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Abstract

..

In this paper, we deal with second-order fuzzy linear two-point boundary value problems (BVP) under Hukuhara

derivatives. Considering the first-order and second-order Hukuhara derivatives, four types of fuzzy linear two-
point BVPs can be obtained where each may or may not have a solution. Therefore a fuzzy two-point (BVP) may
have one, two, three, or four different kinds of solutions concerning this kind of derivative. To solve this fuzzy

linear two-point (BVP), we convert each to two cases of crisp boundary value problems. We apply a standard
method(numerical or analytical) to solve crisp two-point BVPs in their domain. Subsequently, the crisp solutions
are combined to obtain a fuzzy solution to the fuzzy problems, and the solutions are checked to see if they satisfy
the fuzzy issues. Conditions are presented under which fuzzy problems have the fuzzy solution and illustrated

with some examples.
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1. Introduction

Zadeh and others were the first to present and research fuzzy calculus and, arithmetic operations on fuzzy integers
[12, 25, 30]. The search for fuzzy differential equations is an area of fuzzy mathematics. In many physics and
engineering modeling , when all the parameters are precisely known, differential equations are employed. Fuzzy
differential equations(FDEs) are used to describe uncertain issues, if at least one of the parameters, such as coefficients
or boundary conditions, are unknown. Uncertain parameters are considered fuzzy numbers. As a result, FDEs, in
some situations, may be considered a subset of uncertain differential equations. After being first introduced by Kaleva
[18], fuzzy differential equations were afterwards developed by various researchers [5, 10, 11, 13, 26–28]. Regarding
the Hukuhara derivative, Kaleva has developed fuzzy differential equations[18]. A highly fuzzy first-order initial value
issue has been provided by Buckley and, others [6, 17, 24]. Bede and Gal [3] proposed generalized differentiability,
which they later refined as detailed in [4, 20]. The interpretation of fuzzy differential equations becomes possible with
this idea in several distinct ways We concentrated on fuzzy boundary value issues in this work.

One of the most important categories of differential equations is boundary value problems (BVP), which are found in
many research branches including electrostatics, engineering, and other fields. For instance, the Schrodinger equation
with fuzzy circumstances was solved the Heisenberg’s uncertainty principle[23]. For instance, because of Heisenberg’s
uncertainty principle, the Schrodinger equation equipped with fuzzy conditions was solved in[15]. Fuzzy numbers and
fuzzy functions are utilized to simulate these issues because one or more parameters and fuzzy state variables of (BVP)
are often absent or ambiguous. These BVPs are known as fuzzy boundary value problems (FBVP). Some scholars
have concentrated on finding (FBVPs). O’Regan et al. used fuzzy integral equations to work on the (FBVPs) based
on the Hukuhara derivatives. However, their approach is not applicable to all FBVP classes. Khastan and Nieto used
fuzzy generalized Hukuhara derivatives to get around this problem.[20, 31]. The stability and roundedness of solutions
to non-linear differential equations of second order are stated and proved by Cemil Tun et al [29]. Remember that
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the Hukuhara minus serves as the foundation for the generalized Hukuhara derivatives. Additionally, some academics
employ the crisp derivatives, also known as fuzzy inclusion differentials, to represent fuzzy inclusion[2, 9]. Bede et
al [3, 4] and others [14, 22] proved that considering the Hukuhara derivative, some fuzzy two-point BVPs don’t have
solutions. Considering the new definitions and concepts of Hukuhara derivatives and certain conditions, overcome this
problem. For this purpose, two kinds are taken for the first derivative, and for each kind, two kinds are considered
for the second derivative. Therefore, to solve a FBVP, four models can be investigated Here, we offer a brand-new
technique for discovering fuzzy BVP solutions in four different scenarios. Each of these, could or might not have a
special solution. Then, regarding Hukuhara derivatives, an (FBVP) may have one, two, three, or four distinct types
of solutions. We remember several notations and fundamental concepts from Section 2. In Section 3, considering
the presented method, four examples of fuzzy linear two-point boundary value issues are discussed and described. In
Section 4, we have introduced a methodology to solve fuzzy BVPs, and we provided some examples to demonstrate
our findings.

