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Abstract

In the present study, numerical simulations of two-dimensional steady-state incompressible Newtonian fluid flow

in one-sided square and two-sided deep lid driven cavities under the aspect ratio K = 1, 4, 6 are reported. For the

one-sided lid driven cavity, the upper wall is moved to the right with up to 5000 Reynolds numbers under a grid
size of up to 501 × 501. This lends support to previous findings in the literature with Ghia et al.’s results. Three

cases are used in this article for the two-sided deep lid driven square cavity specifically. In these cases, the top

and lower walls are moved to the right, while the left and right walls remain fixed up to at high Reynolds numbers
(5000) under the grid size of up to 201×201. All possible flow solutions are studied in the present article, and flow

bifurcation diagrams are constructed as velocity profiles and streamline contours for the same Reynolds number

using a finite volume SIMPLE technique. The work done in this paper includes flow properties such as the location
of primary and secondary vortices, velocity components, and numerical values for benchmarking purposes, and it

is in excellent agreement with previous findings in the literature. A PARAM Shavak, high-performance computing
(HPC) computer, was used to execute the calculations.

Keywords. Partial differential equations, Navier-Stokes equations, Incompressible flow, Lid-driven cavity, Finite volume technique, Boundary

value problems.
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1. Introduction

Two-dimensional steady state incompressible Newtonian fluid flow in a lid driven square cavity problem has more
applications in heat transfer, combustion chambers, mixing vessels, turbine blade tunnels, heat exchangers, aircraft,
cars, and massive flow structures of types buildings, cooling towers, and air conditioning systems are some examples
in fluid dynamics[1, 23]. Fluid dynamics is an important scientific discipline in which the governing equations are
normally differential equations, and analytical solutions are possible for a limited number of cases[19, 22]. For those
reasons, numerical methods have been discovered for the estimation of incompressible fluid flow problems[2, 24, 28].
The finite difference techniques, finite-element techniques, and finite-volume techniques are the most common methods
for computational fluid dynamics[3, 21].

A Cartesian mesh cannot accurately represent the geometry of most fluid mechanics problems. Instead, the bound-
aries were generally curved in space. Various engineering problems necessitate incompressible Navier-Stokes simula-
tions of complex fluid flows. The Semi-Implicit Method for Pressure Linked Equations(SIMPLE) algorithm based on
finite volume techniques for Navies-stokes equations is the most popular method proposed by Patankar et al [29]. The
finite central difference vortices-stream function method is applicable to evaluate the lid driven square cavity problem
by Ghia et al[14]. According to Ertuk [9] the lid driven square cavity problem is the most commonly researched
field in CFD owing to its comparatively easy computational implementation and intricate behavior, which includes
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counter rotating vortices emerging at the cavity’s corners. The backward facing step problem has also been extensively
examined, as it illustrates shear-layer detachment and reattachment, which is common to many industrial fluid flow
problems, such as airfoils, vehicles, combustors, diffusers, reactor design, and pipe and duct expansions [33]. The finite
volume numerical method discretized over a staggered grid has been well analyzed by an iterative solution defined by
the SIMPLE algorithm for both cases.[29, 34].

The lid-driven cavity flows problem over the staggered grid has been widely employed. The finite volume method
over a staggered grid was used to discover a two-dimensional model to enhance the square cavity driven and controlled
by an oscillatory lid [18]. To Solve incompressible fluid flow problems most widely used special kind of technique is
finite volume [4, 35]. The method has lots of applications in the field of the heat and fluid flow transfer kind of work
[25]. So, To identify the incompressible Newtonian fluid flow numerical solution most suitable method for us is finite
volume techniques [7]. Demirdzic et al. [8] used the SIMPLE algorithm to solve inclining the side walls of lid-driven
cavity flow. Flux evaluation on the cell boundaries most suitable method is finite-volume techniques[19, 30, 34].

Ghia et al. [14] studied the effectiveness of the coupled strongly implicit multigrid (CSI-MG) method in the
determination of high Reynolds number fine-mesh flow solutions using the vorticity-stream function formulation of the
two-dimensional incompressible Navier-Stokes equations. The cavity issue was utilized as the foundation for testing
the effectiveness of the coupled strongly implicit multi-grid approach for high Reynolds number fine-mesh cavity flow
in high Reynolds number fine-mesh cavities. In a research, they looked at Reynolds numbers ranging from 100 to
10000 and uniform mesh sizes of 129 × 129 for Re ≤ 3200 and 257 × 257 for 5000 ≤ Re ≤ 10, 000, as well as Reynolds
numbers ranging from 100 to 10000. The findings clearly show the main vortex, as well as the secondary vortices in
both the bottom corners and, for Re ≥ 3200, also in the top left corners of the diagram.

