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Abstract

In this paper, we apply the approximate symmetry transformation group to obtain the approximate symmetry

group of the perturbed mKdV-KS equation which is a modified Korteweg-de Vries (mKdV) equation with a

higher singularity perturbed term as the Kuramoto-Sivashinsky (KS) equation. Also, an optimal system of one-
dimensional subalgebras of symmetry algebra is constructed and the corresponding differential invariants and

some approximately invariant solutions of the equation are computed.
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1. Introduction

Some differential equations which appear in mathematics, physics, mechanics, and etc., have terms that involve a
small parameter which is called perturbed term. An essential step in these studies is to compute the symmetries and
invariant solutions of these equations. There are several methods to analyze these perturbed equations [1, 2, 15]. One
of these methods is the approximate symmetry method, that is firstly introduced by Baikov, Gazizov, and Ibragimov
in the 1980s [1, 2]. In fact, this method is based on the Lie symmetry method and the theory of perturbations. The
Lie symmetry method is a very practical and important method that can be used to obtain and classify invariant
group solutions for a differential equation. It is also widely used in calculating the conservation laws of a differential
equation [7, 8]. To determine approximate symmetries, Fushehich and Shtelen [4] create a new method which was
followed by Euler et al. [3]. We refer to [6, 12, 13, 16] to compare these methods.

In this study, by using the approximate symmetry method, we obtain the approximate symmetries of the perturbed
mKdV-KS equation,

ut + 6u2ux + uxxx + ε(uxx + uxxxx) = 0, (1.1)

where ε is a small parameter. A general form of this equation has appeared some where like study of shallow water
on tilted planes [14]. There have been many studies on the invariant group solutions and the conservation laws of
different types of this equation [5, 9].

The outline of this paper is as follows. Section 2 is devoted to some definitions and basic concepts of the approximate
symmetry method. In section 3, we analyze the approximate symmetry group of perturbed mKdV-KS equation by
Baikov, Gazizov and Ibragimov method. An optimal system of one-dimensional subalgebras of the Lie symmetry
algebra is obtained in section 4. Finally, in section 5 we construct the approximate differential invariants corresponding
to the generators in the optimal system and obtain some similarity reductions of (1.1).
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2. Notations and Definitions

Some definitions and related results which we use through of this work are presented in this section. These concepts
and results are brought from the reference [6].

Suppose g(x, ε) are functions of n variables x = (x1, . . . , xn) and a parameter ε which are locally considered in a
neighborhood of ε = 0. If the function g(x, ε) satisfies the condition,

lim
ε→0

g(x, ε)

εp
= 0,

it is written g(x, ε) = o(εp) and we say that g is of order less than εp. The functions g and h are called approximately
equal and denoted by g ≈ h, whenever

g(x, ε) = h(x, ε) + o(εp).

An equivalence relation is defined on such functions by this approximate equality. Suppose,

g0(x) + εg1(x) + · · ·+ εpgp(x),

be the approximating polynomial of degree p in ε that results from the Taylor series expansion of a given function
g(x, ε) in powers of ε about ε = 0. Then, any function h ≈ g has the form,

h(x, ε) = g0(x) + εg1(x) + · · ·+ εpgp(x) + o(εp).

Consider the ordered sets of smooth vector functions,

g0(x, a), g1(x, a), . . . , gp(x, a),

which depend on x’s and a as the parameter of group, with coordinates:

gi0(x, a), gi1(x, a), . . . , gip(x, a), i = 1, . . . , n.

The one-parameter family of approximate transformations,

x̃i ≈ gi0(x, a) + εgi1(x, a) + · · ·+ εpgip(x, a), i = 1, . . . , n,

is the class of invertible transformations x̃ = g(x, a, ε) with vector function g = (g1, . . . , gn) such that:

gi(x, a, ε) ≈ gi0(x, a) + εgi1(x, a) + · · ·+ εpgip(x, a), i = 1, . . . , n,

and verify the conditions g(x, 0, ε) ≈ x and g(g(x, a, ε), b, ε) ≈ g(x, a+ b, ε).