2. Notations and basic concepts

Definition 2.1. [21] A fuzzy set u that requires the following conditions is called a fuzzy number:
(1.) The membership function of u is continuous, convex, and normal.
(2.) The support of u is bounded

Usually, fuzzy numbers are denoted by E1. The fuzzy number, as the following, is entirely characterized by four
real numbers α1 ≤ α2 ≤ α3 ≤ α4, is called a trapezoidal fuzzy number:

u(x) =


0, x < α1,

x−α1

α2−α1
, α1 ≤ x < α2,

1, α2 ≤ x ≤ α3,
α4−x
α4−α3

, α3 ≤ x < α4,

0, α4 < x.

(2.1)

It is mostly denoted in short as u(α1, α2, α3, α4)T . The trapezoidal fuzzy numbers usually are denoted by FT . If
α2 = α3, we attain the triangular fuzzy number.

Definition 2.2. [8] The fuzzy numbers are denoted by an ordered pair of functions (u(r), u(r)); 0 ≤ r ≤ 1, that the
following conditions hold,

1): u(r) is a bounded left-continuous non- decreasing over [0, 1].
2): u(r) is a bounded left-continuous non- increasing over [0, 1].
3): u(r) ≤ u(r), 0 ≤ r ≤ 1.

Assume u = (u(r), u(r)), v = (v(r), v(r)) ∈ E1, α ∈ R, then the following hold:

(u+ v)(r) = (u(r) + v(r)),

(u+ v)(r) = (u(r) + v(r)),

αu(r) = αu(r), αu(r) = αu(r) if α ≥ 0,

αu(r) = αu(r), αu(r) = αu(r) if α < 0.

Remark 2.3. If u(r) = (u(r), u(r)) ∈ E1, we denote:

uc(r) =
u(r) + u(r)

2
, (2.2)

ud(r) =
u(r)− u(r)

2
. (2.3)

One can see that u = uc − ud and u = uc + ud.
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Lemma 2.4. Suppose u(r) = (u(r), u(r)) ∈ E1 and v(r) = (v(r), v(r)) ∈ E1, also k1, k2 ∈ ℜ. If w = k1u+ k2v then

wc = k1uc + k2vc, (2.4)

wd = |k1|ud + |k2|vd. (2.5)

Proof. See[1]. �
Definition 2.5. [16] Let u1, u2 ∈ E1. If there exits u3 ∈ E1 such that u1 = u2 + u3 then u3 is H-difference of u1 and
u2, i.e u3 = u1 ⊖ u2.

Definition 2.6. [7] Suppose F : [a, b] → E1 is a fuzzy function, F is a differentiable function at x0 ∈ [a, b] if there
exists a fuzzy number F ′(x0) ∈ E1 such that

1): For each h > 0 enough near to zero, the F (x0 + h) ⊖ F (x0), F (x0) ⊖ F (x0 − h), and two following limits
exist and are equal to F ′(x0);

lim
h→0+

F (x0 + h)⊖ F (x0)

h
, lim

h→0+

F (x0)⊖ F (x0 − h)

h
,

or

2): For each h < 0 enough near to zero, the F (x0 + h) ⊖ F (x0), F (x0) ⊖ F (x0 − h), and two following limits
exist and are equal to F ′(x0);

lim
h→0−

F (x0 + h)⊖ F (x0)

h
, lim

h→0−

F (x0)⊖ F (x0 − h)

h
.

Definition 2.7. [7] Consider F : [a, b] → E1, F is called (1)-differentiable on the interval [a, b] wherever F is differen-
tiable in Case (1) of the previous definition and its derivative is represented by D1

1F (x), similarly for (2)-differentiable
we have D1

2F (x).

Theorem 2.8. Suppose F : [a, b] → E1 is a fuzzy function, for each r ∈ [0, 1] put [F (x)]r = [F (x, r), F (x, r)], then

1: F ′(x) = D1
1F (x) = (F ′(x, r), F

′
(x, r)), provided that F is (1)-differentiable,

2: F ′(x) = D1
2F (x) = (F

′
(x, r), F ′(x, r)), provided that F is (2)-differentiable,

Proof. See[7]. �
The sufficient conditions for the existence of D1

1F (x), D1
2F (x) are given in the next theorem.

Theorem 2.9. Assuming F : [a, b] → E1 is differentiable,

1): F is (1)-differentiable function ⇔ (Fd)
′(x, r) ≥ 0 for all 0 ≤ r ≤ 1,

2): F is (2)-differentiable function ⇔ (Fd)
′(x, r) ≤ 0 for all 0 ≤ r ≤ 1.