Erturk et.al.[10](2005) explored the numerical solution of the two-dimensional steady state incompressible Lid-
driven cavity flow. The Navier-Stokes equations in stream function-vorticity formulation were calculated numerically
using a uniform grid size of 601×601 for Re ≤ 21, 000 with governing equations absolute residuals were less than 10−10.
Erturk et. al.[11](2006) studied the new fourth-order compact formulation and the uniqueness of the formulation is
the final form of the High-order compact (HOC) formulations. The formulation in the same form as the Navier
Stokes equations could be easily applied to the fourth order compact formulation. Erturk et. al. [12](2007) found the
numerical solutions of two-dimensional steady state incompressible flow inside a triangular cavity. Using a very fine
grid mesh, the triangular cavity flow is solved for higher Reynolds numbers and also the study of triangular cavities
for various corner angles was performed.

There have also been some encouraging developments with rectangular cavities. Many industrial applications face
cavities of differing depths and not squares, thus researchers have explored the concept of cavity aspect ratios. In
2006, Patil et al. [27] used the Lattice Boltzmann equation (LBE), and conducted simulations using the LBGK model
for flow conditions from 50 to 3200 with varying aspect ratios ranging from K = 1 to K = 4, and changed different
Reynolds number ranges, from 50 to 3200. According to their results, Taneda and Chen’s conclusions were correct. In
the case of cavity flow with Reynolds numbers higher than 3200 and aspect ratios greater than 1, very few studies have
been conducted. In a two-dimensional nine-directional lattice model utilizing the lattice Boltzmann technique, Arun
et al. [5]conducted research on flow behavior in a two-sided lid-driven cavity on a two-dimensional nine-directional
lattice model for various Reynolds numbers (100, 1000, 2000, and 5000) and aspect ratios (1, 2 and 4).

The consequence is that we can see that a significant amount of research has been done on this topic. Researchers
like Ghia et al. [14] and Erturk et al. [11] have discovered some of the most promising results for Reynolds numbers up
to 21000. Many authors use these results as a benchmark for their work. A number of methods, including the stream
function-vorticity, the primitive variable technique, and the Lattice Boltzmann approach, are often used. Only a few
scholars have studied the deep cavity region with two walls moving in the same and opposing directions. However,
no study in the literature investigated the issue of a cavity driven by a two-sided deep lid-driven for high Reynolds
numbers (5000). Specifically, three cases are used to drive the two sided deep lid-driven cavity flow in this article. In
these three cases, the top and lower walls are moved to the right, while the left and right walls are kept stationary.
Numerical simulations were carried out for the one-sided problem with a Reynolds number of up to 5000 and a mesh
size of up to 501, and for the two sided deep lid-driven cavity problem under the aspect ratios of K = 1, 4, 6 with a
Reynolds number of up to 5000 and a mesh size of up to 201. The occurrence of the vortices profile is investigated.
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Additionally, streamlined contour diagrams for the same Reynolds number are created using a finite volume SIMPLE
technique.

The finite volume technique is used to study the steady state incompressible fluid flow lid-driven cavity problem.
We have introduced the finite volume SIMPLE algorithm to two-dimensional steady state lid cavity flow implemented
to our problem in section 2. In section 3, the numerical discretization scheme is derived on a staggered grid by applying
the finite volume numerical technique. In section 4, lid-driven one-sided cavity flow numerical results are validated
with the standard benchmark solution by Ghia et al and this section contains the Finite volume SIMPLE algorithm
validated code. In section 5, two-sided deep lid-driven cavity problems have been analyzed for unmarked case results
and contour plots for aspect ratio(AR) K = 1, 4, & 6. Finally, concluding remarks are provided in section 6.

2. Numerical Procedure and Mathematical Modeling

2.1. Problem description. Let us take a steady-state viscous two-dimensional incompressible Newtonian internal
fluid flow with the size of (1× 1). The upper sidewall is moving with u = 1 velocity [9, 14] and at the stationary wall,
no slip boundary condition applies as per Figure 1. Inside the two-dimensional square cavity, fluid flow is laminar.
This movement produced a flow identified close to the smaller secondary vortices and the cavity centre by a larger
primary vortex. The cavity, viz, Left Secondary Vortex (Left-SV), Right Secondary Vortex (Right-SV), and Left
Upper Secondary Vortex (Left-USV) at the corners are based on the Reynolds number (Re).

Figure 1. 2D lid driven square cavity One sided flow vortices layout and boundary conditions

2.2. Governing Equation. Let us take a steady state viscous two dimension incompressible lid driven square cav-
ity Newtonian internal fluid flow. The incompressible two dimension Navier Stokes equations include the continuity
Eq. (2.1), x-momentum Eq. (2.2) and y-momentum Eq. (2.3). The steady state flow of incompressible fluids for con-
tinuity and momentum equations in Cartesian coordinates is as follows [6, 13, 31].

∂(ρu)

∂x
+
∂(ρv)

∂y
= 0, (2.1)

∂(ρu · u)

∂x
+
∂(ρu · v)

∂y
=

∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
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− ∂p

∂x
, (2.2)
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∂(ρu · v)

∂x
+
∂(ρv · v)

∂y
=

∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

)
− ∂p

∂y
, (2.3)

p, ρ, µ, u, and v are pressure, density, dynamic viscosity, velocity components along (x and y) axes, respectively.
Solving governing equation by applying finite volume SIMPLE algorithm.