Definition 2.1. Let G be a one-parameter group of approximate transformation:

z̃i ≈ g(z, a, ε) ≡ gi0(z, a) + εgi1(z, a), i = 1, . . . , n.

The approximate equation,

H(z, ε) ≡ H0(z) + εH1(z) ≈ 0, (2.1)

is called an approximately invariant with respect to G (or admits G) if

H(z̃, ε) ≈ H(g(z, a, ε), ε) = o(ε),

whenever z = (z1, . . . , zn) satisfies (2.1).

If z = (x, u, u(1), . . . , u(k)), then according to the above definition, G is called an approximate symmetry group of
the approximate k-order differential equation.

Theorem 2.2. If (2.1) is an approximate invariant which admits G, then

X = X0 + εX1 ≡ ξi0(z)
∂

∂zi
+ εξi1(z)

∂

∂zi
, (2.2)

is the generator of G if and only if,[
X(k)H(z, ε)

]
H≈0

= o(ε),
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or [
X

(k)
0 H0(z) + ε(X

(k)
1 H0(z) +X

(k)
0 H1(z))

]
(2.1)

= o(ε), (2.3)

where X(k) is the kth order prolongation of X [6].

If operator (2.2) satisfies the condition (2.3), we call it, an infinitesimal approximate symmetry admitted by (2.1).

Theorem 2.3. ([6]) If X = X0+εX1 be a generator of the approximate transformation group for (2.1), where X0 6= 0,
then the operator,

X0 = ξi0(z)
∂

∂zi
,

is an exact symmetry generator for the equation,

H0(z) = 0. (2.4)

Equations (2.1) and (2.4) are called the perturbed equation and unperturbed equation, respectively. By assumptions
of the Theorem 2.3, the operator X0 is called a stable symmetry of Eq. (2.4). The approximate symmetry generator
corresponding to X0 is X = X0 + εX1, which is called X0 deformation arising from perturbation εH1(z). When all
generators of the symmetry Lie algebra (2.4) are stable, the perturbed Eq. (2.1) is called to inherits the symmetries
of the unperturbed equation.

3. Approximate Symmetry Analyzing of the Perturbed mKdV-KS Equation

In this section, we obtain the approximate symmetries of the Eq. (1.1). To this end, we first obtain the exact
symmetries of the equation. The generator of the approximate transformation group admitted by (1.1) has the form,

X = X0 + εX1 = (τ0 + ετ1)
∂

∂t
+ (ξ0 + εξ1)

∂

∂x
+ (φ0 + εφ1)

∂

∂u
, (3.1)

where τi, ξi and φi are unknown functions of t, x and u, for i = 0, 1. For obtaining the exact symmetry X0 of the
unperturbed equation, we must solve the determining equation,

X
(3)
0

(
ut + 6u2ux + uxxx

) ∣∣∣
ut+6u2ux+uxxx=0

= 0. (3.2)

Solving (3.2), by direct calculations we obtain,

τ0 = −3c1t+ c2, ξ0 = −c1x+ c3, φ0 = c1u,

where c1, c2 and c3 are arbitrary constants, so the infinitesimal symmetry generator X0 is:

X0 = (−3c1t+ c2)∂t + (−c1x+ c3)∂x + c1u∂u. (3.3)

Therefore, (1.1) admits the three-dimensional Lie algebra which is generated by vector fields:

X1
0 = ∂x, X2

0 = ∂t, X3
0 = −3t∂t − x∂x + u∂u. (3.4)

Now, we obtain the approximate symmetries of (1.1). At first, the auxiliary function I must be determined due to
(2.3) by the equation,

I =
1

ε

[
X

(k)
0 (H0(z) + εH1(z))

∣∣∣
H0(z)+εH1(z)=0

]
.

By substituting the generator X0 from (3.3) in the above equation, the auxiliary function is obtained as:

I = −c1(uxx − uxxxx).