Proof. Let F be (1)-differentiable due to Theorem 2.8, (F ′)d(x, r) ≥ 0, then (Fd)
′(x, r) = d

dt (
F (x,r)−F (x,r)

2 ) =
F

′
(x,r)−F ′(x,r)

2 = (F ′)d(x, r) ≥ 0. Conversely, let (Fd)
′(x, r) ≥ 0 it means that d

dt (
F (x,r)−F (x,r)

2 ) ≥ 0, then F
′
(x,r)−F ′(x,r)

2 ≥
0. Therefore F ′(x, r) = (F ′(x, r), F

′
(x, r)) so F is (1)-differentiable.

Now let F is (2)-differentiable, due to Theorem 2.8, (F ′)d(x, r) ≥ 0 it means that (Fd)
′(x, r) = d

dt (
F (x,r)−F (x,r)

2 ) =
F

′
(x,r)−F ′(x,r)

2 = −(F ′)d(x, r) ≤ 0. Conversely, let (Fd)
′(x, r) ≤ 0 it means that d

dt (
F (x,r)−F (x,r)

2 ) ≤ 0. F
′
(x,r)−F ′(x,r)

2 ≤
0 and F ′(x, r) = (F

′
(x, r), F ′(x, r)) hence F is (2)-differentiable. �

Remark 2.10. Regarding Theorems 2.8 and Eq.(2.9), the following statements are inferred about F ′′(x0) :

1: Suppose F and F ′ are (1)-differentiable functions, F ′′(x0) is denoted as D2
1,1F (x0) and [D2

1,1F (x0)]r =

[F ′′(x0, r), F
′′
(x0, r)].
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2: Suppose F is (1)-differentiable function, F ′ is (2)-differentiable function then F ′′(x0) is denoted as D2
1,2F (x0)

and [D2
1,2F (x0)]r = [F

′′
(x0, r), F

′′(x0, r)].

3: Suppose F is (2)-differentiable function, F ′ is (1)-differentiable function then F ′′(x0) is denoted as D2
2,1F (x0)

and [D2
2,1F (x0)]r = [F

′′
(x0, r), F

′′(x0, r)].

4: If F and F ′ are (2)-differentiable functions, F ′′(x0) is denoted asD2
2,2F (x0) and [D2

2,2F (x0)]r = [F ′′(x, r), F
′′
(x, r)].

Theorem 2.9 is extended as follow:

Theorem 2.11. Assuming F : [a, b] → E1 and F ′ : [a, b] → E1 are differentiable fuzzy functions, then:

1): D2
1,1F (x) exist ⇔ (Fd)

′(x, r) and (Fd)
′′(x, r) are non-negative for each r ∈ [0, 1],

2): D2
1,2F (x) exist ⇔ (Fd)

′(x, r) is non-negative and (Fd)
′′(x, r) is non-positive for each r ∈ [0, 1],

3): D2
2,1F (x) exist ⇔ (Fd)

′(x, r) and (Fd)
′′(x, r) are non positive for each r ∈ [0, 1],

4): D2
2,2F (x) exist ⇔ (Fd)

′(x, r) is non-positive and (Fd)
′′(x, r) is non-negative for each r ∈ [0, 1].

Proof. For proof see Theorem 2.9 and Remark 2.10. �

3. Two-point fuzzy boundary value problems

Consider two-point fuzzy BVP y′′(x) = p1(x)y
′(x) + p2(x)y(x) + g(x),

y(0) = A,
y(l) = B,

(3.1)

where x ∈ [0, l] and A,B ∈ E1, p1(x), p2(x) are real continuous functions and g(x) is continuous fuzzy function.
Many researchers, [13] demonstrate efficient methods to Eq.(3.1). In this paper, boundary values may be arbitrary
fuzzy numbers and, the forcing function may be the arbitrary fuzzy function in parametric form. Due to the previous
section, four cases are considered for solving Eq.(3.1) as follows:
Case 1.
y is (1-1)solution of fuzzy BVP (3.1) if D2

1,1y(x) exists and satisfies it. In this case we can rewrite Eq.(3.1) as follows:

(y′′(x, r), y′′(x, r)) = p1(x)(y
′(x, r), y′(x, r)) + p2(x)(y(x, r), y(x, r)) + (g(x, r), g(x, r)).