2.3. Finite volume SIMPLE algorithm. To evaluate pressure for incompressible flow, we have to solve Eq. (2.1)
to (2.3). We observe that Eqs. (2.2) and (2.3) contain non-linear term quantizes that must be solved iteratively from a
guessed initial velocity field [29, 36]. Second, the unknown pressure field must be solved iteratively [32, 34]. However,
the continuity Eq. (2.1) does not have the pressure as a source term but it’s included in Eqs. (2.2) and (2.3). To
evaluate this lid-driven square cavity flow problem over a staggered meshing approach to velocity components where
the pressure is evaluated at the centre of the control volume (at the node) whereas velocity is calculated at the faces
of the control volume. [26, 29, 34]. The grid arrangement for two-dimensional incompressible flow is determined
using a staggered grid which is in Figure (2). The linear and non-linear terms of pressure and velocity, respectively in

Figure 2. Staggered grid discretized

Eqs. (2.2) and (2.3) are evaluated using iteratively. For that, Eqs. (2.1) - (2.3) are first discretized using a finite volume
scheme as follow. For discretized Eqs. (2.2) and (2.3) by taking the integration about the control volume described in
Figure (2). Now, Solving x-momentum and y-momentum equations.
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(2.4)

Now, Evaluating diffusion term by using central difference and convective term & pressure term evaluate at ρe =
ρw = ρn = ρs = ρ, µe = µw = µn = µs = µ and ∆x = ∆y.
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Convective term[26, 29, 34]:

[((ρu · u)e∆y − (ρu · u)w∆y)] + [((ρu · u)n∆x− (ρu · u)s) ∆x] =
ρ

2
∆y uE (uE + uP )

−ρ
2

∆y uW (uP + uW ) +
ρ

2
∆x uN (uN + uP ) − ρ

2
∆x uS (uP + uS). (2.5)

Diffusion term[29, 34]: [
µe

(
∂u

∂x

)
e

− µw

(
∂u

∂x

)
w

]
∆y = µ(uE + uW ), (2.6)

and

[
µn

(
∂u

∂x

)
n

− µs

(
∂u

∂x

)
s

]
∆x = µ(uN + uS). (2.7)

Pressure term[29, 34]

−∂p
∂x

∆x∆y = (pP − pE) ∆y. (2.8)

Put the value of Eqs. (2.5), (2.6), (2.7), and (2.8) in Eq. (2.4) then we get discretized form of velocity profile in
Eq. (2.9)

ae,uue = aeuE + awuW + anuN + asuS + (pP − pE)∆y, (2.9)

where

ae,u = ae + aw + an + as,

where

ae = −uE∆y

2
+

1

Re
, aw =

uW ∆y

2
+

1

Re
,

an = −vn∆x

2
+

1

Re
, as =

vS∆x

2
+

1

Re
,

and Re =
ρ

µ
= Reynolds number

In a similar manner, The y− momentum equation velocity discretization form in Eq. (2.10)

ae,vvn = AevE +AwvW +AnvN +AsvS + (pP − pN )∆x, (2.10)

where

ae,v = Ae +Aw +An +As,

where

Ae = −uE∆x

2
+

1

Re
, Aw =

uW ∆x

2
+

1

Re
,

An = −vN∆y

2
+

1

Re
, As =

vS∆y

2
+

1

Re
,

and Re =
ρ

µ
= Reynolds number

The x-momentum Eq. (2.9) in terms of the general discretized form of neighbouring nodes as in Eq. (2.12)

ae,uue =
∑

anb,uunb,u + b+ (pP ∆y − pE∆y), (2.11)

ue =

∑
anb,uunb,u + b

ae,u
+ de(pP − pE), (2.12)
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where b is source term that arising from pressure gradient and de = ∆y
ae,u

.

In a similar manner, The y− momentum equation as in Eq. (2.14)

an,vvn =
∑

anb,vvnb,v + b+ (pP ∆x− pE∆x), (2.13)

vn =

∑
anb,vvnb,v + b

an,v
+ dn(pP − pN ) (2.14)

where b is source term that arising from pressure gradient and dn = ∆x
an,v

let us guess pressure p as p∗, the approximate velocity u∗ and v∗ which written as in Eq. (2.15) and (2.16)

ae,uu
∗
e =

∑
anb,uu

∗
nb,u + b+ (p∗P ∆y − p∗E∆y) and (2.15)

an,vv
∗
n =

∑
anb,vv

∗
nb,v + b+ (p∗P ∆x− p∗N∆x) (2.16)

subtract Eqs. (2.11) and (2.15) , Eqs. (2.13) and (2.16) we get

ae,uu
′
e =

∑
anb,uu

′
nb,u + (p′P ∆y − p′E∆y) and (2.17)

an,vv
′
n =

∑
anb,vv

′
nb,v + (p′P ∆x− p′N∆x) (2.18)

where ue = (u∗e + u′e), vn = v∗n = v′n, p = p∗ + p′ and u′ and v′ are correction velocity.
For the SIMPLE algorithm [29, 34] the summation term in Eqs. (2.17) and (2.18) are omitted. Consequently, the
velocity correction can be written as in Eq. (2.19)

u′e = (dep
′
P − dep

′
E), v′n = (dnp

′
P − dnp

′
N ) (2.19)

