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Abstract

In this paper, we introduce a new direct scheme based on Dickson polynomials and collocation points to solve
a class of optimal control problems (OCPs) governed by Volterra integro-differential equations namely Volterra

integro-OCPs (VI-OCPs). This topic requires to calculating the corresponding operational matrices for expanding

the solution of this problem in terms of Dickson polynomials. Further, the highlighted method allows us to
transform the VI-OCP into a system of algebraic equations for choosing the coefficients and control parameters

optimally. The error estimation of this technique is also investigated which given the high efficiency of the

Dickson polynomials to deal with these problems. Finally, some examples are brought to confirm the validity and
applicability of this approach in comparison with those obtained from other methods.
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1. Introduction

The optimal control problem refers to the minimization of a performance index subject to dynamic constraints on
the state and the control variables. After the physical realization of OCPs in a diverse world [24, 29], over the past
decades, many researchers have been trying to build an intelligent method for solving OCPs with computational power
comparable to the hardware simplicity. These efforts are often divided into two main categories. The first category
is for works that attempt to use indirect methods and the second category comprises studies focused on the direct
methods [5, 28, 31, 35]. The importance of having practical and scalable hardware becomes clear when we look at
the results of these two methods and the complexity of connections between them. Since it is difficult to achieve
satisfactory performance in indirect methods, it is important to examine the accurate solutions of OCPs which are
widely used in many physical and engineering phenomena in the real world. With an overview, you will find that
direct methods have attracted more attention than indirect methods due to their greater convergence radius [23, 39].
Also, unlike indirect methods, direct methods are more strong to the primitive guess of parameters without general
deformation of the total problem. The aforementioned properties of direct methods have encouraged some researchers
to develop new computing architectures and techniques where the primary focus was on hardware simplicity.

Recently, many researchers have been fascinated by integral dynamics in the fields of applied sciences such as
epidemiology, biology, economics, and memory effects [6, 15, 25]. This issue has been used through modeling many
nonlinear physical applications evidently. More specifically, integral equations are used to illustrate the mechanics and
dynamic systems [43–46]. A hybrid method based on the block-pulse functions proposed to solve two cases of integro-
differential equations in [18]. Alpert wavelet system and Newton’s iterative method are applied to solve a fractional
nonlinear integro-differential equation in [30]. The authors in [16] have presented Chebyshev cardinal functions for the
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solution of integro-differential equations. For more details about this topic, we can refer interested readers to [40–42].
Optimal control of these equations has recently become a major topic of researches, for instance, one application
of such equations was modeled by Kamien and Muller [11]. Nonetheless, it should be noted that due to the high
complexity of integral terms in VI-OCPs, handling analytical solutions of these problems are completely tough and
even impossible. To be prevailed through this challenge, researchers have resorted to approximate methods. Hence,
they first generalized the methods used to solve OCPs such as homotopy analysis and parameterization method [1],
reduction method [3], Legendre polynomials [36], triangular functions [20], Hybrid functions [22] and Muntz-Legendre
polynomials [26]. Despite the existence of many applications for VI-OCPs in control systems but it is regrettable that
extremely few publications for this problem were reported [21, 27]. Therefore, it is quite clear that the numerical
studies of this problem are still in the early stages of growth. As a matter of fact, given the complex nature of these
problems and compared to the direct methods, indirect ones have more complex dynamic characteristics. Therefore,
merging the direct methods for solving VI-OCPs is highly anticipated. In this paper, we consider the following problem:

Min J(x(t), u(t)) =

∫ b

a

f(t, x(t), u(t))dt (1.1)

subject to the nonlinear time-invariant system

ẋ(t) = g(t) +

∫ t

a

k(t, s, x(s), u(s))ds, (1.2)

with the initial condition

x(a) = x0, u(t) ∈ U, (1.3)

where x0 ∈ R, a and b are two positive constants, g and k are assumed to be continuously differentiable functions
in all arguments, the set U ⊂ Rm denotes the acceptable inputs and x(t) is the state variable known as the optimal
trajectory. The problem is to find u(t) that will drive the system in (1.2) with the initial state (1.3) while minimizing
the cost functional (1.1) where f is a continuously differentiable function. Motivated by the above discussions, at
this time, we want to introduce a direct method based on Dickson polynomials approximation for solving VI-OCP
(1.1)-(1.3) as follows:

x(t) ' xM (t) =

M∑
i=0

Di(t, α)xi u(t) ' uM (t) =

M∑
i=0

Di(t, α)ui, (1.4)

where xi and ui, i = 0, 1, 2, ...,M , are the unknown Dickson coefficients. Indeed, we have chosen the Dickson poly-
nomials to estimate the offer state, control variable, and hence the objective function. Accordingly, to obtain an
approximate solution via (1.4), we used the following collocation points:

tj = a+ (
b− a
M

)j, j = 0, 1, 2, ...,M, (1.5)

where a = t0 < t1 < t2 < ... < tM = b. One of the main advantages of the Dickson collocation method is its efficiency
and rapidly solving a wide range of problems. A numerical approach with error estimation was proposed to solve
general integro-differential equations using Dickson polynomials in [12]. Authors in [13], studied a novel collocation
method based on Dickson and Taylor polynomials to solve integro-differential equations. Some widely-used model
problems consisting of linear, nonlinear differential, and integral equations with employing Dickson polynomials are
investigated in [2, 8, 14]. In addition, these polynomials have simple forms and are computationally easy to use that
vividly cause the solution procedure is either reduced and simplified. The proposed method allows us to transform the
VI-OCPs into a system of algebraic equations with a matrix form of unknown coefficients for choosing the state and
control parameters optimally. The error estimation of this technique is also investigated. The significant merits of this
approach are swift calculations, efficiency, ease of implementation, and robustness. Indeed, it provides satisfactory
results even a small number of the Dickson polynomials is used. Simple operations and ease of implementation are
further characteristics of the mentioned polynomials. To attain these aims, the suitable choice of α, the parameter of
Dickson polynomials, plays a crucial role to enhance the accuracy of the results evaluated by the current approach.
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The overall layout of this manuscript is according to the following pattern. In section 2, the Dickson polynomi-
als have been formulated and their properties, including the function approximation and the operational matrix of
derivatives, are discussed. Also, we present a direct collocation scheme based on Dickson polynomials to solve the
VI-OCP (1.1)-(1.3). The error estimation and the convergence analysis of this approach are carried out in section 3.
The numerical results and comparison have been brought in section 4 to substantiate the efficiency of our results and
then the conclusions are expressed in the last section.

2. Main matrix relation and method of solution

In this section, in order to construct the method of solution of VI-OCP (1.1)-(1.3), we first introduce the Dickson
polynomials and then give their developed matrix relations.

Dickson polynomials Dm(t, α) are definable over a commutative ring R in which, if R = C be the set of com-
plex numbers, Dm(t, α) is associated with the known Chebyshev polynomials of the first kind Tm(t). Exactly,
Dm(2cosθ, 1) = 2Tm(cosθ) for any real number θ, and we have Lucas polynomials when α = −1 [7]. For any in-
teger m ≥ 1 and any element α over finite fields, we define the first kind of Dickson polynomial of degree m as follow:

Dm(t, α) =

bm2 c∑
i=0

m

m− i

(
m− i
i

)
(−α)it(m−2i), −∞ < t <∞, (2.1)

where bm2 c is the floor of m
2 . Besides, D0(t, α) = 2, D1(t, α) = t and for m > 1, we have the following recurrence

relation [17]:

Dm(t, α) = tDm−1(t, α)− αDm−2(t, α), m ≥ 2. (2.2)

Further, the Dickson polynomials Dm(t, α) satisfy the following ordinary differential equations

(t2 − 4α)x′′ + tx′ −m2x = 0, m = 0, 1, 2, ... (2.3)

The Dickson polynomials have the generating function

∞∑
m=0

Dm(t, α)vm =
2− t v

1− t v + α v2
. (2.4)

The reader can refer to [4, 9, 10, 19, 33, 37, 38] for more information about the Dickson polynomials.
To perform the continuous functions x(t) and u(t) of VI-OCP (1.1)-(1.3) via truncated Dickson polynomials pre-

sented in (1.4), we have outline our approach in this section. Firstly, Eq. (1.4) can be rewritten in the following matrix
form:

x(t) ' xM (t) = D(t, α)X = Y (t)K(α)X, (2.5)

u(t) ' uM (t) = D(t, α)U = Y (t)K(α)U,

where X = [x0, x1, ..., xM ]T and U = [u0, u1, ..., uM ]T are unknown coefficients, Y (t) = [1, t, t2, ..., tM ] and

D(t, α) = [D0(t, α), D1(t, α), ..., DM (t, α)].