For calculating the operator X1, we must solve the following inhomogenous determining equation:

X
(k)
1 H0(z)

∣∣∣
H0(z)

+ I = 0.
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Rewriting the above equation for (1.1) yields,

X
(3)
1

(
ut + 6u2ux + uxxx

) ∣∣∣
ut+6u2ux+uxxx=0

− c1 (uxx − uxxxx) = 0,

and by solving this equation we have:

τ1 = −3A1t+A2, ξ1 = −A1x+A3, φ1 = A1u,

where A1, A2, and A3 are arbitrary constants. Therefore, the approximate symmetries of perturbed mKdV-KS
equation are:

V1 = ∂x, V4 = εV1,
V2 = ∂t, V5 = εV2,
V3 = −3t∂t − x∂x + u∂u, V6 = εV3.

(3.5)

Considering the first order of precision, the commutator Table 1 shows that the operators in (3.5) generate a 6-
dimensional approximate symmetry Lie algebra. We denote this Lie algebra by g.

Table 1: The commutator table of approximate symmetry of (1.1).

V1 V2 V3 V4 V5 V6
V1 0 0 0 0 0 −V4
V2 0 0 −3V2 0 0 −3V5
V3 0 3V2 0 V4 3V5 0
V4 0 0 −V4 0 0 0
V5 0 0 −3V5 0 0 0
V6 V4 3V5 0 0 0 0

It is clear that the perturbed equation inherits the symmetry of the unperturbed equation since all of the generators
in (3.4) are stable. Also, g is solvable and the finite sequence of ideals for g is as follows:

0 ⊂ 〈V4〉 ⊂ 〈V4, V5〉 ⊂ 〈V4, V5, V6〉 ⊂ 〈V1, V4, V5, V6〉 ⊂ 〈V1, V2, V4, V5, V6〉 ⊂ g.

4. Optimal System of Perturbed mKdV-KS Equation

In this section, we construct the one-dimensional optimal system of Lie subalgebras for g.

Definition 4.1. Suppose G is a Lie group. An optimal system of s-parameter subgroups is a list of conjugacy
inequivalent s-parameter subgroups with the property that each other subgroup is conjugated exactly to one subgroup
of this list. Also, a list of s-dimensional subalgebras forms an optimal system if every s-dimensional subalgebra of g
is equivalent to a unique member of the list under some element of the adjoint representation: h̃ = Adg(h) [11].

The reason for importance of the optimal system is that it gives a classification on the infinite group invariant
solutions of the equation. This classification gives us the assurance that if two solutions are placed in two different
classes, they will not be transformed to each other by any group action.In fact, this classification is the classification
of orbits for the adjoint representation, which is done in a simple method [10, 11]. In this method, a general element
of Lie algebra is considered and then we try to simplify it by applying the different adjoint transformations on it as
far as possible. The optimal system of subalgebras is obtained by selecting one representative from every equivalence
class. The adjoint representation is constructed by Lie series:

Ad(exp(ε.Vi).Vj) = Vj − ε.[Vi, Vj ] +
ε2

2
.[Vi, [Vi, Vj ]]− · · · , (4.1)

where [Vi, Vj ] is the commutator of g (mentioned in Table 1) and ε is a parameter (i, j = 1, ..., 6). Therefore, Table 2
is deduced, where its (i, j)-th entry imply Ad(exp(ε.Vi).Vj).
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Table 2: Adjoint representation of g.
Ad V1 V2 V3 V4 V5 V6
V1 V1 V2 V3 V4 V5 V6 + εV4
V2 V1 V2 V3 + 3εV2 V4 V5 V6 + 3εV5
V3 V1 e−3εV2 V3 e−εV4 e−3εV5 V6
V4 V1 V2 V3 + εV4 V4 V5 V6
V5 V1 V2 V3 + 3εV5 V4 V5 V6
V6 V1 − εV4 V2 − 3εV5 V3 V4 V5 V6

Theorem 4.2. An optimal system for one-dimensional subalgebras of the approximate Lie symmetry algebra of per-
turbed mKdV-KS equation is produced by:

1) aV1 + V4 ± V5, 5) aV1 + V2 ± V5,
2) ±V2 + V4, 6) aV1 + V2 + bV6,
3) V4 ± V5, 7) aV1 + V5,
4) V4, 8) aV1 + bV3 + cV6,

(4.2)

where a, b and c are arbitrary constants.