Now, the Continuity Eq. (2.1) is discretized over the main control volume and then evaluated pressure correction p′.

n∫
s

e∫
w

[
∂(ρu)

∂x
+
∂(ρu)

∂y

]
dxdy = ((ρu)e∆y − (ρu)w∆y) + ((ρv)n∆x− (ρv)s∆x) (2.20)

Putting the value of ue = u∗e + (dep
′
P − dep

′
E), uw = u∗w + (dwp

′
W − dwp

′
P ), vn = v∗n + (dnp

′
P − dnp

′
N ) and vs = u∗s +

(dsp
′
S−dsp′P ) in Eq. (2.20), then we get pressure correction discretization form in Eq. (2.21) at ρe = ρw = ρn = ρs = ρ

aP · p′P = aE · p′E + aW · p′W + aN · p′N + aS · p′S + q (2.21)

where

aE = ρ · de∆y, aW = ρ · dw∆y, aN = ρ · dn∆x, aS = ρ · ds∆x,
q = ρ · (u∗w∆y − u∗e∆y) + ρ · (u∗s − u∗n),

aP = aE + aW + aN + aS

In Eqs. (2.17) and (2.18) omitting summation terms. So for simplification, we required some relaxation operator αp

such that pressure become as p = p∗ + αpp
′, for the optimal solution relaxation factor αp are dependent [29, 34]. For

the instance suggest αp = 0.5 and αp = 0.8 for the li driven cavity problem [34].

3. Numerical results and discussion

The square cavity lid driven problem is simulated by using MATLAB for 100, 400, 1000, 2000 and 5000 Reynolds
numbers with size of grids 51, 101, 201 and 501. The numerical results of these simulations are validated using the
square lid driven cavity midpoint u−velocity as correlated with the results of Ghia et al (1982)[14], as shown in the
Figure 3 – 5.

The Square lid-driven one-sided cavity for the streamlines contour is shown in Figure 3 for different Re 400, 1000,
2000, and 5000 with gride sizes of 501. Intensive streamlines indicate that the Primary Vortex (PV) takes place close
to the cavity centre and it depends on the secondary eddies which take place at the corners, as given in Figure 3. The
Right-SV and Left-SV occur at Re numbers 100 & 400 and Right-SV, Left-SV, Left-USV occurs at Re numbers 2000



992 M. R. PATEL, J. U. PANDYA, AND V. K. PATEL

(a) (b)

(c) (d)

Figure 3. Streamlines contour of square one-side lid driven cavity (a) Re.No.=400, (b) Re.No.=1000,
(c) Re.No.=2000, (d)Re.No.=5000, Grid 501 × 501

& 5000. The largest size of Secondary Vortex (SV) & Primary Vortex (PV) converges at the cavity centre when the
Reynolds numbers are higher as shown in Figure 3.

One sides square lid cavity, Figure 3 shows the midplane u-velocities for different Reynolds numbers. The maximum
velocity in the top wall is represented as 1 in the graph, which moves in the right side direction. When Re increases,
there is a linear change in the velocity profile in the middle of the cavity. Figure 4 shows the midplane v-velocities
for different Reynolds numbers. The data is compared with the present study for velocity profile with velocity profile
given by Ghia. et al[14] for 100, 400, 1000, and 5000 Re and the velocity profile given by Hou. et al[17] for 2000 Re
as shown in Figures 3 and 4. The present results demonstrate that they are perfectly correlated with the data. The
velocity contour of the lid is driven by one side square cavity for the Reynolds No. 2000 and 5000 on gride 501 shows
in the Figure 5.

Table 1 shows the performance of a convergence analysis to determine the convergence speed that is related to
the computed speed and number of iterations. However, the computations have been conducted on PARAM Shavak
high-performance computing (HPC) computer, Intel Xeon with RAM-96GB with 2400-MHz using programming in
MATLAB software[15]. From Table 1, it is concluded that a numerical technique takes CPU time and iterations with
the increase of both the mesh size and Reynolds numbers until it reaches the convergence criteria.
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Table 1. Grid Size with No. of iterations and time for convergence

Renols number (Re) Gride size Convergence Iterations
(error = 10−7)

Time(s)

51*51 3735 10.5264

100
101*101 12111 25.8530
201*201 36362 342.6613
501*501 144838 7616.4443
51*51 3846 10.7546

400
101*101 12293 26.4664
201*201 52637 239.1340
501*501 229908 12554.4187
51*51 15355 14.0277

1000
101*101 45396 72.0553
201*201 138106 910.2772
501*501 574144 30454.8571
51*51 124145 53.8760

2000
101*101 381595 566.3873
201*201 1155499 7555.7716
501*501 4335278 273756.4652
51*51 176055 72.6275

