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Abstract

..

Some problems in science and technology are modeled using ambiguous, imprecise, or lacking contextual data.
In the modeling of some real-world problems, differential equations often involve multi-agent, multi-index, multi-

objective, multi-attribute, multi-polar information or uncertainty, rather than single bits. These types of differ-
entials are not well represented by fuzzy differential equations or bipolar fuzzy differential equations. Therefore,
m-pole fuzzy set theory can be applied to differential equations to deal with problems with multi-polar informa-
tion. In this paper, we study differential equations in m extremely fuzzy environments. We introduce the concept

gH-derivative of m-polar fuzzy-valued function. By considering different types of differentiability, we propose
some properties of the gH-differentiability of m-polar fuzzy-valued functions. We consider the m-polar fuzzy
Taylor expansion. Using Taylor expansion, Euler’s method and modified Euler’s method for solving the m-polar

fuzzy initial value problem are proposed. We discuss the convergence analysis of these methods. Some numerical
examples are described to see the convergence and stability of the proposed method. We compare these methods
by computing the global truncation error. From the numerical results, it can be seen that the modified Euler
method converges to the exact solution faster than the Euler method.
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1. Introduction

Differential equations are widely used in modeling physics and engineering problems, such as classical mechanics,
thermodynamics, general relativity, and electrodynamics. Typically, the initial conditions are considered to be precisely
defined in the model. Uncertain errors in observational, measurement, or experimental data may render the data
unclear, incomplete, or inaccurate. To mitigate this uncertainty or inaccuracy, fuzzy differential equations (FDEs)
can be used. Zadeh [44] introduced the concept of fuzzy sets to deal with uncertainty due to fuzziness or imprecision
rather than randomness. Chang and Zadeh [18] introduced fuzzy numbers, which are special types of fuzzy sets
that satisfy certain conditions. They also introduced fuzzy derivatives. Following the approach of [18], the extension
principle has been used to define the fuzzy derivative [20]. There are many fuzzy DEs for which analytical solutions
do not exist or are difficult to process analytically. For such differential equations, numerical programs are usually
used. Abbasbandy and Allahviranloo [2] presented Taylor’s method for solving ambiguous DE. Effati and Pakdaman
[21] used a novel approach to solving neural network based fuzzy IVP. They replaced the DE equation with a DE
system and split the solution into two parts, one part satisfying the initial conditions and the other part satisfying a
feed-forward neural network with controllable parameters. Gisilov et al. [25] proposed a linear transformation based
method to solve higher order linear differential equations with ambiguous initial values. They proposed a solution in
the form of a fuzzy function that satisfies the initial value problem. Pederson and Sambandham [36] solved fuzzy DEs
using the Runge-Kutta method. A method based on Euler and an improved Euler method introduced by Tapaswini
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and Chakraverty [41]. Fard and Gal [24] studied an iterative method to resolve a system of first order linear fuzzy
DEs having fuzzy coefficients Parandin [35] applied RK-method to obtain numerical solution of n-th order fuzzy DEs.
Tapaswini and Chakraverty [40] discussed the homotopy perturbation method and a method based on the Euler
method for fuzzy DEs. Jayakumar et al. [30] investigated and applied fifth order RK-method. Palligkinis et al. [34]
utilized RK-method to solve more general fuzzy DEs and discussed the convergence analysis for s-stage RK-method.
Ghazanfari et al. [26] applied a fourth order R-Kutta like method has used for numerical solution of fuzzy DEs.
Ivaz et al. [29] developed algorithms to approximate the solution of first order fuzzy DEs and hybrid fuzzy DEs.
Rabiei et al. [27] applied improved RK-nystrom method for second order fuzzy DEs. Characterization theorem has
been used by Pederson and Sambandham [37] to obtain the numerical solution of fuzzy DEs. Allahviranloo et al. [6]
presented Adam-moulton, Adam-Bashforth, and a predictor-corrector method in which three step Adam-Bashforth
is used as a predictor and the two-step Adam-Moulton method is used as a corrector. The stability and convergence
conditions of proposed methods have been discussed. Bade and Gal[12] put forward the concept of strongly generalized
differentiability and applied it to fuzzy DEs. Under this concept, the solution of fuzzy DE has decreasing length of its
support. Cano and Flores [16] introduced the notion of generalized H-differentiability.

Sometimes our information has two poles, one satisfactory, and the other unsatisfactory. Coexistence, harmony
and balance of both parties can be seen as a necessary condition for the intellectual and material health of human
beings and the strength and success of social institutions. Euler’s method for bipolar fuzzy initial value problems
under generalized differentiability is discussed in [38].
There are several problems with multipolar information. Analysts assume a multipolar world. Therefore, it is not
surprisingly, multipolar data and information play a vital role in different technological fields. Multipolar neurons in
the brain collect numerous inputs from other neurons in neurobiology. Multipolar techniques can be used to manage
large-scale applications of information technology. Real-world models often contain multiple attributes, multiple
indicators, multiple objects, and multiple information. Chen et al. [19] proposed the concept of m-polar fuzzy set
models by extending bipolar fuzzy set models. Akram et al. [4] considered m polar fuzzy linear systems. Akram [3]
presented the concept and application of m-polar fuzzy graphs.
The rest of the paper is structured as follows: In section 2, we give some definition and basic results. Some properties
of gH-differentiability are given in section 3. In section 4, we demonstrate Taylor’s theorem for m-polar fuzzy-valued
functions. In section 5, we describe the m-polar fuzzy initial value problem and some related theorems. We present
Euler and Modified Euler method for m-polar fuzzy IVPs in section 6. The consistency, stability, and convergence of
these methods have been discussed in section 7. In section 8, a few numerical examples have been presented. Lastly,
we give some concluding remarks in section 9.

2. Preliminaries

Chen et al. [19] considered the notion of m−polar fuzzy sets. The grade of membership of m−polar fuzzy sets
ranges over the interval [0, 1]m, and it represents m different properties of an object.

Definition 2.1. [4] The parametric form of m-polar fuzzy number (mPFN) U is a m-tuple ≺ [U1(δ1),U
1
(δ1)],

[U2(δ2),U
2
(δ2)], · · · , [Um(δm),Um

(δm)] ≻ of the functions U i(δi),U
i
(δi); 0 ≤ δi ≤ 1, i = 1, 2, · · · ,m, which satisfy the

following conditions:

(i) U i(δi) is a non-decreasing, bounded, right continuous at 0 and left continuous function on the interval (0, 1].

(ii) U i
(δi) is a non-decreasing, bounded, right continuous at 0 and left continuous function on the interval (0, 1].

(iii) U i(δi) ≤ U i
(δi), ∀ i = 1, 2, · · · ,m.

Note: All over the paper, i = 1, 2, · · · ,m.

Definition 2.2. [4] For any U =≺ [ui(δi),U
i
(δi)] ≻, V =≺ [Vi(δi),V

i
(δi)] ≻ and c ∈ R; 0 ≤ δi ≤ 1, the addition and

multiplication are laid out as;

(i) (U i ⊕ Vi)(δi) = U i(δi) + Vi(δi), (U i ⊕ Vi)(δi) = U i
(δi) + Vi

(δi),

(ii) U i ⊙ Vi
(δi) = min{U i(δi) Vi(δi),U i(δi) V

i
(δi),U

i
(δi) Vi(δi),U

i
(δi) V

i
(δi)},
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(iii) U i ⊙ Vi(δi) = max{U i(δi) Vi(δi),U i(δi) V
i
(δi),U

i
(δi) Vi(δi),U

i
(δi) V

i
(δi)},

(iv) For c ≥ 0, (c⊙ U i)(δi) = c(U i)(δi), (c⊙ U i
)(δi) = c(U i

)(δi),

(v) For c < 0, (c⊙ U i)(δi) = c(U i
)(δi), (c⊙ U i

)(δi) = c(U i)(δi).

Note: X denotes the space of mPFNs.

Definition 2.3. The generalized H-difference of two m-polar fuzzy numbers U ,V ∈ X is laid out as

U ⊖gH V = W ⇔

{
(a) U = V ⊕W,

(b) V = U ⊕ (−1)W.

U ⊖gH V exists if and only if U i ⊖gH Vi exists, that is,

U i ⊖gH Vi = Wi ⇔

{
(a1) U i = Vi ⊕Wi,

(b1) Vi = U i ⊕ (−1)Wi.

Definition 2.4. Let U =≺ [U i(δi),U
i
(δi)] ≻ and V =≺ [Vi(δi),V

i
(δi)] ≻,

0 ≤ δi ≤ 1, we define metric D : X× X → R+ ∪ {0} as follows

D(U ,V) = max
0≤δi≤1

{|U i(δi)− Vi(δi)|, |U
i
(δi)− Vi

(δi)|}.

That is, D1(U1,V1) = max
0≤δ1≤1

{|U1(δ1)− V1(δ1)|, |U
1
(δ1)− V1

(δ1)|},

D2(U2,V2) = max
0≤δ2≤1

{|U2(δ2)− V2(δ2)|, |U
2
(δ2)− V2

(δ2)|} and

Dm(Um,Vm) = max
0≤δm≤1

{|Um(δm)− Vm(δm)|, |Um
(δm)− Vm

(δm)|}.

Thus D(U ,V) = max{D1,D2, · · · ,Dm}.

Based on [43], we can prove that D has the following properties
(i). D(U

⊕
W,V

⊕
W) = D(U ,V), ∀U ,V,W ∈ X.

(ii). D(λ
⊙

U , λ
⊙

V) = |λ|D(U ,V), ∀U ,V ∈ X, λ ∈ R.
(iii). D(U

⊕
V,W

⊕
E) ≤ D(U ,W) +D(V, E), ∀U ,V,W, E ∈ X.

(iv). D(U ⊖ V ,W ⊖ E) ≤ D(U ,W) +D(V, E), when U ⊖ V and W ⊖ E both exist, ∀U ,V,W, E ∈ X.
Where ⊖ is H-difference, that is U ⊖ V = W if and only if U = V ⊕W.
(v). (X,D) is a complete metric space.

Definition 2.5. [39] Let F : J ⊂ R → X and t0 ∈ J , then F is generalized Hukuhara differentiable (GHD) at t0 ∈ J

if there is F ′(t0) ∈ X such that lim
k→0+

F(t0 + k)⊖gH F(t0)

k
exists and is equal to F ′(t0).

Definition 2.6. An m-polar FVF F : J ⊂ R → X is said to be

(i) 1-GHD if for k > 0, the differences F i(t0 + k) ⊖gH F i(t0) exist as case (a1) of Definition 2.3, for all i =
1, 2, · · · ,m, and limits

lim
k→0+

F i(t0 + k)⊖gH F i(t0)

k
exist and equal to F ′i

1−GH(t0).

(ii) 2-GHD if for k > 0, the differences F i(t0 + k) ⊖gH F i(t0) exist as case (b1) of Definition 2.3, for all i =
1, 2, · · · ,m, and limits

lim
k→0+

F i(t0 + k)⊖gH F i(t0)

k
exist and equal to F ′i

2−GH(t0).