In addition, if M is even

KT (α) =



2 0 0 0 ... 0
0 1

1

(
1
0

)
(−α)0 0 0 ... 0

2
1

(
1
1

)
(−α)1 0 2

2

(
2
0

)
(−α)0 0 ... 0

0 3
2

(
2
1

)
(−α)1 0 3

3

(
3
0

)
(−α)0 ... 0

...
...

...
...

. . .
...

M
M/2

(
M/2
M/2

)
(−α)M/2 0 M

(M/2)+1

(
(M/2)+1
(M/2)−1

)
(−α)(M/2)−1 0 · · · M

M

(
M
0

)
(−α)0

 ,
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and if M is odd

KT (α) =



2 0 0 0 ... 0
0 1

1

(
1
0

)
(−α)0 0 0 ... 0

2
1

(
1
1

)
(−α)1 0 2

2

(
2
0

)
(−α)0 0 ... 0

0 3
2

(
2
1

)
(−α)1 0 3

3

(
3
0

)
(−α)0 ... 0

...
...

...
...

. . .
...

0 M
dM/2e

(dM/2e
bM/2c

)
(−α)bM/2c 0 M

dM/2e+1

(dM/2e+1
bM/2c−1

)
(−α)bM/2c−1 · · · M

M

(
M
0

)
(−α)0

 .

Now, for the matrix form of first derivative we have:

ẋ(t) ' ẋM (t) = Ḋ(t, α)X = Ẏ (t)K(α)X = Y (t)CK(α)X, (2.6)

u̇(t) ' u̇M (t) = Ḋ(t, α)U = Ẏ (t)K(α)U = Y (t)CK(α)U,

where

C =



0 1 0 0 . . . 0
0 0 2 0 . . . 0
0 0 0 3 . . . 0
...

...
...

...
. . .

...
0 0 0 0 0 M
0 0 0 0 . . . 0

 .

Now, for solving the VI-OCP (1.1)-(1.3), we need to find the approximations presented in relation (1.4). For this
purpose, based on these approximtions and also using relations (2.5)-(2.6), the performance index (1.1) can be rewrite
as follow:

Min J(X,U) =

∫ b

a

f(t, Y (t)K(α)X,Y (t)K(α)U)dt ∼= G(X,U). (2.7)

In a similar way, taking into account the above approximations for the dynamical system (1.2), we have:

Y (t)CK(α)X − g(t)−
∫ t

a

k(t, s, Y (s)K(α)X,Y (s)K(α)U)ds ∼= Λ(t,X,U) ∼= 0. (2.8)

Furthermore, by taking the collocation points tj , j = 1, · · · ,M , which is defined in relation (1.5) into Eq. (2.8), and
employing the Simpson’s integration rule, it leads to the following system of algebraic equations:

Λi ∼= Λ(ti, X, U) ∼= 0, i = 1, ..., 2M. (2.9)

Also, by doing the similar process for the initial conditions (1.3), we obtain

Λ0
∼= Y (a)K(α)X − x0 = 0. (2.10)

To get the approximate solutions of VI-OCP (1.1)-(1.3), we can adopt the Lagrange multipliers method for minimizing
(2.7) subject to the conditions given in (2.9)-(2.10) as

J∗(X,U, λ) = G(X,U) + λΛ, (2.11)

where λ = [λ0, λ1, ..., λ2M ] are the unknown Lagrange multipliers and Λ = [Λ0,Λ1, ...,Λ2M ]. The necessary conditions
for the optimality of functional (2.11) are as follows:

∂J∗

∂X
= 0,

∂J∗

∂U
= 0,

∂J∗

∂λ
= 0. (2.12)

To solve Eq. (2.12), we can use today’s mathematical packages such as Mathematica or Matlab.
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3. Convergence analysis of the proposed scheme

Kürkcü et al, [14] performed a convergence study on the Dickson polynomial solution for integro equations by
using the residual function in Banach space. Here, we investigate the convergence of these polynomial solutions for
VI-OCPs. The residual function shows a distinctive reaction for the different values of M . Therefore, we can determine
the behavior of our solutions.