5000
101*101 551336 796.1188
201*201 1590514 10902.9264
501*501 6808631 402215.0943

Table 2. lid driven One sided square cavity with present study for Re. No. 100,400 and 1000

Re. No. Vortex position Present Ghia et al Hou et a Gupta et al Kamel et al

PV
x 0.6171 0.6171 0.6196 0.6125 0.6132
y 0.722 0.7344 0.7372 0.7375 0.7400

100 Right-SV
x 0.9453 0.9453 0.9451 0.9375 0.9400
y 0.06193 0.0625 0.0627 0.0625 0.06000

Left-SV
x 0.03146 0.0313 0.0391 0.0374 0.0333
y 0.03853 0.0391 0.0352 0.0374 0.03330

PV
x 0.5547 0.5546 0.5607 0.5500 0.5550
y 0.5937 0.6055 0.6078 0.6125 0.6049

400 Right-SV
x 0.89059 0.89059 0.8901 0.8874 0.8850
y 0.1195 0.125 0.1255 0.125 0.12

Left-SV
x 0.0508 0.0507 0.0548 0.0500 0.0500
y 0.0471 0.0468 0.0509 0.0500 0.0500

PV
x 0.5311 0.5312 0.5333 0.5250 0.5300
y 0.55059 0.5625 0.5646 0.5625 0.5649

1000 Right-SV
x 0.8592 0.8594 0.8667 0.8625 0.8649
y 0.115 0.1094 0.1137 0.1125 0.115

Left-SV
x 0.08584 0.0859 0.0902 0.0874 0.0850
y 0.07674 0.0781 0.0783 0.074 0.0749
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Figure 4. (a) lid driven One sided square cavity flow of centerline velocity u., (b)lid driven One
sided square cavity flow of centerline velocity v.

Table 3. One-sided square lid-driven cavity verification with present study for Re (2000 and 5000)

Reynolds number Vortex position Present Hou et al Gupta et al Kamel et al

PV
x 0.5251 0.5254 0.5250 0.5250
y 0.5583 0.5490 0.5500 0.5500

Right-SV
x 0.8450 0.8470 0.8375 0.8449

2000
y 0.08475 0.09800 0.1 0.1

Left-SV
x 0.08498 0.0902 0.0874 0.0850
y 0.1034 0.1058 0.1000 0.1050

Left-USV
x 0.0300 - 0.0374 0.03
y 0.8595 - 0.8874 0.8800

PV
x 0.5144 0.5175 0.5124 -
y 0.5386 0.5373 0.5374 -

Right-SV
x 0.8001 0.8077 0.8000 -

5000
y 0.0866 0.0744 0.074 -

Left-SV
x 0.0757 0.0783 0.074 -
y 0.1382 0.1373 0.1313 -

Left-USV
x 0.06883 0.06669 0.0688 -
y 0.8967 0.9098 0.9124 -

The results obtained in Tables 1, 2, and 3 show that this current finite-volume computational technique has a better
agreement with the results obtained by Ghia. et. al. [14], Hou. et. al. [17], Gupta. et. al. [16], and Kamel. et. al.
[20] using different numerical techniques. The finite volume simple algorithm numerical technique code verification of
one-sided lid-driven cavity work and the deep lid-driven two-sided cavity concludes in section 4.

4. Two sided lid driven deep cavity flow

The geometry of the present problem is shown in Figure 6. It consists of a two-dimensional two-sided deep lid-
driven cavity with the height K × L and the width L. In this two-sided deep lid-driven cavity both walls, upper and
lower, move to the right, whereas right and left walls lept as stationary. For the present work, aspect ratio (AR) is
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(a) (b)

(c) (d)

Figure 5. Velocity contour of the lid driven One sided square cavity for (a) u ,Re. No.=2000, (b) v,
Re. No.=2000, (c) u, Re. No.=5000, (d) v,Re. No.=5000, Grid 501 × 501

defined as the ratio of the height to the width. After validating the code of one-sided lid-driven cavity flow by using
the finite volume SIMPLE technique, we analyzed deep lid-driven cavity fluid flow under three different aspect ratios
(AR) K = 1, 4, 6. The two-sided lid-driven deep cavity flow for different aspect ratios, the geometry, and boundary
conditions are shown in Figure 6. These two-sided lid movements produce the various vortices based on the Reynolds
numbers under the different aspect ratios. They are categorized as Primary Vortex (PVi, i = 1 to 6) and Secondary
Vortex (BSVi and TSVi).