It is clear that in the parametric form

(y′′(x, r), y′′(x, r)) = p1(x)(y
′(x, r), y′(x, r)) + p2(x)(y(x, r), y(x, r)) + (g(x, r), g(x, r)).

Now we take w = D2
1,1y(x, r) = (y′′(x, r), y′′(x, r)), u = D1

1y(x, r) = (y′(x, r), y′(x, r)) and v = y(x, r) = (y(x, r), y(x, r)),
then we rewrite the above equation as:

w = p1(x)u+ p2(x)v + g(x).

Along the Lemma 2.4 we conclude that:

wc = p1(x)uc + p2(x)vc + gc(x),

wd = |p1(x)|ud + |p2(x)|vd + gd(x),

where

wc =
(y′′(x) + y′′(x))

2
= (

y(x) + y(x)

2
)′′ = y′′c ,

uc =
(y′(x) + y′(x))

2
= (

y(x) + y(x)

2
)′ = y′c,

wd =
(y′′(x)− y′′(x))

2
= (

y(x)− y(x)

2
)′′ = y′′d ,

ud =
(y′(x)− y′(x))

2
= (

y(x)− y(x)

2
) = y′d,

vc = yc, vd = yd.
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Then for each r, we have two crisp boundary value problems as: y′′c (x, r) = p1(x)y
′
c(x, r) + p2(x)yc(x, r) + gc(x),

yc(0, r) = Ac(r),
yc(l, r) = Bc(r),

(3.2)

and  y′′d (x, r) = |p1(x)|y′d(x, r) + |p2(x)|yd(x, r) + gd(x),
yd(0, r) = Ad(r),
yd(l, r) = Bd(r).

(3.3)

Remark 3.1. [19] Note that in the crisp case if y′′(x) = a(x)y′(x) + b(x)y(x) + c(x),
y(0) = y0,
y(l) = yl,

(3.4)

with

1): a(x), b(x), c(x) ∈ C[0, l],
2): b(x) ≥ 0 on [0, l],

then BVP(3.4) has a unique solution.

Proposition 3.2. Assuming

1): p1(x), p2(x) ∈ C[0, l],
2): gc(x, r) and gd(x, r) are continuous on D = [0, l]× [0, 1],
3): p2(x) > 0 for each x ∈ [0, l],

then both BVP (3.2) and BVP(3.3) have unique solutions that respectively denoted by yc(x, r) ,yd(x, r). If yd(x, r), y
′
d(x, r) ≥

0 on D = [0, l]× [0, 1] then fuzzy BVP(3.1) has a unique (1-1)solution.

Proof. According to Remark(3.1), obviously, both BVP (3.2) and BVP (3.3) have unique solutions. Since yd(x, r) ≥
0, y′d(x, r) ≥ 0 on D then by substituting into the Eq. (3.3), we have y′′d (x, r) ≥ 0, therefor from Theorem 2.11,
y(x) = (yc(x, r)− yd(x, r), yc(x, r) + yd(x, r)) is (1-1)solution to fuzzy BVP.(3.1) at x ∈ [0, 1]. �

Case 2.
y is (1-2)solution of fuzzy BVP(3.1) if D2

1,2y(x) exists and satisfies it. In this case we can rewrite Eq.(3.1) as follows:

[y′′(x, r), y′′(x, r)] = p1(x)[y
′(x, r), y′(x, r)] + p2(x)[y(x, r), y(x, r)] + [g(x, r), g(x, r)].

It is clear that in the parametric form

(y′′(x), y′′(x)) = p1(x)(y
′(x), y′(x)) + p2(x)(y(x), y(x)) + (g(x, r), g(x, r)).

Now we take w = D2
1,2y(x) = (y′′(x), y′′(x)), u = D1

1y(x) = (y′(x), y′(x)), and v = y(x) = (y(x), y(x)) then we rewrite
the above parametric form as

w = p1(x)u+ p2(x)v + g(x).

