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Abstract

..

Nonlinear oscillations are an essential fact in physical science, mechanical structures, and other engineering prob-
lems. Some of the popular analytical solutions to analyze nonlinear differential equations governing the behavior

of strongly nonlinear oscillators are the Energy Balance Method (EBM), and He’s Amplitude Frequency Formula-
tion (HAFF). The lack of precision and accuracy despite needing several computational steps to resolve the system
frequency is the main demerit of these methods. This research creates a novel analytical approximation approach

with a very efficient algorithm that can perform the calculation procedure much easier and with much higher accu-
racy than classic EBM and HAFF. The presented method’s steps rely on Hamiltonian relations described in EBM
and the defined relationship between frequency and amplitude in HAFF. This paper demonstrates the substantial
precision of the presented method compared to common EBM and HAFF applied in different and well-known

engineering phenomena. For instance, the approximate solutions of the equations govern some strongly nonlin-
ear oscillators, including the two-massspring systems, buckling of a column, and duffing relativistic oscillators
are presented here. Subsequently, their results are compared with the Runge-Kutta method and exact solutions
obtained from the previous research. The proposed novel approach resultant error percentages show an excellent

agreement with the numerical solutions and illustrate a very quickly convergent and more precise than mentioned
typical methods.
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1. Introduction

There has been a growing interest in analytical solutions for nonlinear oscillator equations in the last few years.
The key issue in studying nonlinear oscillation systems is finding the exact solutions. On the other hand, computing
the exact results can be challenging, especially in oscillation systems with a high degree of nonlinearity, mainly using
traditional analytical techniques. In this view, a wide variety of approximate methods and numerical techniques such
as D. Perturbation theory [6, 35], Iteration Perturbation Method (IPM) [1, 11], Hamiltonian Approach (HA) [21, 45],
Energy Balance Method (EBM) [22, 23], Harmonic Balance Method (HBM) [3, 8, 14, 33, 44], Homotopy Perturbation
Method (HPM) [24–26], and Adomian Decomposition Method [7, 36] have been proposed. The Variational Iteration
Method (VIM) [15, 18, 20, 27, 38, 46, 47] is another technique for solving strongly nonlinear systems. The VIM was
first proposed by He [28], and its applications to nonlinear oscillators can be found in Refs. [4, 39].

What is more, one of the precise methods to find the frequency of an oscillator is He’s amplitude frequency
formulation (HAFF). He [29] proposed an amplitude-frequency formulation for nonlinear oscillators to solve nonlinear
problems, deduced from an ancient Chinese mathematics method [40], and is now widely used by many authors. [5,
30, 31, 48, 49, 51].

It is evident that frequency is one of the most important physical parameters in oscillatory systems. For several
years a fundamental limitation of these studies is that they do not address the accurate determination of the system’s
frequency, especially in severe nonlinear oscillatory systems. Recently, several authors have tried to improve classic
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methods from different points of view [10, 17, 19, 41, 43]. However, studies on more optimum methodologies to improve
traditional methods’ performance in computing system frequency are still lacking.

For this reason, a most interesting approach based on two robust methods (EBM&HAFF) is proposed in this
study. Firstly, a variational principle for the nonlinear oscillation is established, and then a Hamiltonian formulation
is constructed according to EBM. Two trial functions are assumed based on initial conditions and substituted in a
defined Hamiltonian. Then by applying a part of He’s amplitude frequency formulation, the system frequency can be
set.

The author’s findings reveal that, because frequency ω is one of the most significant physical parameters in oscillatory
systems, and the provided technique demonstrates its capacity to predict the frequency with exceptional precision, it
may be easily applied in severely nonlinear oscillation systems.

In this paper, the described novel method is extended and applied to determine approximate solutions for different
strongly nonlinear oscillators represented in two famous examples.