Let PM be the set of all Dickson polynomials of degree at most M . Without loss of generality suppose that
[a, b] = [0, 1]. If f(t) be a function in L2[0, 1], since PM is a finite space, f(t) has a best unique approximation out of

PM like as f̂(t) such that:

∀g ∈ PM : ||f − f̂ ||2 ≤ ||f − g||2.
Suppose that fm ∈ PM . Then, there exist coefficients ck, k = 0, 1, ...,m, such that

fm(t) ≈
m∑
k=0

ckDk(t, α), (3.1)

in which ck are real valued unknown coefficients and Dk(t, α) are the Dickson functions for k = 0, 1, ...,m.

Theorem 3.1. Let f ∈ L2[0, 1] has been approximated by fM in terms of Dickson polynomials in which fM (t) =∑M
k=0 ckDk(t, α). If eM (t) = ‖f(t)− fM (t)‖ then limM→∞ eM (t) = 0.

Proof. We divide interval [0, 1] into subintervals
[
n−1
N , nN

]
, n = 1, 2, · · · , N , with the limitation that fn approximates

f over the subinterval
[
n−1
N , nN

]
, n = 1, 2, · · · , N and f(t) '

∑N
n=1 fn(t). Using the Taylor expansion, we define the

following approximation of f(t) out of PN as follows:

fn(t) =

M∑
k=0

(t− n−1
N )k

Γ(k + 1)
f (k)(

n− 1

N
).

Then we have:

|f(t)− fn(t)| ≤
(t− n−1

N )M+1

Γ(M + 2)
|f (M+1)(ξ)|, ξ ∈

[n− 1

N
,
n

N

]
.

Assume that fM (t) =
∑M
k=0 ckDk(t, α) be the best approximation of f . Then we have:

‖f(t)− fM (t)‖22 =

∫ 1

0

|f(t)− fM (t)|2dt =

N∑
n=1

∫ n
N

n−1
N

|f(t)− fM (t)|2dt

≤
N∑
n=1

∫ n
N

n−1
N

|f(t)− fn(t)|2dt ≤
N∑
n=1

∫ n
N

n−1
N

|f (M+1)(ξ)|2
( (t− n−1

N )M+1

(M + 1)!

)2

dt

≤ L2

(2M + 3)((M + 1)!)2N2(M+1)
,

where L = max|f (M+1)(t)|, t ∈ [0, 1]. Now, by taking square roots we obtain

‖f(t)− fM (t)‖2 ≤
L

(M + 1)!N (M+1)

√
1

(2M + 3)
. (3.2)

This means that the error approximation with Dickson polynomials tends to zero when M and N are sufficiently
increased. �

The above theorem confirms that fM (t) converges to f(t). It is also easy to conclude that, by increasing the number
of M , the series approximation for derivative of Dickson polynomials defined by the operational matrix in Eq. (2.6),

converges to ḟ(t). Two approaches can be made for verifying a numerical method, namely, the convergence and error
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bound provision. The error bounds for the Dickson polynomials approximation operator is presented. In the following,
the convergence of the proposed approximate method are provided.

Consider a set of pairwise distinct points in Ω = [0, 1] such as X = {x1, x2, · · · , xM} with the fill distance hX,Ω =
supx∈Ω infxi∈X ‖x − xi‖. Indeed, we used the collocation points xi ∈ X, in which J(xi) = 0, i = 1, 2, · · · ,M . Let
{φ1, φ2, · · · , φM} be a collocation set of functions on Ω such that φi(xj) = δi,j , in which δi,j is the cardinal function.
Also, assume that f ∈ Cm(Ω). Then, for any ε > 0 and a ∈ Ω, there exists ci(a) ∈ R, i = 1, 2, · · · ,M , such that

f(x)−
∑M
i=1 ci(a)φi(x) = hf,m(x, a), in which |hf,m(x, a)| ≤ Hf,m(a, hX,Ω) and limh→0Hf,m(a, h) = 0. An immediate

result from this discussion is that |f(x) −
∑M
i=1 ciφi(x)| ≤ Hf,m(hX,Ω) for all x ∈ Ω. So, we can define the previous

continuous functions with this approximation as we denote by Dickson polynomials in (2.1). We continue the discussion
by estimating the error bound of our numerical method.