Due to Lemma 2.4, we conclude that
wc = p1(x)uc + p2(x)vc + gc(x),

wd = |p1(x)|ud + |p2(x)|vd + gd(x),

where

wc =
(y′′(x) + y′′(x))

2
= (

y(x) + y(x)

2
)′′ = y′′c ,

uc =
(y′(x) + y′(x))

2
= (

y(x) + y(x)

2
)′ = y′c,

wd =
(y′′(x)− y′′(x))

2
= −(

y(x)− y(x)

2
)′′ = −y′′d ,
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ud =
(y′(x)− y′(x))

2
= (

y(x)− y(x)

2
)′ = y′d,

vc = yc, vd = yd.

For each r we have two crisp boundary value problems as y′′c (x, r) = p1(x)y
′
c(x, r) + p2(x)yc(x, r) + gc(x, r),

yc(0) = Ac(r),
yc(l) = Bc(r),

(3.5)

and  −y′′d (x, r) = |p1(x)|y′d(x, r) + |p2(x)|yd(x, r) + gd(x, r),
yd(0, r) = Ad(r),
yd(l, r) = Bd(r).

(3.6)

Proposition 3.3. Assuming that

1): p1(x), p2(x) are continuous on [0, l],
2): gc(x, r) be continuous on D = [0, l]× [0, 1],
3): p2(x) > 0 on [0, l],
4): would have existed a unique solution yd(x, r) to BVP (3.6) where yd(x, r), y

′
d(x, r) ≥ 0 on D = [0, l]× [0, 1],

so (3.1) has the unique (1-2)solution.

Proof. According to Remark 3.1, it is obvious that BVP (3.5) has a unique solution. For each x in the domain,
assuming there exists a unique solution yd(x, r) to BVP (3.6) where yd(x, r), y

′
d(x, r) ≥ 0 on D = [0, l]× [0, 1], then by

substituting in to the Eq.(3.6), we have y′′d (x) ≤ 0 then from Theorem 2.11 , y(x) = (yc(x, r)−yd(x, r), yc(x, r)+yd(x, r)
is (1-2)solution of fuzzy BVP (3.1) at x ∈ [0, 1]. �

Case 3.
y is the (2-1)solution to fuzzy BVP(3.1) if D2

2,1y(x) exists and satisfies it. In this case, we can rewrite Eq. (3.1) as
follows:

[y′′(x, r), y′′(x, r)] = p1(x)[y
′(x, r), y′(x, r)] + p2(x)[y(x, r), y(x, r)] + [g(x, r), g(x, r)].

In a similar fashion to Case 1 and Case 2, for each r we have two crisp boundary value problems: y′′c (x, r) = p1(x)y
′
c(x, r) + p2(x)yc(x, r) + gc(x, r),

yc(0) = Ac(r),
yc(l) = Bc(r),

(3.7)

and  −y′′d (x, r) = −|p1(x)|y′d(x, r) + |p2(x)|yd(x, r) + gd(x, r),
yd(0, r) = Ad(r),
yd(l, r) = Bd(r),

(3.8)

where
y′′c (x, r) = (D2

2,1y(x))c, y′c(x, r) = (D1
2y(x))c(r), y

′′
d (x, r) = −(D2

2,1y(x))d and y′d(x, r) = −(D1
2y(x))d(r).

Proposition 3.4. Assuming that

1): p1(x), p2(x) are continuous on [0, l],
2): gc(x, r) be continuous on D = [0, l]× [0, 1],
3): p2(x) > 0 on [0, l],
4): would have existed unique solution yd(x, r) to BVP (3.8) where yd(x, r) ≥ 0, y′d(x, r) ≤ 0 on D = [0, l]× [0, 1],

so fuzzy BVP (3.1) has the unique (2-1)solution.
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Proof. According to Remark 3.1, it is obvious that BVP (3.7) has a unique solution. For each x in the domain, assuming
there exists unique solution yd(x, r) to (3.6) where yd(x, r) ≥ 0, y′d(x, r) ≤ 0 on D = [0, l]× [0, 1], then by substituting
in to the Eq. (3.8), we have y′′d (x, r) ≤ 0 then from Theorem 2.11, y(x) = (yc(x, r) − yd(x, r), yc(x, r) + yd(x, r) is
(2-1)solution of fuzzy BVP (3.1) at x ∈ [0, 1]. �

Case 4.
y is a (2-2)solution to fuzzy BVP (3.1) if D2

2,2y(x) exists and satisfies it. In this case we can rewrite Eq.(3.1) as follows:

[y′′(x, r), y′′(x, r)] = p1(x)[y
′(x, r), y′(x, r)] + p2(x)[y(x, r), y(x, r)] + [g(x, r), g(x, r)].