These examples are formulated based on a general oscillator differential equation of the below form:

ü+ f (u) = 0, u (0) = A, u̇ (0) = 0, (1.1)

where A is the initial amplitude., and the dot denotes differentiation with respect to time.
The first example involves three various cases of mass-spring oscillatory systems. The second example describes the

Duffing-relativistic oscillation system. (See figure 1).
With attention to the error percentages of the results, the presented method profoundly succeeded in compensating

for the drawbacks of conventional EBM and HAFF in significant applications. The main advantages of the described
approach are less computation burden using fewer terms in expanded series, which leads to less procedure time of
solution and more accuracy than its correspondent methods.

Based on the introduced novel approach, this paper evaluates the corresponding relations, and their error percentages
and tables are presented for different parameter values. In all the studied cases, it is demonstrated that the solutions
found with the proposed novel method show more reliability, accuracy, faster, and convergence than the other referred
methods. Moreover, in most cases, the novel method capability is demonstrated in both Single Degree of Freedom
(SDOF) and Two Degrees of Freedom (TDOF) oscillation systems and in both high and low amplitude values. It
provides a practical and convenient mathematical tool for oscillator equations with high power of nonlinearity.

The presented steps and defined process of this paper are shown in the illustration below:

2. Methods

2.1. Basic concept of Energy Balance Method (EBM). In He’s energy balance method [22] and [23], a vari-
ational formulation for the nonlinear oscillation is established, then a Hamiltonian is constructed, from which the
angular frequency can be readily obtained by the collocation method.

The variational principle of Eq. (1.1) can be easily obtained as follows [10]:

J (u) =

∫ t

0

(
−1

2
u̇2 + F (u)

)
dt. (2.1)

The F (u) =
∫
f (u) du, which f (u) is the second term of the general equation of a nonlinear oscillator in the form

of Eq.(1.1).
The total energy of the oscillator corresponds to its Hamiltonian:

H =
1

2
u̇2 + F (u) . (2.2)

In Eq. (2.2), the kinetic energy (E) can be expressed as E = 1
2 u̇

2 and P = F (u) =
∫
f (u) du, representing the

potential energy (P ) through the motion. Hence,the Hamiltonian can be rewritten as below [10]:

H = E + P. (2.3)
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Figure 1. The article’s steps and process.

Throughout the oscillation, since the system is conservative, the total energy remains unchanged during the motion;
the Hamiltonian of the oscillator becomes a constant value:

1

2
u̇2 + F (u) = F (A) , (2.4)

Or

1

2
u̇2 + F (u)− F (A) = 0. (2.5)

For the first-order approximation, and based on the initial conditions mentioned in Eq.(1.1), the following trial
function can be assumed:

u (t) = A cosωt, (2.6)

with ω being the unknown angular frequency of the motion. Substituting Eq. (2.6) into Eq. (2.5) yields the following
residual equation R (t):

R (t) =
1

2
ω2A2sin2ωt+ F (A cosωt)− F (A) . (2.7)

It is clear that the residual varies over time. Relation (2.7) gives us the difference between the calculated energy
based on the approximate solution for every special value of time and the total energy of the oscillator [34].

Since Eq. (2.6) is only an approximation to the exact solution, R(t) cannot be made zero everywhere. The frequency
(ω) is determined by using collocation at ωt = π/4 , that means by imposing the condition R (ωt = π/4) = 0, This
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yields:

ω =
2

A

√
F (A)− F

(
A/

√
2
)
. (2.8)

If T = 2π/ω is the period of the nonlinear oscillator; it can be written in the form of:

T =
2π

2/A
√
F (A)− F

(
A/

√
2
) . (2.9)

2.2. Basic concept of He’s Amplitude Frequency Formulation (HAFF). Let us consider the general nonlinear
oscillators as follows:

ü+ f (u, u̇, ü, t) = 0, u (0) = A, u̇ (0) = 0, (2.10)

where f (u, u̇, ü, t) , is a function with the nonlinear term.
For a generalized nonlinear oscillator in Eq. (2.10), we use two trial functions:

u1 =A cos t, (2.11)

u2 =A cosωt. (2.12)