(iii) (1,2)-GHD if for k > 0, the differences F i(t0 + k)⊖gH F i(t0) and F j(t0 + k)⊖gH F j(t0) exist as case (a1) and

(b1) of Definition 2.3, respectively, for all i, j = 1, 2, · · · ,m : i ̸= j, and limits lim
k→0+

F i(t0 + k)⊖gH F i(t0)

k
and

lim
k→0+

F j(t0 + k)⊖gH F j(t0)

k
exist and equal to F ′i

1−GH(t0) and F ′j
2−GH(t0), respectively.
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Theorem 2.7. Let F : J ⊂ R → X and

[F(t)]δ =≺ [F i(t; δi),F
i
(t; δi)] ≻, δi ∈ [0, 1], i = 1, 2, · · · ,m.

(1) If F is 1-GHD then F i
δi
, F i

δi , i = 1, 2, · · · ,m, all are differentiable and F ′i(t; δi) ≤ F ′i(t; δi), and

[F ′(t)]δ =≺ [F ′i(t; δi),F ′i(t; δi)] ≻ . (2.1)

(2) If F is 2-GHD then F i
δi
, F i

δi , i = 1, 2, · · · ,m, all are differentiable and F ′i(t; δi) ≤ F ′i(t; δi), and

[F ′(t)]δ =≺ [F ′i(t; δi),F ′i(t; δi)] ≻ . (2.2)

(3) If F is (1,2)-GHD then F i
δi
, F i

δi ,F
j
δj
, F j

δj , i, j = 1, 2, · · · ,m, i ̸= j, all are differentiable and F ′i(t; δi) ≤
F ′i(t; δi), F ′j(t; δj) ≤ F ′j(t; δj) and

[F ′(t)]δ =≺ [F ′i(t; δi),F ′i(t; δi)], [F ′j(t; δj),F ′j(t; δj)] ≻, (2.3)

[F ′(t)]δ =≺ [F ′i(t; δi),F ′i(t; δi)] ≻ .

Definition 2.8. A point t0 ∈ J is called a switching point for differentiability of the function F if in any neighborhood
U of t0, there are points t1 < t0 < t2 such that
Type (I) At t = t1, it is 1-GHD and is not 2-GHD and at t = t2 it is 2-GHD and is not 1-GHD, or
Type (II) At t = t1, it is 2-GHD and is not 1-GHD and at t = t2, it is 1-GHD and is not 2-GHD, or
Type (III) At t = t1, it is 1-GHD and is not (1,2)-GHD and at t = t2, it is (1,2)-GHD and is not 1-GHD, or
Type (IV) At t = t1 it is (1,2)-GHD and is not 1-GHD and at t = t2, it is 1-GHD and is not (1,2)-GHD, or
Type (V) At t = t1, it is 2-GHD and is not (1,2)-GHD and at t = t2, it is (1,2)-GHD and is not 2-GHD, or
Type (VI) At t = t1, it is (1,2)-GHD and is not 2-GHD and at t = t2, it is 2-GHD and is not (1,2)-GHD.

Definition 2.9. Let F : (c, d) → X and F(t) is GHD of order i, i = 1, 2, · · · , n− 1 at t0 which has not any switching
point over the interval [c, d], then F(t) is GHD of order n at t0 if F (n)(t0) ∈ X and

F (n)(t0) = lim
k→0

F (n−1)(t0 + k)⊖gH F (n−1)(t0)

k
.

Throughout the rest of the paper, we represent CF ([c, d],X), the set of all continuous m-polar FVFs in the interior
of [c, d] and it is one-sided continuous at end-points c and d. Let Ck

gH([c, d],X), k ∈ N denote the space of functions

F , such that F and its first k, gH-derivatives are in CF ([c, d],X).

Lemma 2.10. Let F ∈ CF ([c, d],X), k ∈ N, then the integrals∫ uk−1

c

F(uk)duk,

∫ uk−2

c

(

∫ uk−1

c

F(uk)duk)duk−1, · · · ,
∫ u

c

(

∫ u1

c

· · · (
∫ uk−2

c

(

∫ uk−1

c

F(uk)duk)duk−1) · · · )du1,

are continuous functions in uk−1, uk−2, · · · , u, respectively. Here uk−1, uk−2, · · · , u ≥ c all are real numbers.

3. Some Results of gH-differentiability

We present some properties of m-polar fuzzy Hukuhara gH-differentiability. We give some theorems by extending
some results of [9]

Theorem 3.1. Let F : [c, d] → X and F ∈ Cn
gH([c, d],X), then for all s ∈ [c, d],

(i) Let F (k)
gH , k = 1, 2, · · · , n are 1-GHD which have same kind of differentiability in [c, d], then

F (k−1)
1−GH(u) = F (k−1)

1−GH(c)⊕
∫ u

c

F (k)
1−GH(t)dt.
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(ii) Let F (k)
gH , k = 1, 2, · · · , n are 2-GHD which have same kind of differentiability in [c, d], then

F (k−1)
2−GH(u) = F (k−1)

2−GH(c)⊕
∫ u

c

F (k)
2−GH(t)dt.

(iii) Let F (k)
gH , k = 1, 2, · · · , n are (1,2)-GHD which have same kind of differentiability in [a, b], then

F (k−1)
(1,2).gH(u) = F (k−1)

(1,2).gH(c)⊕
∫ u

c

F (k)
(1,2).gH(t)dt.

(iv) Let F (k)
gH , k = 2m′ − 1, m′ ∈ N are 1-GHD and F (k)

gH , k = 2m′, m′ ∈ N are 2-GHD, then

F (k−1)
1−GH(u) = F (k−1)

1−GH(c)⊖ (−1)

∫ u

c

F (k)
2−GH(t)dt.

(v) Let F (k)
gH , k = 2m′ − 1, m′ ∈ N are 2-GHD and F (k)

gH , k = 2m′, m′ ∈ N are 1-GHD, then

F (k−1)
2−GH(u) = F (k−1)

2−GH(c)⊖ (−1)

∫ u

c

F (k)
1−GH(t)dt.

(vi) Let F (k)
gH , k = 2m′ − 1, m′ ∈ N are 1-GHD and F (k)

gH , k = 2m′, m′ ∈ N are (1,2)-GHD, then

F (k−1)
1−GH(u) = ≺ (F i

1−GH)(k−1)(c)⊕
∫ u

c

(F i
1−GH)(k)(t)dt,

(F j
1−GH)(k−1)(c)⊖ (−1)

∫ u

c

(F j
2−GH)(k)(t)dt ≻, i, j = 1, 2, · · · ,m; i ̸= j.

(vii) Let F (k)
gH , k = 2m′ − 1, m′ ∈ N are 2-GHD and F (k)

gH , k = 2m′, m′ ∈ N are (1,2)-GHD, then

F (k−1)
2−GH(u) = ≺ (F i

2−GH)(k−1)(c)⊖ (−1)

∫ u

c

(F i
1−GH)(k)(t)dt,

(F j
2−GH)(k−1)(c)⊕

∫ u

c

(F j
2−GH)(k)(t)dt ≻, i, j = 1, 2, · · · ,m; i ̸= j.

Proof. Since, by assumption F ∈ Cn
gH([c, d],X), therefore F (k), k = 1, 2, · · · , n are m-polar fuzzy Reimann integrable.

(i). As F (k), k = 1, 2, · · · , n are 1-GHD, we have∫ u

c

F (k)
1−GH(t; δ)dt =≺ [

∫ u

c

(F i
1−GH)(k)(t; δi)dt,

∫ u

c

(F i

1−GH)(k)(t; δi)dt] ≻

=≺ [(F i
1−GH)(k−1)(u; δi)− (F i

1−GH)(k−1)(c; δi), (F
i

1−GH)(k−1)(u; δi)− (F i

1−GH)(k−1)(c; δi)] ≻

=≺ [(F i
1−GH)(k−1)(u; δi), (F

i

1−GH)(k−1)(u; δi)] ≻ ⊖ ≺ [(F i
1−GH)(k−1)(c; δi), (F

i

1−GH)(k−1)(c; δi)] ≻

= F (k−1)
1−GH(u; δ)⊖F (k−1)

1−GH(c; δ).

Thus,

F (k−1)
1−GH(u; δ) = F (k−1)

1−GH(c; δ)⊕
∫ u

c

F (k)
1−GH(t; δ)dt.

Hence,

F (k−1)
1−GH(u) = F (k−1)

1−GH(c)⊕
∫ u

c

F (k)
1−GH(t)dt.
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(ii). As F (k), k = 1, 2, · · · , n are 2-GHD, we have∫ u

c

F (k)
2−GH(t; δ)dt =≺ [

∫ u

c

(F i

2−GH)(k)(t; δi)dt,

∫ u

c

(F i
2−GH)(k)(t; δi)dt] ≻

=≺ [(F i

2−GH)(k−1)(u; δi)− (F i

2−GH)(k−1)(c; δi), (F i
2−GH)(k−1)(u; δi)− (F i

2−GH)(k−1)(c; δi)] ≻

=≺ ([F i

2−GH)(k−1)(u; δi), (F i
2−GH)(k−1)(u; δi)] ≻ ⊖ ≺ [(F i

2−GH)(k−1)(c; δi), (F i
2−GH)(k−1)(c; δi)] ≻

= F (k−1)
2−GH(u; δ)⊖F (k−1)

2−GH(c; δ).

Thus,

F (k−1)
2−GH(u; δ) = F (k−1)

2−GH(c; δ)⊕
∫ u

c

F (k)
2−GH(t; δ)dt.

Hence,

F (k−1)
1−GH(u) = F (k−1)

1−GH(c)⊕
∫ u

c

F (k)
1−GH(t)dt.

�

Theorem 3.2. Let F ∈ C4
gH

(
[c, d],X

)
, then

(i) Let F (k)
gH , k = 1, 2, 3, 4 are 1-GHD which has same kind of differentiability in [c, d], then

F ′′
1−GH(c) ≈

F ′
1−GH(u)⊖F ′

1−GH(c)

u− c
.

(ii) Let F (k)
gH , k = 1, 2, 3, 4 are 2-GHD which has same kind of differentiability in [c, d], then

F ′′
2−GH(c) ≈

F ′
2−GH(u)⊖F ′

2−GH(c)

u− c
.

(iii) Let F (k)
gH , i = 1, 2, 3, 4 are (1,2)-GHD which has same kind of differentiability in [c, d], then

F ′′
(1,2)(c) ≈

F ′
(1,2)sv)⊖F ′

(1,2)(c)

u− c
.

(iv) Let F (k)
gH , k = 1, 3 are 1-GHD and F (k)

gH , k = 0, 2, 4 are 2-GHD, then

F ′′
1−GH(c) ≈

F ′
2−GH(u)⊖F ′

2−GH(c)

u− c
.