Proof. Suppose F εi : g → g be the adjoint transformation V 7→ Ad(exp(ε.Vi).V ). The matrices of F εi with respect to
the basis Vi, i = 1, ..., 6 are as following:

M ε1
1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 ε1 0 1

 , M ε4
4 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 ε4 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

M ε2
2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 3ε2 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 3ε2 1

 , M ε5
5 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 3ε5 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

M ε3
3 =


1 0 0 0 0 0
0 e−3ε3 0 0 0 0
0 0 1 0 0 0
0 0 0 e−ε3 0 0
0 0 0 0 e−3ε3 0
0 0 0 0 0 1

 , M ε6
6 =


1 0 0 −ε6 0 0
0 1 0 0 −3ε6 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Let V =
∑6
i=1 aiVi be the general form of an element of g. We should simplify the coefficients of V as much as

possible, by affecting the suitable F εi on it.

• Suppose first that a4 6= 0, a2 6= 0 and a5 6= 0, we can assume that a4 = 1 by scaling V if necessary. Also, we
can make the coefficients of V6, V3 and V2 vanish using F ε11 , F ε22 and F ε66 , by setting ε1 = −a6a4 , ε2 = − a3

3a2
and

ε6 = a2
3a5

respectively. Moreover, the coefficient of V5 can be ±1 using F ε33 , by setting ε3 = 1
3 ln|a5|. So, V is

reduced to the case (1).
• If a4 6= 0, a2 6= 0 and a5 = 0, then we can make the coefficients of V6, V3 and V1 vanish using F ε11 , F ε22 and
F ε66 , by setting ε1 = −a6a4 , ε2 = − a3

3a2
and ε6 = a1 respectively. Also, by setting ε3 = 1

3 ln|a2| in F ε33 , we can

make the coefficient of V2, ±1. So by scaling if necessary, V is reduced to the case (2).
• If a4 6= 0, a5 6= 0 and a2 = 0, then we can make the coefficients of V6, V3 and V1 vanish using F ε11 , F ε55 and
F ε66 , by setting ε1 = −a6a4 , ε5 = − a3

3a5
and ε6 = a1 respectively. Also, by setting ε3 = 1

3 ln|a5| in F ε33 , we can

make the coefficient of V5, ±1. So by scaling if necessary, V is reduced to the case (3).
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• If a4 6= 0 and a2 = a5 = 0 then we can make the coefficients of V6, V3 and V1 vanish by F ε11 , F ε44 and F ε66 , by
setting ε1 = −a6a4 , ε4 = −a3 and ε6 = a1 respectively. So by scaling if necessary, V is reduced to the case (4).

• If a2 6= 0, a5 6= 0 and a4 = 0, one can vanish the coefficients of V3 and V6 using F ε22 , by setting ε2 = − a3
3a2

and ε2 = − a6
3a5

respectively. Also by setting ε3 = 1
3 ln|a5| in F ε33 we can make the coefficient of V5, ±1. So by

scaling if necessary, V reduces to the case (5).
• If a2 6= 0 and a5 = a4 = 0, then we can make the coefficient of V3 vanish by setting ε2 = − a3

3a2
in F ε22 . So by

scaling if necessary, V is reduced to the case (6).
• If a5 6= 0 and a2 = a4 = 0, one can vanish the coefficients of V6 and V3 by setting ε2 = − a6

3a5
and ε5 = −a33 in

F ε22 and F ε55 respectively. So by scaling if necessary, V reduces to the case (7).
• If a2 = a4 = a5 = 0, then V is reduces to the case (8).