Substituting u1 and u2 into Eq. (2.10):

R1 = ü1 + f (u1, u̇1, ü1, t) , (2.13)

and

R2 = ü2 + f (u2, u̇2, ü2, t) . (2.14)

To use He’s amplitude frequency formulation, we set the:

R11 =
4

T1

∫ T1
4

0

R1 cos (t) dt, T1 = 2π, (2.15)

and

R22 =
4

T2

∫ T2
4

0

R2 cos (ωt) dt, T2 =
2π

ω
. (2.16)

Applying He’s amplitude frequency formulation, we have [30, 31, 51]:

ω2 =
ω2
1R22 − ω2

2R11

R22 −R11
, (2.17)

where

ω1 = 1, ω2 = ω. (2.18)

2.3. Basic concept of Novel Method. In this paper, we consider a general nonlinear oscillator in the form of
Eq.(1.1). Considering its initial conditions and based on He’s amplitude frequency formulation we employ two trial
functions u1 (t) = Acos t and u2(t) = A cos(ωt). Thanks to the Energy balance method, by constructing the oscillator’s
Hamiltonian, substituting u1 and u2 into Eq.(2.5) yields the following residuals relations:

R1 (t) =
1

2
u̇2
1 + F (u1)− F (A) = 0, (2.19)

and

R2 (t) =
1

2
u̇2
2 + F (u2)− F (A) = 0. (2.20)

Through He’s amplitude frequency formulation, we set R11 and R22 according to Eq.(2.15) and Eq.(2.16) respec-
tively. Finally, using Eq.(2.17) and Eq.(2.18), the frequency of the nonlinear oscillator (ω) would be determined.
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3. Examples

We consider the following examples to demonstrate the advantages of described novel technique and extend this
method’s application.

Example 3.1. The Models of Nonlinear Oscillation Systems
This section analyzes a practical case of a nonlinear oscillation system of Single Degree of Freedom (SDOF) and

two cases of Two Degrees of Freedom (TDOF) systems.

Figure 2. Model for the buckling of a column [13]

Case 1: Model of a buckling column
This section considers a column, as shown in Figure 2. the mass m moves in the horizontal direction only. Based

on [12], the column can be modeled by two identical light rigid links with length l, supported by two nonlinear springs
with the stiffness of k1 and k3, attached at their pivoted joints as shown in Figure 2. The system is then loaded by
two axial compressive forces P at both ends.

Using this model representing a column, we demonstrate how one can study its static stability by determining the
nature of the singular point at u = 0 of the dynamic equations. Neglecting the weight of springs and columns shows
that the governing equation for the motion of m is [13]:

mü+

(
k1 −

2P

l

)
u+

(
k3 −

2P

l3

)
u3 + · · · = 0, (3.1)

where u(0) = A, u̇ (0) = 0. The spring force is given by:

Fspring = k1u+ k3u
3 + · · · . (3.2)

Case 2: Two-mass system with three springs
A two-mass system with three springs is modeled in Figure 3. In this figure, two equal masses m are linked with the

fixed supports using spring k1. The connection between two masses makes a compact item: a spring with nonlinear
properties. The linear coefficient of spring elasticity is k2 and the cubic nonlinearity is k3, thus, the system shows two
degrees of freedom. The generalized coordinates are x and y.

The mathematical model of the system is presented here [13]:

ü+

[
k1 + 2k2

m

]
u+

[
2k3
m

]
u3 = 0,

u (0) = y (0)− x (0) = Y0 −X0 = A, u̇ (0) = 0. (3.3)

Note that in the case of k3>0 corresponds to a hardening spring while k3<0 indicates a softening one.
Case 3: Two-mass system with a connection spring
Similarly, the system with one spring is modeled in Figure 4. Two masses, m1 and m2, are linked with a spring

with a linear coefficient of rigidity k1 and the nonlinear one k2. The system has two degrees of freedom.
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Figure 3. The two-mass system with three springs [13]

Figure 4. The two-mass system with spring [13]

