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Abstract We introduce and discuss the Homotopy perturbation method, the Adomian decom-
position method and the variational iteration method for solving the stefan problem
with kinetics. Then, we give an example of the stefan problem with kinetics and
solve it by these methods.
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1. Introduction

Phase-changes, or the Stefan problems in which material melts or solidifies occur in
a wide variety of natural and industrial processes. Mathematically, these are special
cases of moving-boundary problems, in which the location of the front between the
solid and liquid is not known beforehand, but must be determined as a part of the
solution [8]. The basic partial differential equation is heat transfer equation, never-
theless, solving the problem is not straightforward due to the moving boundary. In
general, when solving the problem, the technique should be able to track the mov-
ing boundary. Stefan problems model, many real world and engineering situations
[16, 46]. Examples include solidification of metals, freezing of water and food, crystal
growth, casting, welding, melting, ablation, etc. Many numerical methods have been
used for solving the Stefan problems. Crank [8] as well as Lynch and ONeill [38]
provide a comprehensive summary of the numerical methods used for this type of
problems. Phase-change problems have always remained an active area of research.
Analytical progress in the solution of Stefan problems has remained very limited and
usually unavailable. In one-dimensional Stefan problem we wish to determine the
free boundary (sufficiently smooth) which is given by x = s(t) and the temperature
solution u(x, t). In this paper, we consider the modified one-phase Stefan problem
and seek a solution (u(x, t), s(t)), which satisfies the one-dimensional heat equation

∂u

∂t
=

∂2u

∂x2
− γu(x, t), −∞ < x < s(t) , t > 0, (1.1)
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subject to the initial condition

u(x, 0) = φ(x), (1.2)

and other conditions on the moving boundary x = s(t) as

∂u

∂x
(s(t), t) = −V (t), t ∈ (0, T ], (1.3)

g(u(s(t), t)) = V (t), t ∈ (0, T ], (1.4)

in which the damping term γ ≥ 0 is subject to volumetric heat losses, V (t) = s′(t) is
the velocity, s(0) = 0. Further assume that g(t) is monotonically decreasing differen-
tiable function on [0,∞) with |g′(t)| ≤ C which satisfies

−V0 ≤ g(t) ≤ −v0, for some V0, v0 > 0. (1.5)

The above problem arises naturally as a mathematical model of a variety of exother-
mic phase transition type processes, such as condensed phase combustion [39] also
known as self-sustained high temperature synthesis or SHS [41], solidification with
undercooling [35], laser induced evaporation [15], rapid crystallization in thin films
[50] etc. Existence and uniqueness of bounded classical solutions for the problem
(1.2)− (1.4) was established in [12].

The paper is organized as follows: Section 2 introduces the homotopy perturbation
method, the Adomian decomposition method and the variational iteration method.
Section 3 is devoted to present the application of these methods to the Stefan problem.
Finally in section 4, two numerical examples are given to demonstrate the accuracy
of the methods.

2. Description of Methods

In this section we will briefly discuss the homotopy perturbation, the Adomian
decomposition and the variational iteration methods.

2.1. Homotopy Perturbation Method (HPM). Homotopy perturbation method
was first proposed by He [18]. The method is a powerful and efficient tool for finding
solutions of linear and non-linear equations. It has been used to obtain the solutions of
a large class of linear and non-linear equations [19, 20, 21, 23, 24, 25]. To illustrate the
basic ideas of this method, we consider the following non-linear functional equation:

A(u)− f(r) = 0, r ∈ Ω, (2.1)

with the following boundary condition:

B(u,
∂u

∂n
) = 0, r ∈ Γ, (2.2)

where A is a general functional operator, B is a boundary operator, f(r) is a known
analytical function and Γ is the boundary of the domain Ω. The operator A can
be decomposed into two operators L and N , where L is linear, and N is nonlinear.
Equation (2.1) can be, therefore, written as follows:

L(u) +N(u)− f(r) = 0. (2.3)
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Using the homotopy technique, we construct a homotopy v(r, p) : Ω × [0, 1] → R
which satisfies:

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0, p ∈ [0, 1], r ∈ Ω, (2.4)

or equivalently,

H(v, p) = L(v)− L(u0) + pL(u0) + p[N(v)− f(r)] = 0. (2.5)

where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation for the
solution of equation (2.1) which satisfies the boundary conditions. Obviously, from
Equations (2.3) and (2.4) we will have:

H(v, 0) = L(v)− L(u0) = 0, (2.6)

H(v, 1) = A(u)− f(r) = 0. (2.7)

The changing values of p from zero to unity are just that of u(r, p) from u0(r) to
u(r). In topology, this is called homotopy. According to HPM, we can first use
the embedding parameter p as a small parameter,and assume that the solution of
Equations (2.3) and (2.4) are power series in p:

v = v0 + pv1 + p2v2 + · · ·, (2.8)

Setting p = 1 results in the approximation to the solution of Equation (2.1) as

u = lim
p→1

v = v0 + v1 + v2 + · · ·. (2.9)

The combination of the perturbation method and the homotopy method is called the
homotopy perturbation method, which has eliminated limitations of the traditional
perturbation techniques. The series (2.9) is convergent for many cases. Some criteria
are suggested for convergence of the series (2.9) in [18].

2.2. Analysis of the Adomian Decomposition Method (ADM). In the early
1980s, a new numerical method was developed by George Adomian [2] in order to
solve non-linear functional equations of the form

Lu+Ru+Nu = g, (2.10)

using an iterative decomposition scheme that led to elegant computation of closed-
form analytical solutions or analytical approximations to solutions. ADM can excel-
lently treat a wide variety of functional equations [3, 4, 9, 10, 11, 14, 17, 34, 36, 47].
In (2.10), operator L represents the linear part, operator R represents the remainder
or lower order terms, operator N represents the non-linear part and g is the non-
homogeneous right hand side. The solution u and the non-linearity N are assumed
to have respectively, the following analytic expansions,

u =
∞∑

n=0

un, Nu =
∞∑

n=0

An, (2.11)
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where the An’ s are the Adomian polynomials that depend only on u0, u1, · · · , un

given by the following formula:

An(u0, u1, · · · , un) =
1

n!

dn

dλn
(N

∞∑
n=0

ukλ
k)|λ=0, n = 0, 1, 2, · · · . (2.12)

In order to better explain the method, we will first assume the convergence of the
series in (2.11) and deal with the rigorous convergence issues later. The parameter k
is a dummy variable introduced for ease of computation. There are several different
versions of (2.12) that can be found in the literature that leads to easier computation
of the An’s. It should be noted that the An’s are the terms of analytic expansion of
Nû, where û =

∑∞
n=0 unλ

n about λ = 0 [13]. In [2] Adomian has shown that the
expansion for Nu in (3.2) is a rearrangement of the Taylor series expansion of Nu
about the initial function u0 in a suitable Hilbert or Banach space. Substitution of
(2.11) in (2.10) results in the following:

L(

∞∑
n=0

un) = −R(

∞∑
n=0

un)−
∞∑

n=0

An + g. (2.13)

The above equation can be rewritten in a recursive fashion, yielding iterates of un,
the sum of which converges to the solution u satisfying (2.13) if it exists:

∞∑
n=0

un = ϕ− L−1R(
∞∑

n=0

un)−
∞∑

n=0

L−1An + L−1g,

u0 = ϕ+ L−1g,

un+1 = −L−1R(un)− L−1An.

(2.14)

Typically, the symbol L−1 represents a formal inverse of the linear operator L. In the
case of partial differential equations, L is the highest order partial derivative operator
for which the formal inverse can be computed using integrations. A general theory of
decomposition schemes for non-linear functional equations was developed by Gabet
[13]. Convergence results as applied to ordinary differential equations and non-linear
functional equations can be found in [1, 6, 7]. Mavoungou [40] has proved a con-
vergence result for the Adomian scheme as applied to partial differential equations.
A compendium of interesting examples of partial differential equations for which the
ADM was utilized can be found in [49]. In general, the iterates in the Adomian decom-
position scheme (2.14) converge very rapidly to the unique solution of the functional
equation (2.10) provided that the scheme satisfies the property of strong convergence
as discussed in [13].