More cases do not exist for study, so the proof is complete. �

5. Approximate Invariant Solutions for the Perturbed mKdV-KS Equation

In this section, the approximately differential invariants and some approximate invariant solutions of (1.1) are
computed. At first, consider the operator X = aV1 + V4 + V5. The approximate invariants of X are differential
functions such as J = J0 + εJ1 that satisfy the equation X(J) = o(ε). So we have,

X(J) = (a∂x + ε∂x + ε∂t)(J0 + εJ1) = o(x).

Equivalently

a∂xJ0 = 0, ε∂xJ0 + ε∂tJ0 + aε∂xJ1 = 0.

We can obtain two functionally independent solutions, J0 = t and J0 = u from the first equation. Substituting J0 = t
in the second equation we obtain

1 + a∂xJ1 = 0 ⇒ ∂xJ1 = −1

a
⇒ J1 = −x

a
.

So the first invariant is t− ε
ax. In a similar way, by substituting J0 = u in the second equation we have 0+aε∂xJ1 = 0.

So the simplest solution is J1 = 0. Therefore, the second invariant is u+ε(0). Then {t− ε
ax, u} is a set of independent

invariants for X. Consider the new coordinates with the variable z = t − ε
ax and f(z) = u. Substituting the new

variables in the perturbed mKdV-KS equation and using the chain rule and considering the first order of precision,
the reduced equation is obtained as,

f ′ =
−6ε

az4
(f2f ′z2 + f ′).

After simplifying this equation, a trivial approximate invariant solution is obtained for (1.1) as follows,

f = ±
√
−az4 − 6ε

6εz2
.

In a similar manner, we construct approximate differential invariants and reduced equations with respect to the
operators in optimal system and list them in Table 3.
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Table 3: Approximate differential invariants and similarity reduction of (1.1).

Operator Approximate invariants Similarity reduction
aV1 + V4 − V5 {t+ εxa , u} f ′ = 6ε

az4 (f2f ′z2 + f ′).

V2 + V4 {x− εt, u} f ′ε = 6f2f ′ + f ′′′ + εf ′′ + εf ′′′′

−V2 + V4 {x+ εt, u} −f ′ε = 6f2f ′ + f ′′′ + εf ′′ + εf ′′′′

V4 + V5 {x− t, u} f ′ = 6f2f ′ + f ′′′ + εf ′′ + εf ′′′′

V4 − V5 {x+ t, u} −f ′ = 6f2f ′ + f ′′′ + εf ′′ + εf ′′′′

V4 {t, u} f ′ = 0

aV1 + V2 + V5 {x− at+ εx, u} f ′a = 6f2f ′(ε+ 1)+
f ′′′(3ε+ 1)− ε(f ′′ + f ′′′)

aV1 + V2 − V5 {x− at− εx, u} f ′a = 6f2f ′(−ε+ 1)+
f ′′′(−3ε+ 1) + ε(f ′′ + f ′′′′)

aV1 + V2 + bV6 {x− at+ ε( 2bx2

a − 3btx), f ′ = 2a4bεt(1− bεt)f ′′′
u− εbtu}

aV1 + V5 {t− εxa , u} f ′ = −6ε
az4 (f2f ′z2 + f ′)

aV1 + bV3 + cV6 { (a−bx)
3

t + ∗, tu3} b4x3f ′ = −36a2ln(−a+ bx)f ′f3+
ab2cεtf ′′′ + abεtx4ff2f ′′

In the Table 3, * is considered as

∗ =
−3c

bt
(a− bx)

2
(2(a− bx) ln (−a+ bx) + 3a).

6. Conclusions

In the present work, we studied the approximate symmetry group of the perturbed modified Korteweg-de Vries
Kuramoto-Sivashinsky (mKdV-KS) equation and analyzed its Lie algebra. Moreover, the optimal system of one-
dimensional Lie algebras of this equation were computed. Also, approximately differential invariants and approximate
invariant solutions of perturbed mKdV-KS equation were obtained.
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