The generalized coordinates of the system are x and y. The motion of the system is described by [13]:

ü+

[
k1 (m1 +m2)

m1m2

]
u+

[
k2 (m1 +m2)

m1m2

]
u3 = 0,

u (0) = y (0)− x (0) = Y0 −X0 = A, u̇ (0) = 0. (3.4)

3.1. Analysis of Mechanical Models and Applying Presented Novel Approach. Applying Novel Ap-
proach to Cases 1, 2, 3

We will apply this method to the discussed system to assess the presented novel method capability. Its formulation
can be quickly established as below:

These mentioned models can be transformed into a cubic nonlinear differential equation in a general form with
different values α and β. The general form of the cubic nonlinear differential is described below:

ü+ αu+ βu3 = 0, u (0) = A, u̇ (0) = 0. (3.5)

The residual relation can be written in the following form based on the oscillator’s Hamiltonian:

R (t) =
1

2
u̇2 +

1

2
α u2 +

1

4
β u4 − 1

2
α A2 − 1

4
β A4 = 0, (3.6)

To determine the angular frequency ω, i.e., We will use the two trial functions u1 (t) = Acost and u2(t) = A cos(ωt).
If we substitute the assumed trial functions into Eq. (3.6), it leads to the following residual equations:

R1 (t) =
1

2
A2sin2 (t) +

1

2
αA2cos2 (t) +

1

4
βA4cos4 (t)− 1

2
αA2 − 1

4
βA4 = 0, (3.7)

R2 (t) =
1

2
A2ω2sin2 (ωt) +

1

2
αA2cos2 (ω t) +

1

4
βA4cos4 (ωt)− 1

2
αA2 − 1

4
βA4 = 0. (3.8)

If we define R11 and R22 according to Eq.(2.15) and Eq.(2.16) respectively, we can set the Eq.(2.17) and Eq.(2.18),
which leads to:

ωNovel Approach = 0.1
√
30βA2cos2 (0.5π) + 70βA2 + 100α. (3.9)

The analytical results in terms of frequency values as well as outcomes associated with the period of the system

are considered for different values of α and β. Subtitling α =
k1− 2P

l

m and β =
k3− 2P

l3

m in Eq. (3.9) yields the following
results for the buckling of a column as a nonlinear SDOF system presented in section 3.1:

ωNovel Approach = 0.1

√
30
(
k3 − 2P

l3

)
A2cos (1.570796327)

2

m
+

70
(
k3 − 2P

l3

)
A2

m
+

100
(
k1 − 2P

l

)
m

. (3.10)
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Consequently, we obtain the following period:

TNovel Approach =
2π

0.1

√
30 (k3− 2P

l3
) A2cos (1.570796327)2

m +
70 (k3− 2P

l3
)A2

m +
100 (k1− 2P

l )
m

. (3.11)

The approximate frequency formulation of EBM and HAFF in general form, in terms of α and β, is obtained previously
as [2]

ωEBM = ωHAFF =

√
a+

3βA2

4
. (3.12)

Table 1. Comparison of the novel method’s periods and approximate solutions, with exact- case 1.

A k3 k1 P l m T ex
T Presented

Method
T EBM,
T HAFF

Er(%)
Presented
Method

Er(%)
EBM,

HAFF

1 5 10 1 1 1 1.96451 1.977056959 1.962537372 0.638681351 0.100413233

3 6 5 5 1.5 5 3.32368 3.361706968 3.237436612 1.144122419 2.594816228

10 50 10 10 10 10 0.33143 0.33553417 0.324181459 1.238321787 2.187050508

20 100 30 40 25 50 0.26208 0.265392852 0.256402026 1.264061203 2.166504006

10 100 50 -30 20 70 0.61809 0.625930023 0.604857367 1.26842743 2.140890938

100 20 70 150 50 100 0.1658 0.167896891 0.162206277 1.264710856 2.167504644

0.5 500 120 220 150 500 9.71672 9.82307501 9.676369073 1.094556702 0.415273127

Note: T EBM represents the approximate period obtained by Energy Balance Method, which resulted previously in [2]. T HAFF

indicates the approximate period of He’s Amplitude Frequency Formulation, obtained previously in [2]. T ex represents the exact period

stated in [16]. Er(%) defines the percentage error which been calculated by the relation
|T−Tex|