(v) Let F (k)
gH , k = 1, 3 are 2-GHD and F (k)

gH , k = 0, 2, 4 are 1-GHD, then

F ′′
2−GH(c) ≈

F ′
1−GH(u)⊖F ′

1−GH(c)

u− c
.

Proof. AS F ∈ C4
(
[c, d],X

)
, so F (k)

gH , k = 0, 1, 2, 3, 4, are integrable.

(i). Let F (k)
gH be 1-GHD; by Theorem 3.1, we have

F ′
1−GH(u) = F ′

1−GH(c)⊕
∫ u

c

F ′′
1−GH(u1)du1,

and

F ′′
1−GH(u1) = F ′′

1−GH(c)⊕
∫ u1

c

F ′′′
1−GH(u2)du2.
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By apply integration, we have∫ u

c

F ′′
1−GH(u1)du1 =F ′′

1−GH(c)⊙ (u− c)⊕
∫ u

c

( ∫ u1

c

F ′′′
1−GH(u2)du2

)
du1,

where
∫ u

c

( ∫ u1

c
F ′′′

1−GH(u2)du2
)
du1 ∈ X. Thus

F ′
1−GH(u) =F ′

1−GH(c)⊕F ′′
1−GH(c)⊙ (u− c)⊕

∫ u

c

( ∫ u1

c

F ′′′
1−GH(u2)du2

)
du1.

Again, by Theorem 3.1, we have

F ′′′
1−GH(u2) = F ′′′

1−GH(c)⊕
∫ u2

c

F (iv)
(1−GH(u3)du3.

Apply integration, we get∫ u1

c

F ′′′
1−GH(u2)du2 =F ′′′

1−GH(c)⊙ (u1 − c)⊕
∫ u1

c

( ∫ u2

c

F (iv)
1−GH(u3)du3

)
du2,

furthermore∫ u

c

( ∫ u1

c

F ′′′
1−GH(u2)du2

)
du1 =F ′′′

1−GH(c)⊙ (u− c)2

2
⊕
∫ u

c

( ∫ u1

c

( ∫ u2

c

F (iv)
1−GH(u3)du3

)
du2

)
du1,

where
∫ u

c

( ∫ u1

c

( ∫ u2

c
F (iv)

1−GH(u3)du3
)
du2

)
du1 ∈ X.

Hence

F ′
1−GH(u) =F ′

1−GH(c)⊕F ′′
1−GH(c)⊙ (u− c)⊕F ′′′

1−GH(c)⊙ (u− c)2

2
⊕
∫ u

c

( ∫ u1

c

( ∫ u2

c

F (iv)
1−GH(u3)du3

)
du2

)
du1.

If u → c, that is, (u− c) → 0, then

D
(
F ′

1−GH(u),F ′
1−GH(c)⊕F ′′

1−GH(c)⊙ (u− c)
)
→ 0,

thus

D
(
F ′

1−GH(u)⊖F ′
1−GH(c),F ′′

1−GH(c)⊙ (u− c)
)
→ 0.

Hence

F ′′
1−GH(c) ≈

F ′
1−GH(u)⊖F ′

1−GH(c)

u− c
.

The remaining parts of the theorem can be proved in similar manners. �

4. Taylor theorem for m-polar fuzzy valued function

We present Taylor expansion for m-polar FVFs for several cases by using gH-differentiability concept.

Theorem 4.1. Let I = [c, c+ h] ⊆ R, h > 0 and F ∈ Cn
gH([c, d],X). For u ∈ I

(i) Let F (k)
gH , k = 0, 1, · · · , n− 1 are 1-GHD which have same kind of differentiability over [c, d], then

F(u) = F(c)⊕ (F1−GH)′(c)⊙ (u− c)⊕ (F1−GH)′′(c)⊙ (u− c)2

2!
⊕ · · ·

⊕(F1−GH)(n−1)(c)⊙ (u− c)n−1

(n− 1)!
⊕Rn(c, u),

where Rn(c, u) =
∫ u

c
(
∫ u1

c
· · · (

∫ uk−2

c
(
∫ uk−1

c
(F1−GH)

(n)(uk)duk)duk−1) · · · )du1.
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(ii) Let F (k)
gH , k = 0, 1, · · · , n− 1 are 2-GHD which have same kind of differentiability over [c, d], then

F(u) =F(c)⊖ (−1)(F2−GH)′(c)⊙ (u− c)⊖ (−1)(F2−GH)′′(c)⊙ (u− c)2

2!

⊖ (−1) · · · ⊖ (−1)(F2−GH)(n−1)(c)⊙ (u− c)n−1

(n− 1)!
⊖ (−1)Rn(c, u),

where Rn(c, u) =
∫ u

c
(
∫ u1

c
· · · (

∫ uk−2

c
(
∫ uk−1

c
(F2−GH)

(n)(uk)duk)duk−1) · · · )du1.
(iii) Let F (k)

gH , k = 0, 1, · · · , n− 1 are (1,2)-GHD which have same kind of differentiability over [c, d], then

F(u) =≺F i(c)⊕ (F i
1−GH)′(c)⊙ (u− c)⊕ (F i

1−GH)′′(c)⊙ (u− c)2

2!
⊕ · · ·

⊕ (F i
1−GH)(n−1)(c)⊙ (u− c)n−1

(n− 1)!
⊕Ri

n(c, u),

F j(c)⊖ (−1)(F j
2−GH)′(c)⊙ (u− c)⊖ (−1)(F j

2−GH)′′(c)⊙ (u− c)2

2!

⊖(−1) · · · ⊖ (−1)(F j
2−GH)(n−1)(c)⊙ (u− c)n−1

(n− 1)!
⊖ (−1)Rj

n(c, u) ≻

i, j = 1, 2, · · · ,m; i ̸= j,

where Ri
n(c, u) =

∫ u

c
(
∫ u1

c
· · · (

∫ uk−2

c
(
∫ uk−1

c
(F(1−GH)

(n)(uk)duk)duk−1) · · · )du1 and

Rj
n(c, u) =

∫ u

c
(
∫ u1

c
· · · (

∫ uk−2

c
(
∫ uk−1

c
(F2−GH)

(n)(uk)duk)duk−1) · · · )du1.
(iv) Let F (k)

gH , k = 2m′ − 1, m′ ∈ N are 1-GHD and F (k)
gH , k = 2m′, m′ ∈ N ∪ {0} are 2-GHD, then

F(u) =F(c)⊖ (−1)(F2−GH)′(c)⊙ (u− c)⊕ (F2−GH)′′(c)⊙ (u− c)2

2!

⊖ (−1) · · · ⊖ (−1)(F2−GH)(
k−1
2 )(c)⊙ (c− u)

k−1
2

(k−1
2 )!

⊕ (F1−GH)(
k
2 )(c)

⊙ (c− u)
k
2

(k2 )!
⊖ (−1)Rn(c, u),

where Rn(c, u) =
∫ u

c
(
∫ u1

c
· · · (

∫ uk−2

c
(
∫ uk−1

c
(F1−GH)

(n)(uk)duk)duk−1) · · · )du1.
(v) Let F (k)

gH , k = 2m′ − 1, m′ ∈ N are 1-GHD and F (k)
gH , k = 2m′, m′ ∈ N ∪ {0} are (1,2)-GHD, then

F(u) =≺F i(c)⊕ (F i
1−GH)′(c)⊙ (u− c)⊕ (F i

1−GH)′′(c)⊙ (u− c)2

2!
⊕ · · ·

⊕ (F i
1−GH)(n−1)(c)⊙ (u− c)n−1

(n− 1)!
⊕Ri

n(c, u),

F j(c)⊖ (−1)(F j
2−GH)′(c)⊙ (u− c)⊕ (F j

1−GH)′′(c)⊙ (u− c)2

2!

⊖ (−1) · · · ⊖ (−1)(F j
2−GH)(

i−1
2 )(c)⊙ (c− u)

i−1
2

( i−1
2 )!

⊕ (F j
1−GH)(

i
2 )(c)

⊙ (c− u)
i
2

( i
2 )!

⊖ (−1)Rj
n(c, u) ≻, i, j = 1, 2, · · · ,m; i ̸= j,

where Ri
n(c, u) =

∫ u

a
(
∫ u1

c
· · · (

∫ uk−2

c
(
∫ uk−1

c
(F i

(1−GH)
(n)(uk)duk)duk−1) · · · )du1

and
Rj

n(c, u) =
∫ u

c
(
∫ u1

c
· · · (

∫ uk−2

c
(
∫ uk−1

c
(F j

1−GH)
(n)(uk)duk)duk−1) · · · )du1.
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(vi) Let F (k)
gH , k = 2m′ − 1, m′ ∈ N are 2-GHD and F (k)

gH , k = 2m′, m′ ∈ N ∪ {0} are (1,2)-GHD, then

F(u) =≺F i(c)⊖ (−1)(F i
2−GH)′(c)⊙ (u− c)⊕ (F i

1−GH)′′(c)

⊙ (u− c)2

2!
⊖ (−1) · · · ⊖ (−1)(F i

2−GH)(
k−1
2 )(c)⊙

(c− u)
k−1
2

(k−1
2 )!

⊕ (F i
1−GH)(

k
2 )(c)⊙ (c− u)

k
2

(k2 )!
⊖ (−1)Ri

n(a, u),

F j(c)⊖ (−1)(F j
2−GH)′(u)⊙ (u− c)⊖ (−1)(F j

2−GH)′′(u)⊙ (u− c)2

2!

⊖ (−1) · · · ⊖ (−1)(F j
2−GH)(n−1)(u)⊙ (u− c)n−1

(n− 1)!
⊖ (−1)Rj

n(c, u) ≻, i, j = 1, 2, · · · ,m; i ̸= j,

where Ri
n(c, u) =

∫ u

c
(
∫ u1

c
· · · (

∫ uk−2

c
(
∫ uk−1

c
(F i

1−GH)
(n)(uk)duk)duk−1) · · · )du1, and

Rj
n(c, u) =

∫ u

c
(
∫ u1

c
· · · (

∫ uk−2

c
(
∫ uk−1

c
(F j

2−GH)
(n)(uk)duk)duk−1) · · · )du1.

Proof. (i). Since F is 1-GHD, by Theorem 2.7, we have

F(u) = F(c)⊕
∫ u

c

(F1−GH)′(u1)du1,

by Theorem 3.1, we have

(F1−GH)′(u1) = (F1−GH)′(c)⊕
∫ u1

c

(F1−GH)′′(u2)du2,

thus ∫ u

c

(F1−GH)′(u1)du1 =

∫ u

c

(F1−GH)′(c)du1 ⊕
∫ u

c

(

∫ u1

c

(F1−GH)′′(u2)du2)du1

=(F1−GH)′(c)⊙ (u− c)⊕
∫ u

c

(

∫ u1

c

(F1−GH)′′(u2)du2)du1.

Now by Lemma 2.10,
∫ u

c
(
∫ u1

c
(F1−GH)′′(u2)du2)du1 ∈ X, so

F(u) = F(c)⊕ (F1−GH)′(a)⊙ (u− c)⊕
∫ u

c

(

∫ u1

c

(F1−GH)′′(u2)du2)du1.