Then, for each r we have two crisp boundary value problems as y′′c (x, r) = p1(x)y
′
c(x, r) + p2(x)yc(x, r) + gc(x, r),

yc(0) = Ac(r),
yc(l) = Bc(r),

(3.9)

and  y′′d (x, r) = −|p1(x)|y′d(x, r) + |p2(x)|yd(x, r) + gd(x, r),
yd(0, r) = Ad(r),
yd(l, r) = Bd(r),

(3.10)

where y′′c (x, r) = (D2
2,2y(x))c, y′c(x, r) = (D1

2y(x))c(r) and y′′d (x, r) = (D2
2,2y(x))d, y′d(x, r) = −(D1

2y(x))d(r).

Proposition 3.5. Assume that

1): p1(x), p2(x) are continuous on [0, l],
2): gc(x, r) and gd(x, r) are continuous on D = [0, l]× [0, 1],
3): p2(x) > 0 on [0, l],

then BVPs (3.9) and (3.10) have unique solutions that respectively denoted by yc(x, r) ,yd(x, r) and let yd(x, r) ≥
0, y′d(x, r) ≤ 0 on D then fuzzy BVP (3.1) has a unique (2-2)solution.

Proof. According to Remark 3.1, it is obvious, that BVPs (3.9) and (3.10) have unique solutions. Since yd(x, r) ≥
0, y′d(x, r) ≤ 0 on D then by substituting into the Eq. (3.10, we have y′′d (x, r) ≥ 0 therefore from Theorem 2.11,
y(x) = (yc(x, r)− yd(x, r), yc(x, r) + yd(x, r)) is (2-2)solution of fuzzy BVP (3.1) at x ∈ [0, 1]. �

4. Numerical Results

Example 4.1. Suppose fuzzy two-point linear BVP is given as below:
d2

dt2 y(x, r) =
d
dty(x, r) + (r, 2− r), 0 ≤ x ≤ 1,

y(0, r) = 0̃ = (−2 + 2r, 2− 2r),
y(1, r) = (−4 + r, 6− r).

(4.1)

where 0 ≤ r ≤ 1.

1): Obtaining (1-1)solution to fuzzy BVP (4.1) is considered, we first rewrite Eq.(4.1) as
D2

1,1y(x, r) = D1
1y(x, r) + (r, 2− r), 0 ≤ x ≤ 1,

y(0, r) = 0̃,
y(1, r) = (−4 + r, 6− r).

(4.2)

where 0 ≤ r ≤ 1.
Due to Case.1 of Section 3, we apply a standard method to solve two crisp BVPs as follows: y′′c (x, r) = y′c(x, r) + 1, 0 ≤ x ≤ 1,

yc(0, r) = 0,
yc(1, r) = 1,

(4.3)
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and y′′d (x, r) = y′d(x, r) + (1− r), 0 ≤ x ≤ 1,
yd(0, r) = 2− 2r,
yd(1, r) = 5− r.

(4.4)

Solutions (4.3) and (4.4) respectively are

yc(x, r) = 2
ex

e− 1
− x− 2 (e− 1)

−1
,

and

yd(x, r) =
4ex

e− 1
− 2e(r − 1) + 3− e

e− 1
+ x(r − 1).

It is obvious that yd(x, r) ≥ 0 and y′d(x, r) ≥ 0. According to Proposition 3.1, equation (4.1) has a (1-1)solution
on x ∈ [0, 1] that is y(x, r) = (yc(x, r) − yd(x, r), yc(x, r) + yd(x, r)). Figure 1(a) shows plots of y(x, 0)(lower
bound) and y(x, 0)(upper bound)
Table.1 represent y(0.2, ri) for ri = 0.1i, i = 0, 1, ..., 10.