Tex
(%)

3.2. Results and Discussion About Example 1. Moreover, by substituting α = k1+2k2

m and β = 2k3

m into Eq.
(3.9), we can obtain the approximate solution of the second case according to Eq. (3.13):

ωNovel Approach = 0.1

√
60k3A2cos (1.570796327)

2

m
+

140 k3A2

m
+

100 (k1 + 2k2)

m
. (3.13)

Table 2. Comparison of the novel method’s frequencies and approximate solutions, with exact - case 2.

Y0 X0 A k3 k2 k1 m ω ex
ω Presented

Method
ω EBM, ω

HAFF

Er(%)
Presented
Method

Er(%) EBM,
HAFF

1 5 -4 1 1 1 1 5.1078 5.039841267 5.196152423 1.33048931 1.729754943

10 8 2 5 3 1 2 4.2406 4.183300133 4.301162634 1.351220747 1.428161911

10 -10 20 30 20 10 5 58.7856 58.05170109 60.08327555 1.248433137 2.207471813

-40 20 -60 90 70 50 10 215.7113 213.0234729 220.4972 1.246029809 2.218659848

10 -10 20 0.5 20 25 10 5.9541 5.873670062 6.041522985 1.350832838 1.468282108

50 -50 100 400 300 200 100 239.6455 236.6600938 244.9653036 1.24575934 2.219863757

Note: ω EBM represents the approximate natural frequency obtained by Energy Balance Method, obtained previously in [2]. ω

HAFF indicates the approximate natural frequency obtained by He’s Amplitude Frequency Formulation, obtained previously in [2]. ω
ex represents the exact natural frequency stated in [16]. Er(%) defines the percentage error which been calculated by the relation
|ω − ωex|/ωex (%)
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Similarly, by choosing the α = k1(m1+m2)
m1m2

and β = k2(m1+m2)
m1m2

, into Eq. (3.9), the following frequency value is
obtained for case 3:

ωNovel Approach = 0.1

√
302 (ml +m2)A2cos(1.570796327)

2

m1m2
+

70k2 (m1 +m2)A2

m1m2
+

100k1 (m1 +m2)

m1m2
. (3.14)

Table 3. Comparison of the novel method’s frequencies and approximate solutions, with exact - case 3.

Y 0 X0 k2 k1 m2 m1 A ω ex
ω

Presented
Method

ω EBM,
ω HAFF

Er(%)
Presented
Method

Er(%) EBM,
HAFF

1 -4 1 5 2 1 5 5.8892 5.809475019 5.968668192 1.353748913 1.349388576

-5 5 5 2 5 3 -10 13.8752 13.70158142 14.17979783 1.251287045 2.195268032

-5 5 1 5 5 1 -10 9.6119 9.486832981 9.79795897 1.301168541 1.935714791

30 20 10 10 5 10 10 14.7806 14.59451952 15.09966887 1.258950787 2.158700391

25 20 5 10 1 100 5 10.0564 9.923457059 10.23657658 1.32197348 1.791660833

25 100 100 50 100 50 -75 110.0633 108.692226 112.5066664 1.245714057 2.219964693

200 400 300 200 100 1000 -200 307.8115 303.9773018 314.6461505 1.245631888 2.220401285

Note: ω EBM represents the approximate natural frequency obtained by Energy Balance Method, obtained previously in [2]. ω
HAFF indicates the approximate natural frequency obtained by He’s Amplitude Frequency Formulation, got previously in [2]. ω ex
represents the exact natural frequency which is stated in [16]. Er(%) defines the percentage error which been calculated by the relation
|ω − ωex|/ωex (%)