Theorem 3.2. Assume that X = {x1, x2, · · · , xN} be a set of pairwise distinct points in compact set Ω and

{φ1, φ2, · · · , φM} as before. If there exists Hf,m(hX ,Ω) such that |f(x) −
∑M
i=1 f(xi)φi(x)| ≤ Hf,m(hX,Ω) for any

f ∈ Cm(Ω), then, there exist wi, i = 1, 2, · · · ,M , such that:

|
∫

Ω

f(x)dx−
M∑
i=1

wif(xi)| ≤ Hf,m(hX,Ω). (3.3)

Proof. It is directly provided from the above context. �

In the sequel, we provide a completely nonlinear equation and discuss its residual error. For this purpose, let
Hu,m(hX,Ω) = ChmX,Ω‖u‖Hm(Ω), C > 0, and consider the following general nonlinear equation:

Ly = f(y), (3.4)

where L is a linear differential operator from Hm(Ω) to the Banach space of functions which is denoted by χ and f
is a nonlinear operator. Using the proposed method in this paper, the approximation solution of Eq. (3.4) will be
satisfied in the following system:

M∑
i=1

ci

∫
Ω

Lφi(x)φj(x)dx =

∫
Ω

f
( M∑
i=1

ciφi(x)φj(x)
)
dx. (3.5)

By Theorem 3.2, we obtain

M∑
i=1

ci

M∑
k=1

wkLφi(xk)φj(xk) =

M∑
k=1

wkf
( M∑
i=1

ciφi(xk)φj(xk)
)

(3.6)

in whcih xk ∈ X, k = 1, 2, · · · ,M . Furthermore, we know φj(xi) = δi,j . So, if wj 6= 0, we have:

M∑
i=1

ciLφi(xj) = f(cj), j = 1, 2, · · · ,M. (3.7)

Now, we can determine the unknown coefficients from (3.7) and then approximate u(xi), i = 1, 2, · · · ,M . Generally,
it can be concluded that the proposed method has consistency with the following error estimate:

‖LyM − f(yM )‖χ ≤ ChmX,Ω‖y‖Hm(Ω), (3.8)

where yM is the approximate solution of (3.4) with Dickson polynomials.

Theorem 3.3. Suppose x̂M (x) and ûM (x) are the Dickson polynomials approximate solutions for problem (1.1)-(1.3)
which obtained from Eq. (2.12). While M tends to infinity, the state and control approximate variables converge to
the exact values.

Proof. The proof is directly obtained from Theorem 3.1, Theorem 3.2 and the discussion given in [34]. �
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As discussed in the above, one may conclude that by increasing the number of Dickson polynomials approximation,
the approximate solution converges to the exact solution of the problem. Moreover, having no exact solution of a
given OCP at hand, the method evaluates an accurate approximate solution of the problem. Let us now construct
the residual error analysis for the Dickson polynomials. Given e1(t) = x(t)− xM (t) and e2(t) = u(t)− uM (t). So, the
maximum absolute error can be evaluated as

e(t) = max
0≤t≤1

|e1(t) + e2(t)|. (3.9)

Now, we can obtain the estimated error function as follow:

E(t) =

M∑
k=0

ekDk(t, α). (3.10)

Consequently, the solution based on Dickson polynomials will be obtained as follows:

x̂M = xM (t) + E(t), ûM = uM (t) + E(t).

Therefore, the corrected error function has been obtained by ê1(t) = x(t) − x̂M (t) and ê2(t) = u(t) − ûM (t). The
accuracy of this approximate solutions is also obtained by substituting the approximate solutions (xM , uM ) into Eq.
(1.2) as follow:

EM = |ẋM (t)− g(t)−
∫ t

a

k(t, s, xM (s), uM (s))ds|. (3.11)

It is expected that EM to be zero at the collocation points. Indeed, the more accurate of the proposed method will
be obtained for the approximate solutions when EM sufficiently be close to zero.

4. Numerical results

We would test introducing method by several examples. We show the efficiency of this method by solving three
non-trivial examples. In addition, we used the following uniform norms defining the absolute errors as:

E(x) = ||x− x∗||22 =

∫ b

a

(x(t)− x∗(t))2dt,

and

E(u) = ||u− u∗||22 =

∫ b

a

(u(t)− u∗(t))2dt, (4.1)

where (x∗, u∗) and (x, u) denote the exact and approximate solutions, respectively. All numerical computations have
been coded in Mathematica software. Also, we assume that the total error to be less than a given number ε. To
evaluate the advantages of this method, we provide the following examples.