Again, using Theorem 3.1, we have

(F1−GH)′′(u2) = (F1−GH)′′(c)⊕
∫ u2

c

(F1−GH)′′′(u3)du3,

Applying m-polar fuzzy Riemann operator, we have∫ u1

c

(F1−GH)′′(u2)du2 =

∫ u1

c

(F1−GH)′′(a)du2 ⊕
∫ u1

c

(

∫ u2

c

(F1−GH)′′′(u3)du3)du2

=(F1−GH)′′(a)⊙ (u1 − a)⊕
∫ u1

c

(

∫ u2

c

(F1−GH)′′′(u3)du3)du2,

furthermore∫ u

c

(

∫ u1

c

(F1−GH)′′(u2)du2)du1 =(F1−GH)′′(c)⊙
∫ u

c

(u1 − c)du1 ⊕
∫ u

c

(

∫ u1

c

(

∫ u2

c

(F1−GH)′′′(u3)du3)du2)du1.

By Lemma 2.10,
∫ u

c
(
∫ u1

c
(
∫ u2

c
(F1−GH)′′′(u3)du3)du2)du1 ∈ X.

Thus

F(u) =F(c)⊕ (F1−GH)′(c)⊙ (u− c)⊕ (F1−GH)′′(c)⊙ (u− c)2

2!
⊕
∫ u

c

(

∫ u1

c

(

∫ u1

c

(F1−GH)′′′(u2)du3)du2)du1.
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5. m-polar Fuzzy Cauchy Problem

Following the idea of Ma et. al [32], an m-polar fuzzy cauchy problem is defined as follows:

x′gH(t) = F(t, x(t)); x(t0) = x0 and t ∈ J = [c, d], (5.1)

where x0 ∈ X, x : J → X, and F : J × X → X.

Lemma 5.1. (i). A mapping x : J → X is a (1)-solution of (5.1) iff it is continuous and satisfies

x(t) = y0 ⊕
∫ t

t0

F(u, x(u))du; y(t0) = x0.

(ii). A mapping x : J → X is a (1,2)-solution of (5.1) iff it is continuous and satisfies

xi(t) = xi0 ⊕
∫ t

t0

F i(u, xi(u))du; xi(t0) = xi0,

xj(t) = xj0 ⊖ (−1)

∫ t

t0

F j(u, xj(u))du; xj(t0) = xj0, i, j = 1, 2, · · · ,m; i ̸= j.

(iii). A mapping x : J → X is a (2)-solution of (5.1) iff it is continuous and satisfies

x(t) = y0 ⊖ (−1)

∫ t

t0

F(u, x(u))du; x(t0) = x0.

Based on [31].

Theorem 5.2. Let F : J × X → X be continuous and assume there is a µ > 0 such that

D((F(t,U),F(t,V)) ≤ µD(U ,V),

for all t ∈ T, U ,V ∈ X. Then the problem (5.1) has a unique solution on J .

To prove the equivalence between a m-polar fuzzy differential equation and system of m real differential equations,
we need a Characteristic theorem.

Theorem 5.3. Characteristic Theorem
If a function F : J × X → X is continuous, m-polar FVF and GHD that satisfies the following differential equation

x′gH(t) = F(t, x(t)), x(t0) = x0 ∈ X and t ∈ J = [c, d],

Also suppose the following conditions

• [F(t, x(t))]δ =≺ [F i(t, xi(t; δi), x
i(t; δi)),F

i
(t, xi(t; δi), x

i(t; δi))] ≻,
δ = (δ1, δ2, · · · , δm) ∈ [0, 1]m, i = 1, 2, · · · ,m.

• Each F i(t, xi(t; δi), x
i(t; δi)),F

i
(t, xi(t; δi), x

i(t; δi)), i = 1, 2, · · · ,m are equicontinuous. That is for ϵ > 0 and
any point (t,U ,V) ∈ J ×R2, if ||(t,U ,V)− (t,U1,V1)|| < δ, for all δi ∈ [0, 1], we have

|F i
δi
(t, xi(t; δi), x

i(t; δi))−F i
δi
(t, xi(t; δi), x

i(t; δi))| < ϵ,

|F i
δi(t, x

i(t; δi), x
i(t; δi))−F i

δi(t, x
i(t; δi), x

i(t; δi))| < ϵ,

|F i

δi(t, x
i(t; δi), x

i(t; δi))−F i
δi(t, x

i(t; δi), x
i(t; δi))| < ϵ,

|F i

δi(t, x
i(t; δi), x

i(t; δi))−F i

δi(t, x
i(t; δi), x

i(t; δi))| < ϵ.

• Each F i
δi
(t, xi(t; δi)), x

i(t; δi),F
i

δi(t, x
i(t; δi), x

i(t; δi)), i = 1, 2, · · · ,m, are bounded on any bounded set.
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• Each F i
δi
(t, xi(t; δi), x

i(t; δi),F
i

δi(t, x
i(t; δi), x

i(t; δi)), i = 1, 2, · · · ,m satisfy Lipschitz condition, that is for
all δi ∈ [0, 1], there exists L > 0 such that

|F i
δi
(t,U1,V1)−F i

δi
(t,U2,V2)| ≤ Lmax{|U1 − U2|, |V1 − V2|},

|F i
δi(t,U1,V1)−F i

δi(t,U2,V2)| ≤ Lmax{|U1 − U2|, |V1 − V2|},

|F i

δi(t,U1,V1)−F i
δi(t,U2,V2)| ≤ Lmax{|U1 − U2|, |V1 − V2|},

|F i

δi(t,U1,V1)−F i

δi(t,U2,V2)| ≤ Lmax{|U1 − U2|, |v1 − v2|},

then the m-polar fuzzy differential equation is equivalent to one of the system of real differential equations in cone
x′

i
(t; δi) = F i(t, xi(t; δi), x

i(t; δi)); x
i(t0; δi) = xi0(δi),

x′
i
(t; δi) = vi(t, xi(t; δi), x

i(t; δi)); x
i(t0; δi) = xi0(δi),

i = 1, 2, · · · ,m.


x′

i
(t; δi) = F i

(t, xi(t; δi), x
i(t; δi)); x

i(t0; δi) = xi0(δi),

x′
i
(t; δi) = F i(t, xi(t; δi), x

i(t; δi)); x
i(t0; δi) = xi0(δi),

i = 1, 2, · · · ,m.

6. Proposed methods

In this section, we demonstrate Euler and modified Euler method for m-polar fuzzy IVPs.

6.1. Euler method. To derive the Euler method, we subdivide the interval [0, T ] into partition P = {t0 = 0 < t1 <
· · · < tN = T}, where tn = nh, n = 0, 1, · · · ,N .
Under the assumption that second order gH-derivative of x(t) exists, we examine the solution of m-polar fuzzy IVP
(5.1).
Case 1.
Suppose the unique solution of m-polar fuzzy IVP (5.1), x(t) is 1-GHD and belongs to C2

gH

(
[0, T ],X

)
which has same

kind of differentiability over [0, T ]. Using Taylor expansion of unknown m-polar fuzzy-valued function x(t) about tn,
for each k = 0, 1, · · · ,N , we have

x(tn+1) =x(tn)⊕ (tn+1 − tn)⊙ (x1−GH)′(tn)⊕
(tn+1 − tn)

2

2!
⊙ (x1−GH)

′′(ξk), where tn < ξn < tn+1,

x(tn+1) =x(tn)⊕ h⊙F(tn, x(tn))⊕
h2

2!
⊙ (x1−GH)′′(ξn).

Moreover, we have

D
(
x(tn+1), x(tn)⊕ h⊙F(tn, x(tn))⊕

h2

2!
⊙ (x1−GH)′′(ξk)

)
≤ D

(
x(tn+1), x(tn)⊕ h⊙F(tn, x(tn))

)
+D

(
0,
h2

2!
⊙ (x1−GH)′′(ξn)

)
→ 0,

as h→ 0, since

D
(
x(tn+1), x(tn)⊕ h⊙F(tn, x(tn))

)
→ 0,

D
(
0,
h2

2!
⊙ (x1−GH)′′(ξn)

)
→ 0.

Hence, for sufficiently small h, we have

x(tk+1) ≈ x(tn)⊕ h⊙F(tn, x(tn)).
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Let, the approximated value of x(tn+1) =≺ x1(tn+1), x
2(tn+1), · · · , xm(tn+1) ≻ be xn+1 =≺ x1n+1, x

2
n+1, · · · , xmn+1 ≻,

then we have Euler method as follows;{
x(t0) = x0,

xn+1 = xn ⊕ h⊙F(tn, x(tn)).
(6.1)

Case 2.
When x(t) is 2-GHD and kind of differentiability does not change over [0, T ], we have the Euler method as follows;{

x(t0) = x0,

xn+1 = xn ⊖ (−1)h⊙F(tn, x(tn)).
(6.2)

Case 3.
When x(t) is [(1, 2) − gH]-differentiable and kind of differentiability do not change over [0, T ], then xn =≺ xin, x

j
n ≻

, i, j = 1, 2, · · · ,m; i ̸= j, is approximated as
xi0 = xi0,

xj0 = xj0,

xin+1 = xin ⊕ h⊙F i(tn, x
i
n),

xjn+1 = xjn ⊖ (−1)h⊙F j(tn, x
j
n), i, j = 1, 2, · · · ,m; i ̸= j.

(6.3)

Case 4.
When x(t) has switching point of type I at ζ ∈ [0, T ] and t0 = 0, t1, · · · , tk−1,
ζ, tk+1, · · · , tN = T be partition of interval [0, T ], then we have

x0 = x0,

xn+1 = xn ⊕ h⊙F(tn, xn), n = 0, 1, · · · , k − 1,

xn+1 = xn ⊖ (−1)h⊙F(tn, xn), n = k + 1, k + 2, · · · ,N − 1.

(6.4)

Case 5.
When x(t) has switching point of type II at ζ ∈ [0, T ] and t0 = 0, t1, · · · , tk−1, ζ,
tk+1, · · · , tN = T be partition of interval [0, T ], then we have

x0 = x0,

xn+1 = xn ⊖ (−1)h⊙F(tn, xn), n = 0, 1, · · · , k − 1,

xn+1 = xn ⊕ h⊙F(tn, xn), n = k + 1, k + 2, · · · ,N − 1.

(6.5)

Case 6.
When x(t) has switching point of type III at ζ ∈ [0, T ] and t0 = 0, t1, · · · , tk−1, ζ,
tk+1, · · · , tN = T be partition of interval [0, T ], then we have

xi0 = xi0,

xj0 = xj0,

xn+1 = xn ⊕ h⊙F(tn, xn), n = 0, 1, · · · , k − 1,

xin+1 = xin ⊕ h⊙F i(tn, x
i
n), n = k + 1, k + 2, · · · ,N − 1,

xjn+1 = xjn ⊖ (−1)h⊙F j(tn, x
j
n), n = k + 1, k + 2, · · · ,N − 1, i, j = 1, 2, · · · ,m; i ̸= j.