2.3. Variational Iteration Method (VIM). To illustrate the basic concept of He’s
VIM, we consider the following general differential equation:

Lu+Nu = g(x), (2.15)

where L is a linear operator, N is a nonlinear operator, and g(x) is the inhomogeneous
term. According to variational iteration method [26, 27, 28, 29, 30, 31, 32, 33, 42, 43,
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44, 45], we can construct a correction functional as follows:

un+1(x) = un(x) +

∫ x

0

λ(Lun(s) +Nũn(s)− g(s))ds, (2.16)

where λ is a Lagrange multiplier [26, 27, 28, 29], which can be identified optimally
via VIM. The subscripts n denote the nth approximation, and ũn is considered to
be a restricted variation. That is δũn = 0. The solution of the linear problems can
be solved in a single iteration step due to the exact identification of the Lagrange
multiplier. The principles of VIM and its applicability for various kinds of differential
equations are given in [26, 27, 28, 29]. In this method, it is required first to determine
the Lagrange multiplier λ optimally. The successive approximation un+1, n ≥ 0, of
the solution u will be readily obtained upon using the determined Lagrange multiplier
and any selective function u0; consequently, the solution is given by u = lim

n→∞
un. The

convergence of variational iteration method has been discussed in [48].

3. Applications

In this subsection, application of all these methods to the Stefan problem with

kinetics is briefly described. Substituting v = exp(γt)u, in ∂u
∂t = ∂2u

∂x2 − γu(x, t) yields
vt = vxx since

vt = γ exp(γt)u+ exp(γt)ut = exp(γt)(γu+ ut) = vxx, (3.1)

hence we can put γ = 0.

3.1. Application of HPM. In this section, we will apply the homotopy perturba-
tion method to the free boundary problem (1.1)-(1.4). According to the HPM, we
construct the following simple homotopy for the equation (1.1)

H(v, p) = (1− p)vt + p(vt + vxx)
= vt + pvxx = 0,

(3.2)

where p ∈ [0, 1] is an embedding parameter. When p = 0, (3.2) is an ordinary
differential equation with vt = 0 which is easy to solve; and if, p = 1 it turns out to
be the equation (1.1). The basic assumption is that the solution can be written as a
power series in p as

v = v0 + pv1 + p2v2 + p3v3 + ... =
∞∑
i=0

pivi. (3.3)

Now, by substituting (3.3) in (3.2), we get,

(v0)t + p(v1)t + p2(v2)t + ...− p((v0)xx + p(v1)xx + p2(v2)xx + ...) = 0. (3.4)

In order to obtain the coefficients of various powers of p , we need to compare the
different powers of p. Since resulting equations are ordinary differential equations
of first order, we need an initial condition for any such equation. Comparing the
terms with identical powers of p in (3.4) together with the initial condition (1.2), the
following series of equations can be obtained

p0 : (v0)t = 0
v0(x, 0) = φ(x),

(3.5)
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pi : (vi)t = (vi−1)xx, for i = 1, 2, ...,
vi(x, 0) = 0.

(3.6)

By taking the limit of v(x, t), we can obtain the solution of the free boundary problem
as

u(x, t) = lim
p→1

(v0 + pv1 + p2v2 + ...). (3.7)

Now, using the relation (1.3), one can simply compute the free boundary s(t). Using
the initial condition s(0) = 0 and the condition (1.3), we can construct the following
ordinary differential equation

s′(t) = F (t, s(t)),
s(0) = 0,

(3.8)

where F (t, s(t)) = −∂u
∂x (s(t), t). Solving this ODE, one can get the free boundary

function s(t). Finally, we need to show that the resulting solution (u(x, t), s(t)) sat-
isfies the condition (1.4).

3.2. Application of ADM. To convey the process of solving the Stefan problem
with kinetics (1.1) − (1.4) by Adomian decomposition method, we apply the inverse

operator, L−1 =
∫ t

0
(.)dτ , to the heat equation (1.1),

u(x, t) = u(x, 0) +
∫ t

0
uxx(x, τ)dτ,

= φ(x) +
∫ t

0
uxx(x, τ)dτ.

(3.9)

By using (2.14), we can write,

u0 = φ(x),

un+1(x, t) =
∫ t

0
(un)xx(x, τ)dτ.

(3.10)

We can obtain the solution of the free boundary problem as

u(x, t) =

∞∑
n=0

un. (3.11)

To compute the free boundary s(t), we apply the same approach used in HPM above.
Finally, we need to show that the above solution (u, s) satisfies the condition (1.4).