Example 4.1. For the first example, we consider

Min J(x, u) =

∫ 1

0

(tx(t)− u(t))2dt,

subject to

ẋ(t) = 1− 7

12
t4 +

∫ t

0

(s2t+ su(s))ẋ(s)ds, (4.2)

with boundary conditions

x(0) = 0. (4.3)
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Table 1. Numerical results of JM with different values of α for Example 4.1.

Itr α = −1 α = 0 α = 0.1 α = 1

M = 2 2.96059× 10−16 1.02968× 10−29 −1.38991× 10−27 −1.32764× 10−28

Table 2. Comparing the absolute errors with α = 0.1 for Example 4.1.

Method Itr E(x) E(u)

This study M = 2 2.61098× 10−32 1.77735× 10−29

Method in [1] k = 2,M = 2 4.04054× 10−10 3.2226× 10−10

Table 3. Accuracy errors with α = 0.1 and M = 2, 3 at different values of t for Example 4.1.

t 0 0.2 0.4 0.6 0.8 1

M = 2 6.4746× 10−15 2.11771× 10−16 4.57494× 10−16 9.2826× 10−16 2.92655× 10−15 1.02668× 10−15

M = 3 6.66134× 10−16 1.54506× 10−16 1.3315× 10−16 3.84096× 10−17 1.41869× 10−16 3.05639× 10−16

0.0 0.2 0.4 0.6 0.8 1.0

0

2.×10-33

4.×10-33

6.×10-33

8.×10-33

1.×10-32

1.2×10-32

error x

0.0 0.2 0.4 0.6 0.8 1.0

0

5.×10-30

1.×10-29

1.5×10-29

error u

Figure 1. Evaluated error functions x(t) and u(t) with α = 0.1 and M = 2 for Example 4.1.

The exact control functions and optimal trajectory are u(t) = t2 and x(t) = t, respectively. The value JM obtained
based on our proposed method with ε = 10−12 and compared with the results reported in [1] respectively in Tables 1
and 2. Comparing the results reveal that the accuracy of the Dickson collocation method is higher than the method
presented in [1]. The accuracy of these solutions for different values of t and considering M = 2, 3 are reported in
Table 3. Also, the errors of control functions and trajectory for M = 2 are depicted in Figure 1. The effect of the
parameter M on these approximations are also plotted in Figure 2. It can be seen from this figure that by increasing
the value of M , the proposed method is convergent.

Example 4.2. As a second example let us consider:

Min J(x, u) =

∫ 1

0

(x(t)− sin(t))2 + (u(t)− t2)2dt,

subject to

ẋ(t) = g(t) +

∫ t

0

(tsx3(s) + s2u2(s))ds. (4.4)
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Figure 2. Approximate functions x(t) and u(t) with α = 0.1 and different values of M for Example 4.1.

Table 4. Numerical results of JM for Example 4.2.

Itr α = −1 α = 0 α = 0.1 α = 1

M = 4 4.88411× 10−6 5.60165× 10−4 4.02883× 10−7 5.89004× 10−7

M = 5 9.46657× 10−5 1.20529× 10−7 2.81915× 10−8 8.02963× 10−5

Table 5. Comparing the absolute errors with α = 0.1 for Example 4.2.

Method Itr E(x) E(u)

Proposed method M = 4 1.02426× 10−8 3.9264× 10−7

M = 5 2.0124× 10−11 2.81713× 10−8

Method in [36] M = 4 9.5× 10−7 1.2× 10−7

Table 6. Accuracy errors with α = 0.1 for Example 4.2.

t 0 0.2 0.4 0.6 0.8 1

M = 4 0 1.27174× 10−6 1.44287× 10−6 3.49122× 10−6 4.46583× 10−6 3.81167× 10−7

M = 5 0 6.24637× 10−7 1.67263× 10−6 2.84911× 10−6 3.75231× 10−6 4.88179× 10−7

With initial conditions

x(0) = 0, (4.5)

where g(t) = sin(t)− 1
7 t

7 + 1
3 t

2sin2(t)cos(t) + 2
3 t

2cos(t)− 1
9 tsin

3(t)− 2
3 tsin(t).