The significance of boundary conditions in any simulation process cannot be overstated. In finite volume simple
algorithm technique, the simple bounce-back and no-slip boundary conditions are commonly used. In this study, the
boundary conditions applied to the four sides of the cavity are illustrated in Figure 6. The performance of a two-sided
deep lid-driven cavity is explored across a range of Re values from 100 to 5000 and for a variety of various aspect
ratios. The findings are summarised in terms of the stream function, the midplane-u and midplane-v velocities, and
the velocity contours. However, due to the primary disadvantage of using a high grid size, which is increased processing
time and memory consumption, using a large grid size is not a practical option. The amount of time and space required
for computing rises as the grid size grows. The optimal grid size must be determined in order to achieve acceptable
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(a) (b) (c)

Figure 6. Geometry, Vortices and Boundary conditions of 2D lid-driven two sided deep cavity flow
(a) AR K=1, (b) AR K=4, (c) AR K=6
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Figure 7. (a) Centerline velocity u for aspect ratio K = 1 of two-sided cavity flow, (b)Centerline
velocity v for aspect ratio K = 1 of two-sided cavity flow

accuracy in the shortest period of time. As a consequence, the current simulations are carried out for rectangular deep
lid driven cavities with a range of Re and grid sizes and a range of aspect ratios, as seen in the Figure 4 to Figure 15.

Two-sided deep lid driven cavity for aspect ratio (AR) K = 1, Figures 4 and 7 show the centerline velocity and
Figure 8 velocity contours at different Reynolds numbers (100, 400, 1000, and 5000) for gride 201. Figure 4 shows
the midplane u-velocities for different Reynolds numbers. The maximum velocity in the top and bottom walls are
represented as 1 since both walls move in the same direction. When Re increases, there is a linear change in the
velocity profile in the middle of the cavity. Figure 7 shows the midplane v-velocities for different Reynolds numbers.
The velocity in the left and right walls are represented as 0 since both walls are kept stationary.
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(a) (b)

(c) (d)

Figure 8. Streamlines contour for aspect ratio K = 1 of two-sided cavity flow (a) Re. No.=100, (b)
Re.No.=400, (c) Re.No.=1000, (d) Re.No.=5000, Grid 201 × 201

For K = 1, Figure 8 illustrates the streamline flow patterns in the lid-driven cavity under steady-state conditions.
The findings indicate that each velocity vector contributes to the formation of an important vortex. For Reynolds
number 100, two major vortexes are seen rotating in the velocity direction. They are symmetrical along the horizontal
line. When Re is increased, however, a secondary vortex forms at the right boundary that pivots in the opposite
direction of the applied velocity, and the flow patterns become symmetrical along the horizontal mid-plane. As the
Reynolds number rises, the size of the secondary vortex steadily becomes larger. Between 1000 and 5000, however,
there is little difference in the upper Re. When taking refine grid 201 × 201 then we get stable four main vortexes,
the graph results can be found in the Supplementary Information with Figure S1 to Figure S8. It can be noticed
that stream contours primary vortex (PV1 & PV2) arise at Re=100 as shown in Figure 8 (a). The secondary vortex
(BSVi & TSVi, i = 1, 2) started to arise at Re=1000. The velocity contour of u and v for the aspect ratio of K = 1
of two side lid-driven cavities of the Re numbers 5000 on gride 201 as per Figure 9.

Table 4 represents the vortex position for Reynolds numbers 100, 400, 1000, and 5000. We also observed the vortex
movement when we increased the Reynolds numbers shown in the Table 4. From Figure 9 and Table 4, it is clear that
two primary vortexes arise. When the Reynolds number increases, then two secondary vortexes (TSV1 & BSV2) arise
at 1000 Re number. Also, we observed that four secondary vortex (TSV1, BSV1, TSV2 & BSV2) arise at 5000 Re
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Figure 9. Velocity contour of aspect ratio K = 1 for (a) u-velocity ,Re No.=5000, (b) v-velocity, Re
No.=5000,on Grid 201 × 201

Table 4. Vortex profile of aspect ratio K = 1 of two-sided cavity flow

AR (K) Re Vortex position PV1 BSV1 TSV1 PV2 BSV2 TSV2

100
x 0.6061 - - 0.5944 - -
y 0.2096 - - 0.8049 - -

400
x 0.5914 - - 0.5769 - -

K=1
y 0.248 - - 0.7729 - -

1000
x 0.5335 - 0.9624 0.5287 0.9445 -
y 0.2610 - 0.4612 0.7672 0.5461 -

5000
x 0.5195 0.03333 0.9443 0.5176 0.9483 0.02343
y 0.2618 0.05556 0.4693 0.7617 0.5558 0.9486

number. It is obvious from Table 5 that the numerical technique takes more computational time and more iterations
until it approaches the convergence criteria as Reynolds increases.

For two-sided deep lid driven cavity of aspect ratio K = 4, Figure 4 and 4 show the centerline velocity and Figure 11
velocity contours at different Reynolds numbers (100, 400, 1000, and 5000) for gride 201. Figure 4 shows the midplane
u-velocities for different Reynolds numbers. The maximum velocity in the top and bottom walls are represented as 1
since both walls move in the same direction. When Re increases, there is a linear change in the velocity profile in the
middle of the cavity. Figure 4 shows the midplane v-velocities for different Reynolds numbers. The velocity in the left
and right walls are represented as 0 since both walls are kept stationary.