3.3. Application of VIM. In this subsection, the variational iteration method is
applied for solving problems (1.1) − (1.4). According to the variational iteration
method, we consider the correction functional for (3.1) in the form:

un+1(x, t) = un(x, t) +

∫ t

0

λ(s)(
∂un

∂s
− ∂2ũn

∂x2
)ds. (3.12)

where λ is the general Lagrange multiplier, u0 is an initial approximation which should
be chosen suitably and ũn is the restricted variation, i.e. δũn = 0. To find the optimal
value of λ we have

δun+1(x, t) = δun(x, t) + δ

∫ t

0

λ(s)(
∂un

∂s
− ∂2ũn

∂x2
)ds, (3.13)
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or

δun+1(x, t) = δun(x, t)(1 + λ)− δ

∫ t

0

un
∂λ(s)

∂s
ds = 0, (3.14)

which yields

∂λ(s)

∂s
= 0, 1 + λ = 0. (3.15)

Thus we have λ = −1, and we obtain the following iteration formula:

un+1(x, t) = un(x, t)−
∫ t

0

(
∂un

∂s
− ∂2un

∂x2
)ds, (3.16)

and for sufficiently large values of n we can consider un as an approximation of the
exact solution. Using the same approach as HPM, we can compute the free boundary
function s(t).

4. Numerical Results

Now, we are ready to apply the HPM and ADM to the calculation of the Stefan
problem through the test by numerical examples.
Example 1. Let α ∈ R be positive. Consider the problem (1.1) − (1.4) with the
following data:

φ(x) = exp(αx),
g(t) = exp(−t)− α− 1

e ,
(4.1)

which correspond to the exact solution

u(x, t) = exp(α2t+ αx),
s(t) = −αt.

(4.2)

Precisely, g(t) is monotonically decreasing differentiable function on [0,∞) with |g′(t)| =
e−t ≤ 1 and g satisfies the assumption (1.5).

Case a: HPM
As mentioned in the previous section, from relations (3.5) and (4.1) we get

p0 : (v0)t = 0
v0(x, 0) = exp(αx).

(4.3)

Solving this boundary value problem yields,

v0 = exp(αx). (4.4)

For the first exponent of p by (3.5) we can write

p1 : (v1)t = (v0)xx = α2 exp(αx),
v1(x, 0) = 0.

(4.5)

The solution of this problem is

v1 = α2 exp(αx)t. (4.6)
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By a similar argument we obtain,

v2 = α4 exp(αx) t
2

2 , v3 = α6 exp(αx) t
3

3! ,

v4 = α8 exp(αx) t
4

4! , v5 = α10 exp(αx) t
5

5! .
(4.7)

Now, we can calculate the solution of the above Stefan problem as

u(x, t) = lim
p→1

(v0 + pv1 + p2v2 + ...)

= lim
p→1

∞∑
k=0

exp(αx)pk
(α2t)k

k!

=
∞∑
k=0

exp(αx)
(α2t)k

k!

= exp(αx) exp(α2t) = exp(αx+ α2t).

(4.8)

By using (1.3) and the above relation we have

s′(t) = −V (t) = −ux(s(t), t) = −α exp(αs(t) + α2t). (4.9)

Then ∫ t

0

−s′(τ) exp(−αs(τ))dτ =

∫ t

0

α exp(α2τ)dτ. (4.10)

Note that s(0) = 0. Using this fact, the solution of the above integral is

s(t) = −αt. (4.11)

This (u, s) is the exact solution of the Stefan problem corresponding to the data
(4.1). Now, we can simply show that this solution also satisfies the conditions (1.4),
as follows

u(s(t), t) = exp(−α2t+ α2t) = 1,

g(u(s(t), t)) = g(1) = exp(−1)− α− 1
e = −α = V (t).

(4.12)

Case b: ADM
By relations (3.9) we have

u0 = exp(αx),

u1(x, t) =
∫ t

0
(u0)xxdτ = exp(αx)α

2t
1! ,

u2(x, t) =
∫ t

0
(u1)xxdτ = exp(αx) (α

2t)2

2! ,

...

un(x, t) =
∫ t

0
(un−1)xxdτ = exp(αx) (α

2t)n

n! ,

...

(4.13)
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By computing u(x, y) from (3.10) we obtain

u(x, t) = lim
n→∞

n∑
k=0

uk = exp(αx)
∞∑

n=0

(α2t)n

n!

= exp(αx+ α2t).

(4.14)

By a similar argument to the case of HPM, one can conclude that:

s(t) = −αt,

g(u(s(t), t)) = g(1) = exp(−1)− α− 1
e = −α = V (t).

(4.15)

This solution is the exact solution of the inhomogeneous heat equation and by (4.12)
satisfies the conditions (1.3)− (1.4).