To illustrate and verify the accuracy of the described new approach, the results of HAFF and EBM, compared to
the exact solutions, are given in tables 1-3. The exact frequency of the nonlinear differential equation in the cubic
form is [13]:

ωex =
π
√

α+ βA2

2

(∫ π
2

0

dt

1− δ sin2 t

)−1

, δ =
βA2

2 (α+ βA2)
. (3.15)

Substituting presented α and β values into Eq. (3.15) give the exact frequencies for cases 1, 2, and 3 in the form
of Eqs. (3.16)-(3.18) respectively:

ωex (A) =
π

2

√
k1l3 − 2Pl2 +A2k3l3 − 2A2P

ml3

(∫ π
2

0

dt

1− δ sin2t

)−1

, δ =

(
l3k3 − 2P

)
A2

2 (k1l3 − 2Pl2 +A2k3l3 − 2A2P )
.

(3.16)

ωex (A) =
π

2

√
(k1 + 2k2) + 2A2k3

m

(∫ π
2

0

dt

1− δ sin2t

)−1

, δ =
2k3A

2

2 (k1 + 2k2) + 2k3A2
. (3.17)

ωex (A) =
π

2

√
(m1 +m2)

m1m2
(k1 + k2A2)

(∫ π
2

0

dt

1− δ sin2t

)−1

, δ =
k2 (m1 +m2)A

2

2 (k1 (m1 +m2) + k2 (m1 +m2)A2)
. (3.18)

In this part, the approximate solutions of the introduced approach, HBM and HAFF, and their obtained relative
errors for the three cases of Example 1 are presented according to Tables 1,2, and 3. The results of the EBM and
HAFF as two powerful and efficient methods are considered two serious competitors of our represented technique.

As shown in Tables 1,2, and 3, the error percentage of approximate solutions of the new approach is dramatically
less than the two other methods for most of the different parameter values in all categories of Example 1.

It is evident that the maximum errors percentage of the Novel technic in all range of vibration amplitudes are very
negligible, and there is only about a 1% deviation towards exact solutions, while the maximum errors of two other
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methods (EBM and HAFF) are about 2% for the same parameters of the described new technique. In other words,
the presented novel method’s accuracy is twice as the conventional ones. Therefore, this proposed method not only
provides a simpler and more efficient solving technique but also provides a highly accurate solution.

Example 3.2. Duffing-relativistic oscillator

Figure 5. Schematic of a Duffing-relativistic oscillator. [50]

In this section, we will study the application of the introduced novel solution procedure for a Duffing-relative
oscillator with the following equation [50]:

ü+ u+ u3 − λu√
u2 + 1

= 0, (3.19)

This differential equation can physically govern a motion of a dynamic system of an elastic cable with an attached
mass connected to a nonlinear spring, as shown in Figure 5.

With the initial condition is u(0) = A, u̇ (0) = 0, where, the double dot denotes differentiation with respect to
time t and the coefficient of the fourth term is introduced with a new parameter λ, which characterizes the system
of values between 0 and 1. (0 < λ ≤ 1). The parameter of λ can be expressed based on initial cable tension and the
axial rigidity of the elastic cable according to [9]. For λ = 0, the equation governs as a type of the well knows Duffing
oscillator which represents free undamped vibration of an orthotropic clamped triangular plate [32].

The exact natural frequency can be numerically obtained via the following relation including elliptic integral [50]:

ωexact =
2π

4
∫ A

0
du√

(A2−u2)+ 1
2 (A

4−u4)−2λ(
√
A2+1−

√
u2+1)

.
(3.20)

Basically, elliptic integrals appeared as early as the seventeenth century in the calculation of arc lengths of certain
curves, primarily ellipses. This is precisely the reason why the integral gets the name elliptic. There are several
standard forms of elliptic integrals, but in general, they involve radicals of polynomials of degree 3 or 4, that can
be evaluated by elliptic integrals [37]. Familiarity with elliptic integrals allows us to solve interesting problems in
mathematics and physics that we have heretofore avoided.