(6.6)

Case 7.
When x(t) has switching point of type IV at ζ ∈ [0, T ] and t0 = 0, t1, · · · , tk−1, ζ,
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tk+1, · · · , tN = T be partition of interval [0, T ], then we have

xi0 = xi0,

xj0 = xj0,

xin+1 = xin ⊕ h⊙F i(tn, x
i
n), n = 1, 2, · · · , k − 1,

xjn+1 = xjn ⊖ (−1)h⊙F j(tn, x
j
n), n = 1, 2, · · · , k − 1,

xn+1 = xn ⊕ h⊙F(tn, xn), n = k + 1, k + 2, · · · ,N − 1; i, j = 1, 2, · · · ,m; i ̸= j.

(6.7)

Case 8.
When x(t) has a switching point of type V at ζ ∈ [0, T ] and t0 = 0, t1, · · · , tk−1, ζ,
tk+1, · · · , tN = T be partition of interval [0, T ], then we have

xi0 = xi0,

xj0 = xj0,

xn+1 = xn ⊖ (−1)h⊙F(tn, xn), n = 0, 1, · · · , k − 1,

xin+1 = xin ⊕ h⊙F i(tn, x
i
n), n = k + 1, k + 2, · · · ,N − 1,

xjn+1 = xjn ⊖ (−1)h⊙F j(tn, x
j
n), n = k + 1, k + 2, · · · ,N − 1, i, j = 1, 2, · · · ,m; i ̸= j.

(6.8)

Case 9.
When x(t) has switching point of type VI at ζ ∈ [0, T ] and t0 = 0, t1, · · · , tk−1, ζ,
tk+1, · · · , tN = T be partition of interval [0, T ], then we have

xi0 = xi0,

xj0 = xj0,

xin+1 = xin ⊕ h⊙F i(tn, x
i
n), n = 1, 2, · · · , k − 1,

xjn+1 = xjn ⊖ (−1)h⊙F j(tn, x
j
n), n = 1, 2, · · · , k − 1,

xn+1 = xn ⊖ (−1)h⊙F(tn, xn), n = k + 1, k + 2, · · · ,N − 1; i, j = 1, 2, · · · ,m; i ̸= j.

(6.9)

6.2. Modified Euler method. To derive Modified Euler method, we subdivide the interval [0, T ] into partition
P = {t0 = 0 < t1 < · · · < tN = T}, where tn = nh, n = 0, 1, · · · ,N .
Case 1.
Suppose the unique solution of m-polar fuzzy IVP (5.1), x(t) =≺ xi(t) ≻, i = 1, 2, · · · ,m is 1-GHD and belongs to
C4
gH

(
[0, T ],X

)
such that type of differentiability do not change over [0, T ]. Using Taylor expansion of unknown m-polar

fuzzy-valued function x(t) about tn, for each k = 0, 1, · · · , N , we have

x(tn+1) =x(tn)⊕ (tn+1 − tn)⊙ (x(1−GH)′(tn)⊕
(tn+1 − tn)

2

2!
⊙ (x1−GH)′′(tn)

⊕ (tn+1 − tn)
3

3!
⊙ (x1−GH)′′′(ξk), where tn < ξn < tn+1.

x(tn+1) =x(tn)⊕ h⊙F(tn, x(tn))⊕
h2

2!
⊙ (x1−GH)′′(tn)⊕

h3

3!
⊙ (x1−gH)′′′(ξn).

By Theorem 4.1, we get

x(tn+1) =x(tn)⊕ h⊙F(tn, x(tn))⊕
h2

2!
⊙

(x′1−GH(tn+1)⊖ x′1−GH(tn)

tn+1 − tn

)
⊕ h3

3!
⊙ (x1−GH)′′′(ξn).

Thus

x(tn+1) =x(tn)⊕ h⊙F(tn, x(tn))⊕
h2

2!
⊙

(F(tn+1, x(tn+1))⊖F(tn, x(tn))

h

)
⊕ h3

3!
⊙ (x1−GH)′′′(ξk).
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Hence, for sufficiently small h, we have

x(tn+1) ≈ x(tn)⊕ h⊙F(tn, x(tn))⊕
h2

2!
⊙
(F(tn+1, x(tn+1))⊖F(tn, x(tn))

h

)
. (6.10)

For an iterative method, first we predict the value of x(tk+1) by Euler method and then this predicted value of x(tn+1)
is used in (6.10).
Let, the approximated value of x(tn+1) =≺ x1(tn+1), x

2(tn+1), · · · , xm(tn+1) ≻ be xn+1 =≺ x1n+1, x
2
n+1, · · · , xmn+1 ≻,

then we have the Modified Euler method as follows;
x(t0) = x0,

x∗n+1 = xn ⊕F(tn, xn),

xn+1 = xn ⊕ h
2 ⊙ [F(tn, xn)⊕F(tn + h, x∗n+1)].

(6.11)

Case 2.
When x(t) is 2-GHD and type of differentiability do not change over [0, T ], we have the Euler method as follows;

x(t0) = x0,

x∗n+1 = xn ⊖ (−1)h⊙F(tn, xn),

xn+1 = xn ⊖ (−1)h2 ⊙ [F(tn, xn)⊕F(tn + h, x∗n+1)].

(6.12)

Case 3.
When x(t) is [(1, 2) − gH]-differentiable and type of differentiability do not change over [0, T ], then xn =≺ xin, x

j
n ≻

, i, j = 1, 2, · · · ,m; i ̸= j, is approximated as

xi0 = xi0,

xj0 = xj0,

x∗in+1 = xin ⊕ h⊙F i(tn, x
i
n),

x∗jn+1 = xjn ⊖ (−1)h⊙F j(tn, x
j
n),

xin+1 = xin ⊕ h
2 ⊙ [F i(tn, x

i
n)⊕F i(tn + h, x∗in+1)],

xjn+1 = xjn ⊖ (−1)h2 ⊙ [F j(tn, x
j
n)⊕F j(tn + h, x∗jn+1)], i, j = 1, 2, · · · ,m; i ̸= j.

(6.13)

Case 4.
When x(t) has switching point of type I at ζ ∈ [0, T ] and t0 = 0, t1, · · · , tk−1, ζ,
tk+1, · · · , tN = T be partition of interval [0, T ], then we have

x0 = x0,

x∗n+1 = xn ⊕ h⊙F(tn, xn),

xn+1 = xn ⊕ h
2 ⊙ [F(tn, xn)⊕F(tn + h, x∗n+1)] n = 0, 1, · · · , k − 1,

x∗n+1 = xn ⊖ (−1)h⊙F(tn, xn),

xn+1 = xn ⊖ (−1)h2 ⊙ [F(tn, xn)⊕F(tn + h, x∗n+1)], n = k + 1, k + 2, · · · ,N − 1.

(6.14)

Case 5.
When x(t) has switching point of type II at ζ ∈ [0, T ] and t0 = 0, t1, · · · , tk−1, ζ,
tk+1, · · · , tN = T be partition of interval [0, T ], then we have

x0 = x0,

x∗n+1 = xn ⊖ (−1)h⊙F(tn, xn),

xn+1 = xn ⊖ (−1)h2 ⊙ [F(tn, xn)⊕F(tn + h, x∗n+1)], n = 0, 1, · · · , k − 1,

x∗n+1 = xn ⊕ h⊙F(tn, xn),

xn+1 = xn ⊕ h
2 ⊙ [F(tn, xn)⊕F(tn + h, x∗n+1)], n = k + 1, k + 2, · · · ,N − 1.

(6.15)
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Case 6.
When x(t) has switching point of type III at ζ ∈ [0, T ] and t0 = 0, t1, · · · , tk−1, ζ,
tk+1, · · · , tN = T be partition of interval [0, T ], then we have



xi0 = xi0,

xj0 = xj0,

x∗n+1 = xn ⊕ h⊙F(tn, xn),

xn+1 = xn ⊕ h
2 ⊙ [F(tn, xn)⊕F(tn + h, x∗n+1)], n = 0, 1, · · · , k − 1;

x∗in+1 = xin ⊕ h⊙F i(tn, x
i
n),

xin+1 = xin ⊕ h
2 ⊙ [F i(tn, x

i
n)⊕FI(tn + h, x∗in+1)], n = k + 1, k + 2, · · · ,N − 1,

x∗jn+1 = xjn ⊖ (−1)h⊙F j(tn, x
j
n),

xjn+1 = xJn ⊖ (−1)h2 ⊙ [F j(tn, x
j
n)⊕F j(tn + h, x∗jn+1)],

n = k + 1, k + 2, · · · ,N − 1, i, j = 1, 2, · · · ,m; i ̸= j.

(6.16)

Case 7.
When x(t) has switching point of type IV at ζ ∈ [0, T ] and t0 = 0, t1, · · · , tk−1, ζ,
tk+1, · · · , tv = T be partition of interval [0, T ], then we have



xi0 = xi0,

xj0 = xj0,

x∗in+1 = xin ⊕ h⊙F i(tn, x
i
n),

xin+1 = xin ⊕ h
2 ⊙ [F i(tn, x

i
n)⊕F i(tn + h, x∗in+1)], n = 1, 2, · · · , k − 1,

x∗jn+1 = xjn ⊖ (−1)h⊙F j(tn, x
j
n),

xjn+1 = xn ⊖ (−1)h2 ⊙ [F j(tn, x
j
n)⊕F j(tn + h, x∗jn+1)], n = 1, 2, · · · , k − 1,

x∗n+1 = xn ⊕ h⊙F(tn, xn),

xn+1 = xn ⊕ h
2 ⊙ [F(tn, xn)⊕F(tn + h, x∗n+1)],

n = k + 1, k + 2, · · · ,N − 1, i, j = 1, 2, · · · ,m; i ̸= j.

(6.17)

Case 8.
When x(t) has switching point of type V at ζ ∈ [0, T ] and t0 = 0, t1, · · · , tk−1, ζ,
tk+1, · · · , tN = T be partition of interval [0, T ], then we have



xi0 = xi0,

xj0 = xj0,

x∗n+1 = xn ⊖ (−1)h⊙F(tn, xn),

xn+1 = xn ⊖ (−1)h2 ⊙ [F(tn, xn)⊕F(tn + h, x∗n+1)], n = 0, 1, · · · , k − 1,

x∗in+1 = xin ⊕ h⊙F i(tn, x
i
n),

xin+1 = xin ⊕ h
2 ⊙ [F i(tn, x

i
n)⊕F i(tn + h, x∗in+1)], n = k + 1, k + 2, · · · ,N − 1,

x∗jn+1 = xjn ⊖ (−1)h⊙F j(tn, x
j
n),

xjn+1 = xjn ⊖ h
2 ⊙ [F j(tn, x

j
n)⊕Fj(tn + h, x∗jn+1)],

n = k + 1, k + 2, · · · ,N − 1, i, j = 1, 2, · · · ,m; i ̸= j.