Case c: VIM
Using the variational iteration method for solving the Stefan problem, we can select
u0(x, t) = exp(αx) by using the given initial value. Accordingly, by the iteration
formula (3.15), we obtain the following successive approximations:

u1(x, t) = exp(αx)[1 + (α2t)],

u2(x, t) = exp(αx)[1 + (α2t) + (α2t)2

2! ],

...

un(x, t) = exp(αx)[1 + (α2t) + (α2t)2

2! + · · ·+ (α2t)n

n! ] = exp(αx)

n∑
k=0

(α2t)n

n!
,

...

(4.16)

Recall that

u(x, t) = lim
n→∞

un(x, t). (4.17)

Consequently, the exact solution is the form:

u(x, t) = exp(αx+ α2t). (4.18)

From Equations (4.8) and (4.14) we see that the approximate solution of the problem
(1.1)− (1.4) obtained by using the variational iteration method is the same as the one
obtained by the homotopy perturbation method and by the Adomian decomposition
method, it seems that the approximate solution remains closer to exact solution. By
a similar argument to the that cases of HPM and ADM, one can conclude that

s(t) = −αt,

g(u(s(t), t)) = g(1) = exp(−1)− α− 1
e = −α = V (t).

(4.19)
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Example 2. In this example we choose the data as φ(x) = x2+x, g(t) =
1

1010
(

1

t+ 1
−

2). Clearly the function g satisfy the assumptions stated in the introduction and (1.5).
Moreover this problem has no exact solution.
Case 1: HPM. Using the relations (3.5) and (3.6) one can get

v0 = x2 + x,

v1 = 2t,

vn = 0, n = 2, 3, · · · .

(4.20)

Using (3.7), we can compute the solution u(x, t)

u(x, t) = lim
p→1

(v0 + pv1 + p2v2 + · · · ) = lim
p→1

(v0 + pv1). (4.21)

Then we get

u(x, t) = x2 + x+ 2t. (4.22)

To compute the free boundary, we apply the relation (3.8)

s′(t) = −(2s(t) + 1),
s(0) = 0.

(4.23)

Solving this ODE yields 2s(t) + 1 = e−2t. For the condition (1.4), we have

|s′(t)− g(u(s(t), t))| = | − e−2t

− 1

1010
(

1
1
4 (exp(−2t)− 1)2 + 1

2 (exp(−2t)− 1) + 2t+ 1
− 2)|

≤ 2× 10−10, for sufficiently large t.

(4.24)

Case 2: ADM. To obtain u(x, t) in this case using (3.10) one can get

u0(x, t) = x2 + x,

u1(x, t) = 2t,

un(x, t) = 0, n = 2, 3, · · · .

(4.25)

Thus the computation of the solution of the free boundary problem using (3.11) yields

u(x, t) = u0(x, t) + u1(x, t) = x2 + x+ 2t. (4.26)

Applying the same approach used above in the case of HPM, we can get the free
boundary function

2s(t) + 1 = e−2t. (4.27)

At last in this case the same relation as (4.24) holds for the condition (1.4).
Case 3: VIM. In this case we select u0 = x2+x and to compute un for n = 1, 2, · · ·
using the recursive relation (3.16), we can obtain

un(x, t) = x2 + x+ 2t, n = 1, 2, · · · . (4.28)
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Taking the limit in the above nth relation and remembering u = lim
n→∞

un, one can get

the solution

u(x, t) = x2 + x+ 2t. (4.29)

Applying the same approach as in the case of HPM, we can get the free boundary
function

2s(t) + 1 = e−2t. (4.30)

For the condition (1.4) in this case the relation (4.24) also holds.

5. Conclusion

In this paper, Homotopy perturbation, Adomian decomposition and variational
iteration methods are employed successfully to study the Stefan problem with kinetics.
As it is seen, all these methods obtain the exact solution or get the good approximate
solution of the Stefan problem with kinetics. Moreover, they are straightforward and
avoid the hectic work of calculations. In conclusion, these three methods provide
highly accurate numerical solutions for free boundary problems. As it is mentioned,
these methods avoid physically unrealistic assumptions. These method are applied in
a direct way without using linearization, transformation, discretization or restrictive
assumptions. Variational iteration method gives several successive approximations
through the iteration of the correction functional. Finally, comparison with exact
solutions reveals that HPM, ADM and VIM are remarkably effective for solving these
types of problems. Authors believe that these methods provide efficient techniques
for solving various scientific and engineering problems.
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