(
1
2ξ
√
λ2 − 4µ

)
+ c2 cosh

(
1
2ξ
√
λ2 − 4µ

)) ,

ϑ2 =

√
4µ− λ2

(
c2 cos

(
1
2ξ
√
4µ− λ2

)
− c1 sin

(
1
2ξ
√

4µ− λ2
))

2
(
c2 sin

(
1
2ξ
√
4µ− λ2

)
+ c1 cos

(
1
2ξ
√
4µ− λ2

)) ,

ξ =

(
tω
(
4k3µ− k3λ2

)
ω

+ kx+ sz + wy

)
.
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6.3. Analytical solutions by the modified Kudryashov method. Since N = 1, when we substitute Eq. 5.4, the
series of sums comes as follows:

v = B0 +B1φ(ξ), B1 ̸= 0. (6.15)

The following algebraic system of equations is formed when combined with Eq. 5.5

−B1cs log(a)−B1cw log(a) +B1

(
−k3

)
s log3(a)−B1k

3w log3(a) = 0,

−12B1k
3s log3(a)− 12B1k

3w log3(a)− 2B2
1k

2s log2(a)− 2B2
1k

2w log2(a) = 0,

6B1k
3s log3(a) + 6B1k

3w log3(a) +B2
1k

2s log2(a) +B2
1k

2w log2(a) = 0,

B1cs log(a) +B1cw log(a) + 7B1k
3s log3(a) + 7B1k

3w log3(a) +B2
1k

2s log2(a) +B2
1k

2w log2(a) = 0.

Here, we obtain one case and one set of solutions for B0, B1, and c.
Case 3.

B1 = −6k log(a), c = −k3 log2(a), ξ = c
tω

ω
+ kx+ sz + wy. (6.16)

If we insert these values into Eq. 6.15, using Eq. 5.6, we have the solution set as follows:
Set3.

v1(x, y, z, t) =
6k log(a)

da−
k3 log2(a)tω

ω +kx+sz+wy + 1
+B0. (6.17)
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Figure 1. The 3D (A), contour (B) and 2D plots (C) of exp(−φ(ξ))-expansion exact solution
u1(x, y, z, t) of Eq. 6.5.
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Figure 2. The 3D (A), contour (B) and 2D plots (C) of (G′/G)-expansion exact solution n2(x, y, z, t)
of Eq. 6.13.
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Figure 3. The 3D (A), contour (B) and 2D plots (C) of Modified Kudryashov exact solution
v1(x, y, z, t) of Eq. 6.17.

Results and discussion
To investigate the behavior of solitons and evaluate the physical relevance of the obtained solutions, a variety of

graphs which are plotted for −10 ≤ x ≤ 10, −10 ≤ y ≤ 10 are displayed in this work for Eq. 6.5, which is a dark
soliton, Eq. 6.13, which is a periodic soliton and Eq. 6.17, which is a singular soliton. By choosing suitable values for
unknown parameters, the 3D, contour, and 2D plots are presented in Figures 13 with the following values

• 1 with (a) and (b) for k = −0.9, w = 0.8, s = −0.16, y = 0.01, z = −0.02, a0 = 0.1, µ = 0.25, λ = 2, h = 0.1 and
ω = 0.95. Also for (c) t = 0.97.

• 2 with (a) and (b) for c1 = 5, c2 = 7, k = w = 2, s = −1, y = 2, z = 1, a0 = 0.1, λ = −0.25, µ = 0.09 and
ω = 0.95. Also for (c) t = 0.9.

• 3 with (a) and (b) for a = 0.09, k = 0.36, w = 0.46, s = −0.16, y = 0.01, z = 0.02, B0 = 0.1, d = −0.25 and
ω = 0.95. Also for (c) t = 0.99.

The graphical representations reveal some new solutions that affirm the proposed approaches could be helpful for
obtaining exact solutions to other types of equations.

7. Conclusion

In this study, exp(–φ(ξ))-expansion, generalized (G′/G)-expansion, and modified Kudryashov methods were used
to examine the soliton properties of the fractional (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation with
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conformable derivative. Then, for some of the solutions, 3D and 2D graphics were displayed to visualize the solutions
with appropriate values. The accuracy of these approaches has been demonstrated by analytical results and graphical
examples. Additionally, these solutions feature unique, significant physical characteristics that have been documented
in the literature. The physical meaning of the geometrical structures for some of these solutions is discussed. For
the observation of the physical activities of the problem, achieved exact solutions are vital. The proposed methods
are believed to be powerful, effective, and may play an important role in describing the physical features of various
nonlinear complex models. Therefore, these techniques can treat and solve some other fractional differential equations.
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