(6.18)

Case 9.
When x(t) has switching point of type VI at ζ ∈ [0, T ] and t0 = 0, t1, · · · , tk−1, ζ,
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tk+1, · · · , tN = T be partition of interval [0, T ], then we have

xi0 = xi0,

xj0 = xj0,

x∗in+1 = xin ⊕ h⊙F i(tn, x
i
n),

xin+1 = xin ⊕ h
2 ⊙ [F i(tn, x

i
n)⊕F(tn + h, x∗in+1)], n = 1, 2, · · · , k − 1,

x∗jn+1 = xjn ⊖ (−1)h⊙F j(tn, x
j
n),

xjn+1 = xjn ⊖ (−1)h2 ⊙ [F j(tn, x
j
n)⊕F j(tn + h, x∗jn+1)], n = 1, 2, · · · , k − 1,

xn+1 = xn ⊖ (−1)h⊙F(tn, xn),

xn+1 = xn ⊖ (−1)h2 ⊙ [F(tn, xn)⊕F(tn + h, x∗n+1)],

n = k + 1, k + 2, · · · ,N − 1, i, j = 1, 2, · · · ,m; i ̸= j.

(6.19)

7. Consistency, Stability and Convergence analysis

We discuss consistency, stability, and convergence of the Euler and modified Euler methods for m-polar fuzzy IVPs.
Our results are extensions of definitions and results presented in [7].

7.1. Consistency.

Definition 7.1. For numerical methods described in (6.1), (6.4), (6.11), and (6.14), we define residual Rn =≺ Ri
n ≻

, i = 1, 2, · · · ,m respectively, as

Rn = x(tn+1)⊕gH

(
x(tn)⊕ h⊙F(tn, x(tn))

)
,

Rn = x(tn+1)⊕gH

(
x(tn)⊖ (−1)h⊙F(tn, x(tn))

)
,

Rn =x(tn+1)⊕gH

[
x(tn)⊕

h

2
⊙
(
F
(
tn+1, x(tn)⊕ h⊙F(tn, x(tn)

)
⊕F

(
tn, x(tn)

))]
,

and

Rn =x(tn+1)⊕gH

[
x(tn)⊖ (−1)

h

2
⊙

(
F
(
tn+1, x(tn)⊕ h⊙F(tn, x(tn)

)
⊕F

(
tn, x(tn)

))]
.

The residual for remaining cases can be written in a similar way.

Definition 7.2. The local truncation error τn =≺ τ in ≻, i = 1, 2, · · · ,m is defined as

τn =
1

h
Rn,

and the method is consistent if

lim
h→0

max
t≤bn

D(τn, 0) = 0.

Theorem 7.3. The Euler method is consistent.

Proof. When x(t) is 1-GHD, let D
(
(x1−GH)′′(ξn), 0

)
≤ M1, then

lim
h→0

max
tn≤T

D(τn, 0) = lim
h→0

max
tn≤T

D
(h
2
⊙ (x1−GH)′′(ξn), 0

)
= lim

h→0

h

2
max
tn≤T

D
(
(x1−GH)′′(ξn), 0

)
≤ lim

h→0

h

2
M1 = 0.
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Thus, the Euler method is consistent in this case.
When x(t) is 2-GHD, let D

(
(x2−GH)′′(ξn), 0

)
≤ N1, then

lim
h→0

max
tn≤T

D(τk, 0) = lim
h→0

max
tn≤T

D
(
⊖ (−1)

h

2
⊙ (x2−GH)′′(ξn), 0

)
= lim

h→0
|(−1)

h

2
|max
tn≤T

D
(
⊖ (x2−GH)′′(ξn), 0

)
= lim

h→0

h

2
max
tn≤T

D
(
(x2−GH)′′(ξn), 0

)
≤ lim

h→0

h

2
N1 = 0.

Hence, the Euler method is consistent. The consistency of the Euler method for the other cases can be discussed in
similar way. �
Theorem 7.4. The Modified Euler method is consistent.

Proof. When x(t) is 1-GHD, let D
(
(x1−GH)′′′(ξn), 0

)
≤ M1, then

lim
h→0

max
tn≤T

D(τk, 0) = lim
h→0

max
tn≤T

D
(h2
3!

⊙ (x1−GH)′′′(ξn), 0
)

= lim
h→0

h2

3!
max
tn≤T

D
(
(x1−GH)′′′(ξn), 0

)
≤ lim

h→0

h2

3!
M1 = 0.

Thus, the Modified Euler method is consistent in this case.
When x(t) is 2-GHD, let D

(
(x2−GH)′′(ξn), 0

)
≤ N1, then

lim
h→0

max
tn≤T

D(τk, 0) = lim
h→0

max
tn≤T

D
(
⊖ (−1)

h2

3!
⊙ (x2−GH)′′′(ξn), 0

)
= lim

h→0
|(−1)

h2

3!
|max
tn≤T

D
(
⊖ (x2−GH)′′′(ξn), 0

)
= lim

h→0

h2

3!
max
tn≤T

D
(
(x2−GH)′′(ξn), 0

)
≤ lim

h→0

h2

3!
N1 = 0.

Hence, the Modified Euler method is consistent. The consistency of the Modified Euler method for the other cases
can be discussed in a similar way. �
7.2. Convergence.

Definition 7.5. [8] The global truncation error, en+1, at time tn+1 is defined by:

en+1 = x(tn+1)⊖gH xn+1.

Definition 7.6. [8] The numerical method is convergent

lim
h→0

max
n

D(en+1, 0) = 0,

⇒ lim
h→0

max
n

D(x(tn+1), xn+1) = 0.

Lemma 7.7. [23] For all real x

1 + x ≤ ex.

Theorem 7.8. Let x′′gH(t) exists and F(t, x(t)) satisfies Lipschitz condition on {F(t, x(t)), t ∈ [0,P], x ∈ B(x0,Q),P,Q >

0}, then the proposed Euler method converges to the solution of bipolar fuzzy IVPs (5.1).

Proof. Case 1.

When x(t) is 1-GHD. Let suppose Cn = h2

2 ⊙ (x1−GH(tn))
′′, so by equation (6.1) and Cn, the exact solution x(t) =≺

xi(t) ≻, i = 1, 2, · · · ,m of (5.1) satisfies

x(tn+1) = x(tn)⊕ h⊙F(tn, x(tn))⊕ Cn.
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Now

D
(
x(tn+1), xn+1

)
= D

(
x(tn)⊕ h⊙F(tn, x(tn))⊕ Cn, xn ⊕ h⊙F(tn, xn)

)
≤ D

(
x(tn), xn

)
+ hD

(
F(tn, x(tn),F(tn, xn)

)
+D(Cn, 0).

Since, F satisfies Lipschitz condition, so there exists Ln > 0 such that

D
(
F(tn, x(tn),F(tn, xn)

)
≤ LnD(x(tn), xn).

Thus

D
(
x(tn+1), xn+1

)
≤ (1 + hLn)D

(
x(tn), xn

)
+D(Cn, 0). (7.1)

Suppose L = max
0≤n≤N

Ln and C = max
0≤n≤N

D1(Cn, 0), then (7.6) can be written as

D
(
x(tn+1), xn+1

)
≤ (1 + hL)D

(
x(tn), xn

)
+ C.

Continuing in this way and after substitution, we have

D
(
x(tn+1), xn+1

)
≤(1 + hL)k+1D

(
x(t0), x0

)
+ {1 + (1 + hL) + · · ·+ (1 + hL)k}C

= (1 + hL)n+1D
(
x(t0), x0

)
+ { (1 + hL)n+1 − 1

hL
}C.

Now, 0 ≤ (n+ 1)h ≤ T for (n+ 1) ≤ (N − 1) and by Lemma 7.7, we have

D
(
x(tn+1), xn+1

)
≤ eLTD

(
x(t0), x0

)
+

d

hL
[eLT − 1].

Moreover, C = max
0≤n≤N−1

D(Cn, 0) = max
0≤n≤N

D(
h2

2
⊙ (x1−gH(tn))

′′, 0) and

D
(
x(t0), x0

)
= 0, so

D
(
x(tn+1), xn+1

)
≤ h

2L
[eLT − 1] max

0≤t≤T
D(x1−GH(tn))

′′, 0).

and lim
h→0

D
(
x(tn+1), xn+1

)
= 0.Thus, Euler method converges in this case.

Case 2.
When x(t) is 2-GHD, let suppose Cn = ⊖(−1)h

2

2 ⊙ (x2−GH(tn))
′′, so by equation (6.1) and Cn, the exact solution

x(t) =≺ xi(t) ≻, i = 1, 2, · · · ,m of (5.1) satisfies

x(tn+1) = x(tn)⊖ (−1)h⊙F(tn, x(tn))⊕ Cn.

Now

D
(
x(tn+1), xn+1

)
= D

(
x(tn)⊖ (−1)h⊙F(tn, x(tn))⊕ Cn, xn ⊖ (−1)h⊙F(tn, xn)

)
≤ D

(
x(tn), xn

)
+ hD

(
F(tn, x(tn)⊖gH F(tn, xn), 0

)
+D(Cn, 0).

Since, F satisfies Lipschitz condition, so there exists Ln > 0 such that

D
(
F(tn, x(tn)⊖gH F(tn, xn), 0

)
= D

(
F(tn, x(tn),F(tn, xn)

)
≤ LnD(x(tn), xn).

Thus

D
(
x(tn+1), xn+1

)
≤ (1− hLn)D

(
x(tn), xn

)
+D(Cn, 0). (7.2)

Suppose L = max
0≤n≤N

Ln and C = max
0≤n≤N

D1(Cn, 0), then (7.6) can be written as

D
(
x(tn+1), xn+1

)
≤ (1− hL)D

(
x(tn), xn

)
+ C.
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Using iterations, we have

D
(
x(tn+1), xn+1

)
≤(1− hL)n+1D

(
x(t0), x0

)
+ {1 + (1− hL) + · · ·+ (1 + hL)n}C

= (1− hL)n+1D
(
x(t0), x0

)
+ {1− (1− hL)n+1

hL
}C.

Now, 0 ≤ (n+ 1)h ≤ T for (n+ 1) ≤ (N − 1) and by Lemma 7.7, we have

D
(
x(tn+1), xn+1

)
≤ e−LTD

(
x(t0), x0

)
+

d

hL
[1− e−LT ].

Moreover, C = max
0≤n≤N−1

D(Cn, 0) = −h
2

2
max

0≤n≤N
D1((x2−gH(tn))

′′, 0) and

D
(
x(t0), x0

)
= 0, so

D
(
x(tn+1), xn+1

)
≤ − h

2L
[1− e−LT ] max

0≤t≤T
D(x1−GH(tn))

′′, 0).

and lim
h→0

D
(
x(tn+1), xn+1

)
= 0.