Table 1. The lower bound and upper bound of the fuzzy solution at x = 0.2.

i ri yc(0.2, ri) yd(0.2, ri) y′d(0.2, ri) y(0.2, ri) y(0.2, ri)

0 0 0.0577 2.315 0.4227 −2.258 2.373
1 0.1 0.0577 2.135 0.3795 −2.078 2.193
2 0.2 0.0577 1.955 0.3373 −1.898 2.013
3 0.3 0.0577 1.775 0.2952 −1.718 1.833
4 0.4 0.0577 1.595 0.2530 −1.538 1; 633
5 0.5 0.0577 1.415 0.2108 −1.358 1.473
6 0.6 0.0577 1.235 0.1678 −1.178 1.293
7 0.7 0.0577 1.055 0.1265 −0.998 1.113
8 0.8 0.0577 0.875 0.0843 −0.818 0.993
9 0.9 0.0577 0.695 0.0421 −0.638 0.753
10 1 0.0577 0.515 0.0324 −0.458 0.573

2): Obtaining (1-2)solution to (4.1) is considered, we first rewrite (4.1) as
D2

1,2y(x, r) = D1
1y(x, r) + (r, 2− r), 0 ≤ x ≤ 1,

y(0, r) = 0̃,
y(1, r) = (−4 + r, 6− r).

(4.5)

where 0 ≤ r ≤ 1.
Due to Case.2 of Section 3, we apply a standard method to solve two crisp BVPs as follows: y′′c (x, r) = y′c(x, r) + 1, 0 ≤ x ≤ 1,

yc(0, r) = 0,
yc(1, r) = 1,

(4.6)

and −y′′d (x, r) = y′d(x, r) + (1− r), 0 ≤ x ≤ 1,
yd(0, r) = 2− 2r,
yd(1, r) = 5− r.

(4.7)
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(a) (b)

Figure 1. (a)(1-1)solution of equation(4.1), (b)(1-2)solution of equation(4.1).

Solutions (4.6) and (4.7) respectively are

yc(x, r) = 2
ex

e− 1
− x− 2

e− 1
,

and

yd(x, r) =
4e−x

e−1 − 1
− 2(e−1r − e−1 − r + 3)

e−1 − 1
+ x(r − 1).

It is obvious that yd(x, r) ≥ 0 and y′d(x, r) ≥ 0. According to Proposition 3.2, equation (4.1) has a (1-2)solution
on x ∈ [0, 1] that is y(x, r) = (yc(x, r)− yd(x, r), yc(x, r) + yd(x, r)) this solution for r = 0 is shown in Figure
1(b)

3): Suppose (2-1)solution to (4.1) is considered. We can then rewrite (4.1) as
D2

2,1y(x, r) = D1
1y(x, r) + (r, 2− r), 0 ≤ x ≤ 1,

y(0, r) = 0̃,
y(1, r) = (−4 + r, 6− r),

(4.8)

where 0 ≤ r ≤ 1.
we apply a standard method to solve two crisp BVPs as follows: y′′c (x, r) = y′c(x, r) + 1, 0 ≤ x ≤ 1,

yc(0, r) = 0,
yc(1, r) = 1,

(4.9)

and −y′′d (x, r) = −y′d(x, r) + (1− r), 0 ≤ x ≤ 1,
yd(0, r) = 2− 2r,
yd(1, r) = 5− r.

(4.10)

Solutions (4.9) and (4.10) respectively are

yc(x, r) = 2
ex

e− 1
− x− 2 (e− 1)

−1
,

and

yd(x, r) =
2ex(r + 2)− 2(er − e+ 2)r − 4

e− 1
+ x(1− r).
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Due to Theorem 2.11 since y′d(x, 0) > 0 then (4.1) does not have a (2-1)solution on x ∈ [0, 1].
4): Suppose a (2-2)solution to (4.1) is considered. We can then rewrite (4.1) as

D2
2,2y(x, r) = D1

2y(x, r) + (r, 2− r), 0 ≤ x ≤ 1,

y(0, r) = 0̃,
y(1, r) = (−4 + r, 6− r),

(4.11)

where 0 ≤ r ≤ 1.
Due to Case 4 of section 3, we apply a method to solve two crisp BVPs as follows: y′′c (x, r) = y′c(x, r) + 1, 0 ≤ x ≤ 1,

yc(0, r) = 0,
yc(1, r) = 1,

(4.12)

and y′′d (x, r) = −y′d(x, r) + (1− r), 0 ≤ x ≤ 1,
yd(0, r) = 2− 2r,
yd(1, r) = 5− r.

(4.13)

Solutions (4.12) and (4.13) respectively are

yc(x, r) = 2
ex

e− 1
− x− 2 (e− 1)

−1
,

and
2e−x(r + 1)

e−1 − 1
− 2(e−1r − e−1 + 2)

e−1 − 1
+ x(1− r).