It is possible to show that Eq.(3.20) is derived by integrating the differential equation and imposing the corresponding
initial conditions, and then equating two relations as follows [42]:(

du

dt

)2

+ u2 +
1

2
u4 − 2λ

√
1 + u2 = A2 +

1

2
A4 − 2λ

√
1 +A2. (3.21)

Solving Eq.(3.21) for dt gives :

dt =
du√

(A2 − u2) + 1
2 (A

4 − u4)− 2λ
(√

A2 + 1−
√
u2 + 1

) . (3.22)



CMDE Vol. 11, No. 3, 2023, pp. 464-477 473

The exact period of the oscillation is four times the time taken by the mass to move from u = 0 to u = A [42]. So

Texact = 4

∫ A

0

du√
(A2 − u2) + 1

2 (A
4 − u4)− 2λ

(√
A2 + 1−

√
u2 + 1

) . (3.23)

Then, if ω = 2π/T , the exact natural frequency will be obtained in the form of Eq.(3.20).

3.3. Analysis of Mechanical Models and Applying Presented Novel Approach. The general form of a
Duffing-relativistic oscillator is described as Eq.(3.19). And it’s residual relation, therefore, can be written in the
form:

R (t) =
1

2
u̇2 +

1

2
u2 +

u4

4
−
√
u2 + 1− A4

4
− 0.5 A2 +

√
A2 + 1 = 0. (3.24)

By employing the described new technique, and by assuming the two trial functions u1 (t) = A cos t and u2(t) =
A cos(ωt) and substitute them into Eq. (3.24), the following residual equations can derive:

R1 (t) =0.5A2sin (t)
2
+ 0.5A2cos (t)

2
+

A4cos (t)
4

4
− λ

√
A2cos (t)

2
+ 1− A4

4
− 0.5 A2

+ λ
√

A2 + 1 = 0, (3.25)

R2 (t) =0.5A2ω2sin(ωt)
2

+ 0.5 A2cos (ωt)
2

+
A4cos(ωt)

4

4
− λ

√
A2cos (ωt)

2
+ 1− A4

4
− 0.5 A2

+ λ
√

A2 + 1 = 0. (3.26)

We set R11 and R22 according to Eq.(2.15) and Eq.(2.16) respectively. Then, using Eq.(2.17) and Eq.(2.18), the
angular frequency (ω) will determine as below:

ωNovel Technique =
5.9× 10−11

A2sin (0.5π)
2

{
− 1.6× 1010Asin (0.5π)

[
5× 109A5 sin (0.5π)

5 − 1.6× 1010A5 sin (0.5π)
3

− 1.67× 1010A3 sin (0.5π)
3 − 1.25× 1010IA2λ ln

(
−I

A

)
+ 1.25× 1010IA2λ ln

(
I

A

)

+ 2.5× 1010A2 arctan

 0.5
(
2sin2 (0.5π) A2 − 1. A2 − 1

)
A
√
−1.0A2sin4 (0.5π) + sin2 (0.5π) A2 + sin2 (0.5π)

λ

+ 1.0× 1011sin (0.5π) λ
√
A2 + 1.0 A

+ 5.0× 1010λ

√
−1.0sin (0.5π)

2
(
sin (0.5π)

2
A2 − 1.0A2 − 1.0

)
A

− 1.25× 1010Iλ ln

(
−I

A

)
+ 1.25× 1010Iλ ln

(
I

A

)

+2.5× 1010arctan

 0.5
(
2sin2 (0.5π) A2 − 1.0A2 − 1

)
A
√
−1.0A2sin4 (0.5π) + sin2 (0.5π) A2 + sin2 (0.5π)

λ


1

2
.

(3.27)
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Table 4. Comparison of the New approach frequencies and approximate frequencies with the exact
ones when λ = 0.1.