Thus, the Euler method converges in this case.
The convergence of the Euler method for other cases can be proved in a similar manners. �
Theorem 7.9. Let x′′′gH(t) exists and F(t, x(t)) satisfies Lipschitz condition on {F(t, x(t)), t ∈ [0,P], x ∈ B(x0,Q),P,Q >

0}, then proposed Modified Euler method converges to the solution of m-polar fuzzy IVPs (5.1).

Proof. Case 1.
When x(t) is 1-GHD. We can write the Modified Euler method as

x(tn+1) = x(tn)⊕ h⊙ ψ(tn, xn;h),

where

ψ(tn, xn;h) =
1

2

[
F(tn, xn)⊕F

(
tn + h, xn ⊕ h⊙F(tn, xn)

)]
.

Obviously, ψ is the continuous function. First, we prove that ψ satisfies Lipschitz condition.

D
(
ψ(t, u;h), ψ(t, v;h)

)
≤ 1

2
D
(
F(t, u),F(t, v)

)
+

1

2
D
(
F(t+ h, u⊕ h⊙F(t, u)),F(t+ h, v ⊕ h⊙F(t, v))

)
.

Since F satisfies Lipschitz condition, so there is L > 0 such that

D(F(t, u),F(t, v)) ≤ LD(u, v).

Thus

D
(
ψ(t, u;h), ψ(t, v;h)

)
≤ L

2
D
(
u, v

)
+

L
2
D
(
u⊕ h⊙F(t, u)), v ⊕ h⊙F(t, v))

)
≤ L

2
D
(
u, v

)
+

L
2
D
(
u, v

)
+
hL
2

D
(
F(t, u),F(t, v)

)
≤ L

(
1 +

hL
2

)
D(u, v) = L′D(u, v).

i.e. ψ satisfies Lipschitz condition with constant L′ = L(1 + hL
2 ).

Let suppose Cn = h3

3! ⊙(x1−GH(tn))
′′′, so by equation (6.11) and Cn, the exact solution x(t) =≺ x1(t), x2(t), · · · , xm(t) ≻

of (5.1) satisfies

x(tn+1) = x(tn)⊕ h⊙ ψ(tn, x(tn))⊕ Cn.
Now

D
(
x(tn+1), xn+1

)
= D

(
x(tn)⊕ h⊙ ψ(tn, x(tn))⊕ Cn, xn ⊕ h⊙ ψ(tn, xn)

)
≤ D

(
x(tn), xn

)
+ hD

(
ψ(tn, x(tn), ψ(tn, xn)

)
+D(Cn, 0).
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Since, ψ satisfies Lipschitz condition, so there exists L′
n > 0 such that

D
(
ψ(tn, x(tn), ψ(tn, xn)

)
≤ L′

nD(x(tn), xn).

Thus

D
(
x(tn+1), xn+1

)
≤ (1 + hL′

n)D
(
x(tn), xn

)
+D(Cn, 0). (7.3)

Suppose L′ = max
0≤n≤N

L′
n and C = max

0≤n≤N
D1(Cn, 0), then (7.3) can be written as

D
(
x(tn+1), xn+1

)
≤ (1 + hL′)D

(
x(tn), xn

)
+ C.

Continuing in this way, we have

D
(
x(tn+1), xn+1

)
≤(1 + hL′)n+1D

(
x(t0), x0

)
+ {1 + (1 + hL′) + · · ·+ (1 + hL′)n}C

= (1 + hL′)n+1D
(
x(t0), x0

)
+ { (1 + hL′)n+1 − 1

hL′ }C.

Now, 0 ≤ (n+ 1)h ≤ T for (n+ 1) ≤ (N − 1) and by Lemma 7.7, we have

D
(
x(tn+1), xn+1

)
≤ eL

′TD
(
x(t0), x0

)
+

d

hL′ [e
L′T − 1].

Moreover, C = max
0≤n≤N−1

D(Cn, 0) = max
0≤n≤N

D(
h3

3!
⊙ (x1−GH(tn))

′′′, 0) and

D
(
x(t0), x0

)
= 0, so

D
(
x(tn+1), xn+1

)
≤ h2

3!L
[eL

′T − 1] max
0≤t≤T

D(x1−GH(tn))
′′′, 0)

and lim
h→0

D
(
x(tn+1), xn+1

)
= 0.

Thus, the Modified Euler method converges in this case.
Case 2.
When x(t) is 2-GHD, we can write the Modified Euler method as

x(tn+1) = x(tn)⊖ (−1)h⊙ ψ(tn, xn;h),

where

ψ(tn, xn;h) =
1

2

[
F(tn, xn)⊕F

(
tn + h, xn ⊖ (−1)h⊙F(tn, xn)

)]
.

Obviously, ψ is the continuous function. First, we prove that ψ satisfies Lipschitz condition.

D
(
ψ(t, u;h), ψ(t, v;h)

)
≤ 1

2
D
(
F(t, u),F(t, v)

)
+

1

2
D
(
F(t+ h, u⊖ (−1)h⊙F(t, u)),F(t+ h, v ⊖ (−1)h⊙F(t, v))

)
.

Since F satisfies Lipschitz condition, so there is L > 0 such that

D(F(t, u),F(t, v)) ≤ LD(u, v).

Thus

D
(
ψ(t, u;h), ψ(t, v;h)

)
≤ L

2
D
(
u, v

)
+

L
2
D
(
u⊖ (−1)h⊙F(t, u)), v ⊖ (−1)h⊙F(t, v))

)
≤ L

2
D
(
u, v

)
+

L
2
D
(
u, v

)
− hL

2
D
(
F(t, u),F(t, v)

)
≤ L

(
1− hL

2

)
D(u, v) = L′D(u, v),
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i.e. ψ satisfies Lipschitz condition with constant L′ = L(1− hL
2 ).

Let suppose Cn = ⊖(−1)h
2

2 ⊙(x2−GH(tn))
′′′, so by equation (6.12) and Cn, the exact solution x(t) =≺ x1(t), x2(t), · · · , xm(t) ≻

of (5.1) satisfies

x(tn+1) = x(tn)⊖ (−1)h⊙ ψ(tn, x(tn))⊕ Cn.
Now

D
(
x(tn+1), xn+1

)
= D

(
x(tn)⊖ (−1)h⊙ ψ(tn, x(tn))⊕ Cn, xn ⊖ (−1)h⊙ ψ(tn, xn)

)
≤ D

(
x(tn), xn

)
+ hD

(
ψ(tn, x(tn)⊖gH ψ(tn, xn), 0

)
+D(Cn, 0).

Thus

D
(
x(tn+1), xn+1

)
≤ (1− hL′

n)D
(
x(tn), xn

)
+D(Cn, 0). (7.4)

Suppose L = max
0≤n≤N

Ln and C = max
0≤n≤N

D(Cn, 0), then (7.4) can be written as

D
(
x(tn+1), xn+1

)
≤ (1− hL′)D

(
x(tn), xn

)
+ C.

Using above relation, we have

D
(
x(tn+1), xn+1

)
≤ (1− hL′)n+1D

(
x(t0), x0

)
+ {1 + (1− hL) + · · ·+ (1 + hL′)n}C

= (1− hL′)n+1D
(
x(t0), x0

)
+ {1− (1− hL′)n+1

hL′ }C.

Now, 0 ≤ (n+ 1)h ≤ T for (n+ 1) ≤ (N − 1) and by Lemma 7.7, we have

D
(
x(tn+1), xn+1

)
≤ e−L′TD

(
x(t0), x0

)
+

d

hL′ [1− e−L′T ].

Moreover, C = max
0≤n≤N−1

D(Cn, 0) = −h
3

3!
max

0≤n≤N
D((x2−GH(tn))

′′′, 0) and

D
(
x(t0), x0

)
= 0, so

D
(
x(tn+1), xn+1

)
≤ − h2

3!L
[1− e−L′T ] max

0≤t≤T
D(x1−GH(tn))

′′′, 0)

and lim
h→0

D
(
x(tn+1), xn+1

)
= 0.

Thus, the Modified Euler method converges in this case.
The convergence of Modified Euler method for other cases can be proved in similar manners. �
7.3. Stability.

Definition 7.10. Let xn+1, n+ 1 ≥ 0 be the solution of m-polar fuzzy IVP x′(t) = F(t, x(t)) with initial condition
x0 ∈ X and let zn+1 be the solution obtained by same numerical method with perturbed initial condition z0 = x0⊕δ0 ∈
X, then the method is stable if there exists h1,L > 0 such that

D(xn+1, zn+1) ≤ Lδ, ∀ (n+ 1)h < T, n ≤ N − 1, h ∈ (0, h1), whenever D(δ0, 0) ≤ δ.

Theorem 7.11. The Euler method is stable.

Proof. When x(t) is 1-GHD, then by equation (6.1), we have

zn+1 = zn ⊕ h⊙F(tn, zn), z0 = x0 ⊕ δ0. (7.5)

Using (6.1) and (7.6), we have

D(zn+1, xn+1) ≤ D(zn, xn) + hD
(
F(tn, zn),F(tn, xn)

)
,

Since, F satisfies Lipscitz condition, there exists Ln > 0 such that
D
(
F(tn, zn),F(tn, xn)

)
≤ LnD(zn, xn), so

D(zn+1, xn+1) ≤ D(zn, xn) + hLnD(zn, xn).



CMDE Vol. 11, No. 3, 2023, pp. 412-439 433

Let L = max
0≤n≤N

Ln, then

D(zn+1, xn+1) ≤ (1 + hL)D(zn, xn).

Continuing, we get

D(zn+1, xn+1) ≤ (1 + hL)(n+1)D(z0, x0).

By Lemma 7.7, we have

D(zn+1, xn+1) ≤ ehL(n+1)D(z0, x0)

≤ ehL(n+1)D(z0 ⊖gH x0, 0)

≤ eLTD(δ0, 0) ≤ Kδ,

where eLT = K > 0 and D(δ0, 0) ≤ δ. Hence, the Euler method is stable in this case.
When x(t) is 2-GHD, then by equation (6.1), we have

zn+1 = zn ⊖ (−1)h⊙F(tn, zn), z0 = x0 ⊕ δ0. (7.6)

Using (6.1) and (7.6), we have

D(zn+1, xn+1) ≤ D(zn, xn)− hD
(
F(tn, zn),F(tn, xn)

)
,

Since, F satisfies Lipscitz condition, there exists Ln > 0 such that
D
(
F(tn, zn),F(tn, xn)

)
≤ LnD(zn, xn), so

D(zn+1, xn+1) ≤ D(zn, xn)− hLnD(zn, xn).

Let L = max
0≤n≤N

Ln, then

D(zn+1, xn+1) ≤ (1− hL)D(zn, xn).

Continuing, we have

D(zn+1, xn+1) ≤ (1− hL)(n+1)D(z0, x0).

By Lemma 7.7, we have

D(zn+1, xn+1) ≤ e−hL(n+1)D(z0, x0)

≤ e−hL(n+1)D(z0 ⊖gH x0, 0)

≤ e−LTD(δ0, 0) ≤ Kδ,

where e−LT = K > 0 and D(δ0, 0) ≤ δ. Hence, the Euler method is stable in this case. For the other cases, we can
prove easily that the Euler method is stable. �

Theorem 7.12. The Modified Euler method is stable.