Hence yd(x, 0) = x therefor y′d(x, 0) > 0. From Theorem 2.11, since y′d(x, r) > 0 then (4.1) does not have
(2-2)solution on x ∈ [0, 1].

Example 4.2. Consider the following two-point linear BVP y′′(x) = cos(x)y′(x) + xy(x) + (r, 2− r), 0 ≤ x ≤ 1,
y(0, r) = (r, 2− r),
y(1, r) = (2r, 4− r).

(4.14)

Suppose (1-1)solution to (4.14) is considered. We can rewrite fuzzy BVP (4.14) as
D2

1,1y(x, r) = cos(x)D1
1y(x, r) + xy(x) + (r, 2− r), 1 ≤ x ≤ 1,

y(0, r) = (r, 2− r),
y(1, r) = (2r, 4− r),

(4.15)

where 0 ≤ r ≤ 1.
Due to Case.1 in Section 3, it is enough to solve two crisp BVPs as follows: y′′c (x, r) = cos(x)y′c(x, r) + xyc(x, r) + 1, 0 ≤ x ≤ 1,

yc(0, r) = 1,
yc(1, r) = 2 + 0.5r,

(4.16)

and  y′′d (x) = |cos(x)|y′d(x) + |x|yd(x) + 1− r, 0 ≤ x ≤ 1,
yd(0, r) = 1− r,
yd(1, r) = 2− 1.5r.

(4.17)

Using standard methods (analytic or numerical), we conclude that yd(x, r) ≥ 0, y′d(x, r) ≥ 0 for all 1 ≤ x ≤ 2 and 0 ≤
r ≤ 1. Thus, the Eq. (4.14) has the unique (1-1)solution in its domain. Figure 2(a) shows yd(x, 0.5) ≥ 0, y′d(x, 0.5) ≥ 0
for 1 ≤ x ≤ 2. Figure 2(b) indicates plots of y(x, 0.5)(lower bound) and y(x, 0.5) (upper bound) of (1-1) solution of
Eq. (4.15) in [0, 1].
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(a) (b)

Figure 2. (a)Solution of (4.17) with r = 0.5, (b)(1-1)solution of (4.14) in[0, 1] with r=0.

Now suppose (1-2)solution of fuzzy BVP (4.14) is considered. We can rewrite Eq. (4.14) as
D2

1,2y(x, r) = cos(x)D1
1y(x, r) + ty(x) + (r, 2− r), 0 ≤ x ≤ 1,

y(0, r) = (r, 2− r),
y(1, r) = (2r, 4− r),

(4.18)

where 0 ≤ r ≤ 1.
Due to Case 2 in section 3, it is enough to solve two crisp BVPs as follows: y′′c (x, r) = cos(x)y′c(x, r) + tyc(x, r) + 1, 0 ≤ x ≤ 1,

yc(0, r) = 1,
yc(1, r) = 2 + 0.5r,

(4.19)

and  −y′′d (x) = |cos(x)|y′d(x) + |x|yd(x) + 1− r, 0 ≤ x ≤ 1,
yd(0, r) = 1− r,
yd(1, r) = 2− 1.5r.

(4.20)

Using standard methods (analytic or numerical), we conclude that for each r, yd(x, r) ≥ 0 for each x ∈ [0, 1] but
y′d(x, r) ≥ 0 for each x ∈ [0, 0.856] while y′d(x, r) < 0 for each x ∈ [0.856, 1] see Figure 3(a) Hence the equation
(4.14) has (1-2)solution on [0, 0.856] but does not have (1-2)solution on [0.856, 1]. Figure 3(b) shows both graphs of
y(x, 0)(lower bound) and graph of y(x, 0)(upper bound) to (4.18) where is (1-1)solution on [0, 0.856].

5. conclusion

Here, we have studied linear two-point fuzzy boundary value problems. Since there exists the first-kind and second-
kind derivatives, hence we use the concept of Hukuhara differentiability and convert a linear fuzzy differential equation
to four cases, where each case deals with crisp mathematics, where standard algorithms can be used. We hope to
extend our method based on generalized differentiability fuzzy problems in the future.
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(a) (b)

Figure 3. (a)Solution of (4.20) with r = 0, (b)Solution of (4.18) with r = 0.
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