A ω HAFF ω EBM ω ex
ω

Presented
Method

Er(%) EBM
Er(%)

Presented
Method

Er(%)
HAFF

10 7.140447968 8.717130618 8.532144867 8.422572101 2.168103733 1.284234707 18.08717477

100 70.71773881 86.60830693 84.68920534 83.67194273 2.266052179 1.201171517 18.34762586

Note: ω EBM represents the approximate natural frequency obtained by Energy Balance Method studied in [50]. ω HAFF indicates
the approximate natural frequency obtained by He’s Amplitude Frequency Formulation. ω ex represents the exact natural frequency
which is stated in [50]. Er(%) defines the percentage error which been calculated by the relation |ω − ωex|/ωex (%)

Table 5. Comparison of the New approach frequencies and approximate frequencies with the exact
ones when λ = 0.5.

A ω HAFF ω EBM ω ex
ω

Presented
Method

Er(%) EBM
Er(%)

Presented
Method

Er(%)
HAFF

10 7.136524782 8.714461031 8.528855664 8.408246165 2.176204802 1.414134603 18.10710087

100 70.71769882 86.60827987 84.6891715 83.67194273 2.266061104 1.201132034 18.34764653

Note: ω EBM represents the approximate natural frequency obtained by Energy Balance Method studied in [50].ω HAFF indicates

the approximate natural frequency obtained by He’s Amplitude Frequency Formulation. ω ex represents the exact natural frequency
which is stated in [50]. Er(%) defines the percentage error which been calculated by the relation |ω − ωex|/ωex (%)

3.4. Results and Discussion About Example 2. Tables 4 and 5 compare the presented novel technique’s precision,
EBM, and HAFF for different oscillation amplitudes and λ values. It can be clearly seen that the lowest error percentage
belongs to the introduced method for all (A, λ) values, and the following two approximation methods have a higher
error percentage rate. For instance, for the A = 100 and λ = 0.5, the relative errors of natural frequency are found at
2.26% and 18.34% for EBM and HAFF, respectively, which are much higher than those found using the introduced
novel method. It is highly remarkable that an excellent accuracy of the approximate natural frequency has been found,
which is valid for the whole range of large and small values of oscillation amplitude compared with the exact ones.
The straightforward solution procedure and high-accuracy results reveal the novelty and reliability of the prescribed
method.

The presented method’s importance is that although the EBM and HAFF are represented as two robust and
constructive techniques without the disadvantages of traditional methods, their obtained results are still not as precise
and reliable as those described in novel method outcomes. This kind of agreement and convergence is invisible in the
other competing methods in all amplitude ranges, especially in an oscillatory system with large vibration amplitude.

4. Conclusion

The nonlinear vibration of oscillation systems is modeled by nonlinear differential equations. It is almost difficult
to get an exact solution for such nonlinear differential equations. Hence our introduced method can be a constructive
tool to address this issue. The presented novel process is defined as a simple and high-accuracy technique based on
the obtained results. It can be considered a powerful, efficient alternative to typical methods.

The obtained result emphasizes that the introduced advanced approach shows an excellent agreement with the
numerical solutions and is quickly convergent and valid for a wide variety of vibration amplitudes. The paper’s main
purpose is to establish a modern method with a capable formula, reveal its application through renowned examples in
engineering models, and draw attention to the accuracy and ability of this potent technique by showing their results
in tables.

It can be assumed that the importance and novelty of this study is this point concerning the conducted research
and studies regarding the application of conventional and standard techniques in nonlinear oscillation problems widely
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so far, the reconstruction and creation of an efficient method with an optimized computational algorithm have been
rarely explored. In addition, the assessment of the introduced technique compared with its related standard methods
increases the importance of this research.

From the research carried out, it is possible to conclude that the described formula has been very successful compared
to other methods. Moreover, its speed and simplification to attain final results can be potentially used to analyze
strongly nonlinear oscillation problems in engineering and applied sciences. The main advantages of this method
include its simplicity and computational efficiency, and the ability to find better consistency in different vibration
amplitude and time steps of approximate solutions.
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