Proof. When x(t) is 1-GHD, then by Equation (6.11), we have

zn+1 =zn ⊕ h

2
⊙
[
F(tn, zn)⊕F(tn + h, zn ⊕ h⊙F(tn, zn))

]
, (7.7)

z0 = x0 ⊕ δ0. (7.8)

Since, F satisfies Lipschitz condition, there exists Ln > 0 such that
D
(
F(tn, zn),F(tn, xn)

)
≤ LnD(zn, xn), using (6.11) and (7.7), we have

D(zn+1, xn+1) ≤
(
1 + hLn +

(hLn)
2

2

)
D(zn, xn).
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Let L = max
0≤n≤N

Ln, then

D(zn+1, xn+1) ≤ (1 + hL+
(hL)2

2
)D(zn, xn).

Using above inequality, we have

D(zn+1, xn+1) ≤ (1 + hL+
(hL)2

2
)(n+1)D(z0, x0).

By Lemma 7.7, we have

D(zn+1, xn+1) ≤ e[hL+
(hL)2

2 ](n+1)D(z0, x0)

≤ e[hL+
(hL)2

2 ](n+1)D(z0 ⊖gH x0, 0)

≤ e(L+hL2

2 )TD(δ0, 0) ≤ Kδ,

where e(L+hL2

2 )T = K > 0 and D(δ0, 0) ≤ δ. Hence, the Modified Euler method is stable in this case.
When x(t) is 2-GHD, then by equation (6.14), we have

zn+1 =zn ⊖ (−1)
h

2
⊙
[
F(tn, zn)⊕F(tn + h, zn ⊖ (−1)h⊙F(tn, zn))

]
, z0 = x0 ⊕ δ0. (7.9)

Since, F satisfies Lipschitz condition, there exists Ln > 0 such that
D
(
F(tn, zn),F(tn, xn)

)
≤ LnD(zn, xn), using (6.14) and (7.9), we have

D(zn+1, xn+1) ≤
(
1− hLn +

(hLn)
2

2

)
D(zn, xn).

Let L = max
0≤n≤N

Ln, then

D(zn+1, xn+1) ≤ (1− hL+
(hL)2

2
)D(zn, xn).

Using above inequality, we have

D(zn+1, xn+1) ≤ (1− hL+
(hL)2

2
)(n+1)D(z0, x0).

By Lemma 7.7, we have

D(zn+1, yn+1) ≤ e[hL+
(−hL)2

2 ](n+1)D(z0, y0)

≤ e[−hL+
(hL)2

2 ](n+1)D(z0 ⊖gH y0, 0)

≤ e(−L+hL2

2 )TD(δ0, 0) ≤ Kδ,

where e(−L+hL2

2 )T = K > 0 and D(δ0, 0) ≤ δ. Hence, the Modified Euler method is stable in this case. For the other
cases, we can easily prove that the Modified Euler method is stable. �

8. Numerical Example

In this section, we solve an m-polar fuzzy IVPs by the Euler method(EM) and modified Euler method(MEM). We
give the comparison of these methods by calculating global truncation errors. All computations are performed on
Maple 13 software.

Example 8.1. Consider the 3-polar fuzzy IVP

x̃′gH(t) = (t− 1)x̃(t), (8.1)

x̃(0) =≺ [1 + 2δ1, 4− δ1], [1.5 + 0.5δ2, 2.5− 0.5δ2], [2 + δ3, 5− 2δ3] ≻, t ∈ [0, 2], δ1, δ2, δ3 ∈ [0, 1].
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Obviously, the IVP is 2-GHD on [0,1] and at t = 1, the problem is switched to 1-GHD. Thus t = 1 is a switching
point. The solution is 2-GHD on [0,1] and 1-GHD on (1,2]. The exact 2-GHD solution can be obtained by solving the
following system

(x1)′(t; δ1) =

{
(t− 1)(x1)(t; δ1), t ∈ [0, 1],

(t− 1)(x1)′(t; δ1), t ∈ (1, 2],

(x1)′(t; δ1) =

{
(t− 1)(x1)(t; δ1), t ∈ [0, 1],

(t− 1)(x1)(t; δ1), t ∈ (1, 2],

(x2)′(t; δ2) =

{
(t− 1)(x2)(t; δ2), t ∈ [0, 1],

(t− 1)(x2)(t; δ2), t ∈ (1, 2],

(x2)′(t; δ2) =

{
(t− 1)(x2)(t; δ2), t ∈ [0, 1],

(t− 1)(x2)(t; δ2), t ∈ (1, 2],

(x3)′(t; δ3) =

{
(t− 1)(x3)(t; δ3), t ∈ [0, 1],

(t− 1)(x3)(t; δ3), t ∈ (1, 2],

(x3)′(t; δ3) =

{
(t− 1)(x3)(t; δ3), t ∈ [0, 1],

(t− 1)(x3)(t; δ3), t ∈ (1, 2],

x̃(0) =≺ [1 + 2δ1, 4− δ1], [1.5 + 0.5δ2, 2.5− 0.5δ2], [2 + δ3, 5− 2δ3] ≻ .

The exact 1-GHD solution can be obtained by solving the following system

(x1)′(t; δ1) =

{
(t− 1)(x1)(t; δ1), t ∈ [0, 1],

(t− 1)(x1)(t; δ1), t ∈ (1, 2],

(x1)′(t; δ1) =

{
(t− 1)(x1)(t; δ1), t ∈ [0, 1],

(t− 1)(x1)(t; δ1), t ∈ (1, 2],

(x2)′(t; δ2) =

{
(t− 1)(x2)(t; δ2), t ∈ [0, 1],

(t− 1)(x2)(t; δ2), t ∈ (1, 2],

(x2)′(t; δ2) =

{
(t− 1)(x2)(t; δ2), t ∈ [0, 1],

(t− 1)(x2)(t; δ2), t ∈ (1, 2],

(x3)′(t; δ3) =

{
(t− 1)(x3)(t; δ3), t ∈ [0, 1],

(t− 1)(x3)(t; δ3), t ∈ (1, 2],

(x3)′(t; δ3) =

{
(t− 1)(x3)(t; δ3), t ∈ [0, 1],

(t− 1)(x3)(t; δ3), t ∈ (1, 2],

x̃(0) =≺ [1 + 2δ1, 4− δ1], [1.5 + 0.5δ2, 2.5− 0.5δ2], [2 + δ3, 5− 2δ3] ≻ .

For 0 ≤ t ≤ 1, the exact 2-GHD solution is

[x(t)]δ =≺[(1 + 2δ1)e
t2−2t

2 , (4− δ1)e
t2−2t

2 ], [(1.5 + 0.5δ2)e
t2−2t

2 ,

(2.5− 0.5δ2)e
t2−2t

2 ], [(2 + δ3)e
t2−2t

2 , (5− 2δ3)e
t2−2t

2 ] ≻, δ1, δ2, δ3 ∈ [0, 1].

and for 1 < t ≤ 2, the exact 1-GHD solution is

[X(t)]δ =≺[(1 + 2δ1)e
t2−2t

2 , (4− δ1)e
t2−2t

2 ], [(1.5 + 0.5δ2)e
t2−2t

2 , (2.5− 0.5δ2)e
t2−2t

2 ],

[(2 + δ3)e
t2−2t

2 , (5− 2δ3)e
t2−2t

2 ] ≻, δ1, δ2, δ3 ∈ [0, 1].

.
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Table 1. Global truncation errors for h =
0.01 of Example 8.1.

t EM MEM
0 0 0
0.2 7.62e−03 1.02e−05

0.4 1.20e−02 1.31e−05

0.6 1.50e−02 1.32e−05

0.8 1.75e−02 1.26e−05

1 2.02e−02 1.23e−05

1.2 2.37e−02 1.250e−05

1.4 2.88e−02 1.28e−05

1.6 3.63e−02 1.25e−05

1.8 4.79e−02 9.47e−06

2 6.66e−02 9.47e−06

Table 2. Global truncation errors for h =
0.001 of Example 8.1.

t EM MEM
0 0 0
0.2 7.57e−04 1.05e−07

0.4 1.20e−03 1.31e−07

0.6 1.49e−03 1.36e−07

0.8 1.75e−03 1.26e−07

1 2.02e−03 1.25e−07

1.2 2.37e−03 1.26e−07

1.4 2.88e−03 1.35e−07

1.6 3.64e−03 1.30e−07

1.8 4.81e−03 1.03e−07

2 6.66e−03 2.0e−09

(a) (b)

Figure 1. (a) Level sets of first component of the exact solution defined in Example 8.1. (b) Level
sets of gH-derivative of first component of the solution defined in Example 8.1.

(a) (b)

Figure 2. (a) Level sets of the second component of exact solution defined in Example 8.1. (b) Level
sets of gH-derivative of the second component of the solution defined in Example 8.1.

In Figure 1(a), red lines represent x1(t; δ1) and blue lines represent x1(t; δ1). In Figure 1(b), green lines represent
(x1)′(t; δ1) and yellow lines represent (x1)′(t; δ1).
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(a) (b)

Figure 3. (a) Level sets of the third component of exact solution defined in Example 8.1. (b) Level
sets of gH-derivative of the third component of the solution defined in Example 8.1.

In Figure 2(a), red lines represent x2(t; δ2) and blue lines represent x2(t; δ2). In Figure 2(b), green lines represent
(x2)′(t; δ2) and yellow lines represent (x2)′(t; δ2).

In Figure 3(a), red lines represent x3(t; δ3) and blue lines represent x3(t; δ3). In Figure 3(b), green lines represent
(x3)′(t; δ3) and yellow lines represent (x3)′(t; δ3).

9. Conclusion

In many dynamical systems, we must deal with uncertainty and imprecision. An m-polar fuzzy set model is an
extension of the fuzzy set model, and it is a powerful tool to deal with fuzzy and ambiguous problems in multidi-
mensional problems. Compared with the fuzzy framework, this framework is more attractive to researchers. We have
considered differential equations in in m-polar fuzzy environment. The fuzzy initial value problem has been extended
to m-polar fuzzy initial value problem, where we have m-polar information about the unknown function and initial
conditions. Different types of gH-differentiability of m-polar FVF are discussed. We have presented some results on
gH-differentiability of m polar FVF. The Taylor expansion of the m-polar FVF is obtained by considering different
types of differentiability. We have demonstrated the Euler and Modified Euler methods for m-polar fuzzy IVP. The
consistency, stability, and convergence analysis of these methods are discussed. We have given some numerical exam-
ples to demonstrate the performance and efficiency of these methods. We calculated the global truncation error. We
have seen that by decreasing the step size, the approximate solution converges to the exact solution. Furthermore, it
is clear from the numerical results that the Modified Euler method gives better results compared to the Euler method.
In the future, we plan to apply the predictor-corrector method to the m-polar fuzzy IVP based on Taylor expansion.
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