The exact control functions and optimal trajectory are u(t) = t2 and x(t) = sin(t), respectively. Applying the
proposed method and considering ε = 10−7 for this problem leads to Table 4. A comparison is made between the
absolute errors obtained by our method with the best results that achieved by Legendre polynomials [36] in Table 5.
The accuracy of these solutions for different choices of M and considering α = 0.1 are reported in Table 6. Figure
3 shows the convergence of approximate solutions x(t) and u(t) for α = 0.1 and different values of M . Furthermore,
Figure 4 shows the graphs of absolute errors for different choices of M . It is clear that by selecting small values of M ,
the error quickly tends to zero.
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Figure 3. Approximate functions x(t) and u(t) with α = 0.1 and different values of M for Example 4.2.
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Figure 4. Evaluated error functions x(t) and u(t) with α = 0.1 and M = 4, 5 for Example 4.2.

Example 4.3. In the last example we solved the following problem:

Min J(x, u) =

∫ 1

0

(x(t)− t− 1) + (u(t)− t2 − t)2dt,

subject to

ẋ(t) = g(t) +

∫ t

0

(t2sx(s)u(s))ds (4.6)

where g(t) = − 1
5 t

7 − 1
2 t

6 − 1
3 t

5 + t+ 1.

The exact control functions and optimal trajectory are u(t) = t2 + t and x(t) = t+ 1, respectively. The computed
results for JM with different values of α and ε = 10−16 have been reported in Table 7. The absolute errors of these
solutions for different choices of M and α = 0.1 are reported in Table 8. Also, a comparison is made between the
absolute errors obtained by our method with the results that achieved in [32] in this table. As can be seen, the proposed
approach is more effective by selecting small values for M , notably improving previous results in the literature in terms
of J . The accuracy of these solutions for M = 2, 3 and considering α = 0.1 are reported in Table 9. In addition, the
errors of x(t) and u(t) for M = 4 are depicted in Figure 5.
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Table 7. Numerical results of JM at various values of α and M for Example 4.3.

Itr α = −1 α = 0 α = 0.1 α = 1

M = 2 0 −2.22045× 10−16 −1.38778× 10−16 −8.88178× 10−16

M = 3 −1.77636× 10−15 −1.94289× 10−16 −4.16334× 10−17 −1.77636× 10−15

M = 4 −8.88178× 10−16 −2.77557× 10−16 −1.11022× 10−16 −4.44178× 10−16

Table 8. Comparing the absolute errors with α = 0.1 for Example 4.3.

Method Itr JM E(x) E(u)
This study M = 2 −1.38778× 10−16 1.51009× 10−33 4.12303× 10−31

M = 3 −4.16334× 10−17 5.79045× 10−29 1.19787× 10−27

Method in [32] M = 3 1.36165× 10−6 7.78602× 10−7 2.60418× 10−3

M = 5 5.29848× 10−9 6.15457× 10−10 1.6276× 10−4

Table 9. Accuracy errors with α = 0.1 for Example 4.3.

t 0 0.2 0.4 0.6 0.8 1

M = 2 3.1961× 10−17 4.74905× 10−17 5.59174× 10−17 9.4384× 10−17 1.74039× 10−16 9.81256× 10−18

M = 3 4.29468× 10−17 3.22159× 10−17 1.17212× 10−17 1.22228× 10−17 3.59305× 10−17 6.00312× 10−17
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Figure 5. Evaluated error functions x(t) and u(t) with α = 0.1 and M = 4 for Example 4.3.

5. Conclusion

We have presented Dickson polynomials with a collocation method to solve an OCPs governed by Volterra integro-
differential equation. Our design uses the control variables and the state via a linear combination of Dickson polyno-
mials as basic functions. The properties of these functions, allow us to reduce the VI-OCPs to a system of nonlinear
algebraic equations for choosing the coefficients and control parameters optimally. Using Dickson polynomials via a
collocation method bears some advantages such as simple evaluation of high order derivatives and integral terms of
given differential equations and less expensive computational costs. Three examples are solved to illustrate the effi-
ciency, applicability, and high performance of this approach. As can be seen in these examples, the parameter α plays
an important role in the Dickson polynomials in a way that can change the behavior of the solution. The accuracy of
the Dickson collocation method can be easily concluded from the improved results by our newly introduced method.
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