As demonstrated in Figure 11, the four principal vortexes are visible for the deep shallow cavity (K = 4) even at
a low Reynolds number (Re = 100). However, when the Reynolds number increases, the form and intensity of those
primary vortexes grow. At the preliminary phase, secondary vortex formations mix with primary vortices, resulting
in the development of primary vortices. This impact is consistent with the findings of Arun et al. [5]. When taking
refine grid 201 × 201 then we get stable four main vortexes, the graph results can be found in the Supplementary
Information with Figure S9 to Figure S16. From Figure 11, it can be noticed that stream contours primary vortex
(PVi, i = 1 to 4) arise at Re=100. The secondary vortex (BSVi & TSVi, 1 ≤ i ≤ 4) start to arise at Re=5000. The
velocity contour of u and v for the aspect ratio of K = 4 of the two-sided deep lid-driven cavity of the Re numbers
5000 on gride 201 as per Figure 12.
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Table 5. Number of iterations and time(second) for convergence

AR Renols number Gride size Convergence Iterations
(error = 10−7)

Time(s)

K=1

100

51*51 8764 29.9
101*101 29176 295.96
201*201 92837 4530.58

400

51*51 12774 40.579
101*101 29792 396
201*201 96321 5248.262

1000

51*51 13871 42.62
101*101 36941 365.88
201*201 107348 4216.006

5000

51*51 42309 108.02
101*101 56807 687.054
201*201 186971 9956.242

K=4

100

51*51 8558 27.239
101*101 28692 274.383
201*201 89403 3356.672

400

51*51 8985 30.818
101*101 31070 298.174
201*201 100571 3781.04

1000

51*51 12013 34.994
101*101 33057 311.252
201*201 98833 3766.525

5000

51*51 140387 330.702
101*101 461637 4291.589
201*201 1527990 57596.48

K=6

100

51*51 10322 32.684
101*101 31836 298.517
201*201 91986 3468.845

400

51*51 10729 33.077
101*101 36687 347.742
201*201 112494 4220.722

1000

51*51 12102 35.999
101*101 36961 346.141
201*201 116220 4354.334

5000

51*51 111642 263.321
101*101 391936 3709.764
201*201 1270320 48431.15
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Figure 10. (a) Centerline velocity u for aspect ratio K = 4 of two-sided cavity flow, (b) Centerline
velocity v for aspect ratio K = 4 of two-sided cavity flow

Table 6. Vortex profile of aspect ratio K = 4 of two-sided cavity flow

AR (K) Re Vortex position PV1 PV2 PV3 PV4 BSV1 TSV2 BSV3 TSV4

100
x 0.5928 0.5245 0.5399 0.5778 - - - -
y 0.328 1.475 2.601 3.646 - - - -

400
x 0.5556 0.4226 0.4415 0.5559 - - - -

K=4
y 0.381 1.203 2.897 3.641 - - - -

1000
x 0.5429 0.3331 0.378 0.5311 - - - -
y 0.5013 1.218 2.827 3.623 - - - -

5000
x 0.5254 0.4674 0.4679 0.5203 0.06657 0.09012 0.1237 0.06533
y 0.5841 1.558 2.562 3.55 0.1746 1.921 2.095 3.844

Table 6 represents the vortex position for Reynolds numbers 100, 400, 1000, and 5000. We also observed the
vortex movement when we increased the Reynolds numbers shown in the Table 6. From Figure 12 and Table
6, it is clear that four primary vortexes arise. When Reynolds number increases, then four secondary vortex
(BSV1, TSV2, BSV3, & TSV4) arise at 5000 Re number. It is obvious from Table 5 that the numerical tech-
nique takes more computational time and more iterations until it approaches the convergence criteria as Reynolds
increases.

For two sided deep lid driven cavity of aspect ratio K = 6, Figure 4 and 13 show the centerline velocity and Figure
14 velocity contours at different Reynolds numbers (100, 400, 1000, and 5000) for gride 201. It is noticed that the
centreline velocity (u) profile reaches the upper right and lower right corners of the cavity when Re numbers increases.
As demonstrated in Figure 14, the six principal vortexes are visible for the deep lid driven cavity (K = 6) even at a
low Reynolds number (Re = 100). However, taking 51× 51 grid for Reynolds numbers 100, 400, 1000, & 5000 then we
get five main vortexes. When taking refine grid 201 × 201 then we get stable six main vortexes, the graph results can
be found in the Supplementary Information with Figure S17 to Figure S22. From Figure 14, it can be noticed that
stream contours primary vortex (PVi, i = 1 to 6) arise at Re=100. The secondary vortex (BSVi & TSVi, 1 ≤ i ≤ 6)
start to arise at Re=5000. The velocity contour of u and v for the aspect ratio of K = 6 of two-sided deep lid-driven
cavity of the Re number 5000 on gride 201 as per Figure 15.
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(a) (b)

(c) (d)

Figure 11. Streamlines contour for aspect ratio K = 4 of (a) Re. No.=100, (b) Re.No.=1000, (c)
Re.No.=5000, Grid 201 × 201

Table 7 represents the vortex position for Reynolds numbers 100, 400, 1000, and 5000. We also observed the vortex
movement when we increased the Reynolds numbers shown in the Table 7. From Figure 15 and Table 7, it is clear
that six primary vortexes arise. When the Reynolds number increases, then two secondary vortexes (BSV1, & TSV6)
arise at 5000 Re number. It is obvious from Table 5 that the numerical technique takes more computational time and
more iterations until it approaches the convergence criteria as Reynolds increases.

5. Conclusion

The evidence from this study points towards the idea that the two sided deep lid-driven cavity under different
aspect ratios (K = 1, 4 & 6) has not been studied except that it has academic value in the study of the dynamics
of vortices at corners, which depend on Reynolds numbers & walls in the direction of movement. First, to validate
the numerical solution, lid-driven one-sided square cavities have been studied, and the results are validated by related
results in the literature, where they are shown with the complete agreement between the data values. Second, in
different uninvestigated cases of the two-sided deep lid-driven cavities, we have obtained satisfactory results after
investigating under different aspect ratios. However, for situations when there is only one side and two sides, such as
a square and a rectangle, a simplified centerline velocity profile and velocity contour plots are used. In addition, for
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(a) (b)

Figure 12. Velocity contour of aspect ratio K = 4 for (a) u-velocity ,Re No.=5000, (b) v-velocity,
Re No.=5000,on Grid 201 × 201
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Figure 13. (a) Centerline velocity u for aspect ratio K = 6 of two-sided cavity flow, (b) Centerline
velocity v for aspect ratio K = 6 of two-sided cavity flow

Table 7. Vortex profile of aspect ratio K = 6 of two-sided cavity flow

AR (K) Re Vortex position PV1 PV2 PV3 PV4 PV5 PV6 BSV1 TSV6

100
x 0.5628 0.4644 0.4889 0.4615 0.4654 0.5462 - -
y 0.5482 1.4490 2.7030 3.4490 4.7030 5.5730 - -

400
x 0.5623 0.4477 0.4893 0.4869 0.4606 0.5550 - -

K=6
y 0.4716 1.301 2.603 3.496 4.722 5.499 - -

1000
x 0.5469 0.3733 0.4794 0.4566 0.3956 0.5321 - -
y 0.5024 1.329 2.530 3.703 4.694 5.488 - -

5000
x 0.544 0.4156 0.3666 0.6001 0.4565 0.5246 0.5879 0.05869
y 0.6182 1.535 2.361 3.804 4.571 5.561 0.1716 5.817
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(a) (b)

(c) (d)

Figure 14. Streamlines contour for aspect ratio K = 6 of (a) Re. No.=100, (b) Re.No.=1000, (c)
Re.No.=5000, Grid 201 × 201

each Reynolds number, the locations of the main and secondary vortices in the square and rectangular deep lid cavities
are distinct. As the Re number rises, the primary vortex (PV) approaches the cavity centre and the secondary vortex
(SV) increases in size and intensity. While studying flow properties such as Reynolds number and aspect ratio, various
Reynolds numbers (100, 400, 1000, and 5000) and aspect ratios (1, 4, and 6) are utilised in the present research.
These results are very robust. As we discussed in the previous section, different streamline patterns, velocity profiles,
and velocity contours are all detailed in great detail in order to make sense of them. Different streamline patterns
are produced when Re and aspect ratio K are changed. The velocity profiles in the cavity are shown by the graphs
of u and v velocity. To demonstrate this, the experiment shows that K = 4 yields no secondary vortex, but three
secondary vortexes are produced for walls travelling in the same direction when Re is increased to 5000. However, only
two secondary vortexes are produced for K = 6 even when Re is increased. The graphs of u and v velocity describe the
velocity profile formed in the cavity. The results provide an important source for researchers to validate their results.
The problems are either external or internal flows, such as flow in a channel or flow over a simply shaped obstacle.
Future work will explore the changes in the aspect ratio of heat transfer on non-Newtonian fluid flow.



1004 M. R. PATEL, J. U. PANDYA, AND V. K. PATEL

(a) (b)

Figure 15. Velocity contour of aspect ratio K = 6 for (a) u-velocity ,Re No.=5000, (b) v-velocity,
Re No.=5000,on Grid 201 × 201
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Nomenclatures

u x-axis velocity component(m/s)
u∗ x-axis approximate velocity (m/s)
u′ x-axis correction velocity (m/s)
v y-axis velocity component(m/s)
v∗ y-axis approximate velocity(m/s)
v′ y-axis correction velocity (m/s)
p pressure(N/m2)
p∗ guessed pressure(N/m2)
p′ correction pressure(N/m2)
i x-direction node location
j y-direction node location
∆x x-direction spatial step
∆y y-direction spatial step
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Abbreviations

2D two dimensional
Re Reynolds number
AR aspect ratio
K aspect ratio
SIMPLE semi implicit method for pressure linked equation
HPC high performance computing
FVM Finite volume technique
PV primary vortex
Right-SV right secondary vortex
Left-SV left secondary vortex
Left-USV left upper secondary vortex
PVi ith primary vortex
BSVi ith bottom secondary vortex
TSVi ith top secondary vortex
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