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Abstract

In this paper, the 2D incompressible Navier-Stokes (INS) equations in terms of vorticity and stream function are
considered. These equations describe the physics of many phenomena of scientific and engineering. By combin-

ing monotone upwind methods and weighted essentially non-oscillatory (WENO) procedures, a new numerical

algorithm is proposed to approximate the solution of INS equations. To design this algorithm, after obtaining
an optimal polynomial, it is rewritten as a convex combination of second-order modified ENO polynomials. Fol-

lowing the methodology of the traditional WENO procedure, the new non-linear weights are calculated. The

performance of the new scheme on a number of numerical examples is illustrated.
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1. Introduction

The INS equations

ut + (u · ∇)u +∇p = ε∆u, (1.1)

where p, u = (ũ, ṽ)T and ε are the pressure, the divergence-free velocity field satisfying ũx + ṽy = 0 and the kinematic
viscosity are considered. This set of equations describes the physics of many phenomena in the engineering sciences,
such as ocean currents, water flow in a pipe and air flow around a wing. It’s well-known that the INS Eq. (1.1) admits
an equivalent vorticity formulation, which can be written in the transport form:

ωt + ũωx + ṽωy = ε∆ω. (1.2)

Here, ω is the vorticity, ω := ṽx − ũy, and therefore, Eq. (1.2) can be considered as a 2D viscous Hamilton-Jacobi
(HJ) equation

ωt +H(∇ω) = ε∆ω, (1.3)

with a global Hamiltonian H(∇ω) = ũωx + ṽωy.
In recent decades, successful activities to design, analyse and implement modern numerical schemes to approximate

the solutions of HJ equations (1.3) have been performed by researchers, which can be referred to as [1, 5, 30, 32, 33]
and [4]. Therefore, we are motivated to use existing ideas and apply them to numerically solve INS equations. Primary
examples for these modern high-resolution schemes are upwind Godunov-type schemes. Osher et al. proposed high-
order upwind schemes [21, 22] based on essentially non-oscillatory (ENO) reconstruction [11, 28, 29]. An adaptive-
stencil selection approach is considered in the ENO reconstructions in order to eliminate or reduce spurious oscillation in
non-smooth regions and to obtain maximum accuracy in smooth regions. Shu et al. modified the ENO reconstructions
in [28, 29], which are more efficient for multi-dimensional cases. The first version of weighted ENO (WENO) schemes
in framework of finite volume for 1D problems were constructed by Liu et al. [18]. The first version of WENO schemes
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in the context of finite difference, which is more efficient for multi-dimensional problems, was introduced by Jiang and
Shu [15]. In 2000, authors of [14] proposed a fifth-order finite difference WENO scheme for solving HJ equations based
on [15]. Weighted power ENO (WPENO) schemes with upwind fluxes for solving HJ equations were proposed by Serna
and Qian [27] based on power ENO (PENO) schemes [26] for solving hyperbolic conservation laws. Combining ideas
from PENO [26] and mapped WENO (MWENO) [13] reconstructions, Bryson and Levy proposed another algorithm
for numerically solving HJ equations [9].

In this research work, we search to design a hybrid scheme for solving Eq. (1.3). This scheme uses a combination of
a uniformly non-oscillatory (UNO) limiter and WENO reconstruction with the introduction of new non-linear weights.
It should be noted that the combination of a UNO limiter and a third-order WENO reconstruction was first performed
by Peer et al. [23] to solve the hyperbolic conservation laws. The numerical results in [23] illustrate that the use of
limiters enhances the ENO reconstructions but in this idea, the existence of negative linear weights is avoidable, which
should be solved. Abedian et al. [2] then proposed a new reconstruction to solve the hyperbolic conservation laws by
combining a UNO limiter and a fifth-order WENO reconstruction with another idea to solve the problem of negative
linear weights.

To design the new scheme, first, an optimum polynomial based on a three-point stencil is constructed. Next, the
second-order ENO reconstruction by choosing an additional point inside the stencil is modified. Then, the optimum
polynomial is rewritten as a convex combination of three polynomials with ideal weights. After that, following the
methodology of the traditional WENO reconstruction, the new non-linear weights based on the linear weights are
calculated.

The outline of this research is as follows. In section 2, the construction and implementation of the new scheme is
described by detailing the INS equations. In section 3, several numerical experiments to demonstrate the accuracy
and the resolution capability of the new scheme are prepared. Concluding remarks are given in section 4.

2. The numerical scheme for INS equations

In this section, first, the framework of the scheme will be given and then the detailed steps of the WHybUNO
(weighted hybrid UNO) reconstruction will be presented.

2.1. 1D inviscid Hamilton-Jacobi equations. To begin, assume that the kinematic viscosity ε in Eq. (1.3) is
equal to zero, so we have a inviscid Hamilton-Jacobi equations that in 1D case can be written as

ωt +H(ωx) = 0, x ∈ Ω = [a, b]. (2.1)

A uniform mesh, defined as a = x0 < x1 < · · · < xN−1 < xN = b, is considered. Also, ωj = ω(xj , t) and uj = ωx(xj , t)
are denoted as the numerical approximation to the viscosity solution and its first derivative. Then the following
ordinary differential equation (ODE) is obtained as:

dωj
dt

= −H(ωx)|x=xj
. (2.2)

Here, H(ωx)|x=xj is replaced by a monotone numerical flux which is denoted by Ĥ(u−j , u
+
j ) and the simple Lax-

Friedrichs flux is used in this work. In the next subsection, the WHybUNO scheme will be described in detail which
this scheme will be employed to approximate the left and right limits of the point values of u(xj , t) i.e. u±j . It should

be noted that after the spatial discretization, the scheme can be rewritten as dU
dt = F (U). Here, F denotes the

operator of the spatial discretization. In this paper, the third-order total variation diminishing (TVD) Runge-Kutta
time discretization [28] to solve the semi-discrete form Eq. (2.2) is employed.

2.2. WHybUNO reconstruction in one dimension. In this subsection, the WHybUNO reconstruction procedure
for u±j = ω±x,j will be described.

Step 1. Given the big stencil S = {Ij−1, Ij , Ij+1} and S0 = {Ij , Ij+1} and S1 = {Ij−1, Ij} where Ij := [xj−∆x, xj ],
the polynomials p0(x), p1(x) and p2(x) are constructed as follows.
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Let U(x) be the primitive function of u(x), U(x) =
∫ x
−∞ u(ξ)dξ, clearly

U(xj) =

∫ xj

−∞
u(ξ)dξ =

j∑

i=−∞

∫ xi

xi−1

u(ξ)dξ =

j∑

i=−∞
∆ωj , (2.3)

where ∆ωj := ωj−ωj−1. Now, we employ Newton’s interpolation formula to interpolate U(x) at points {xj−2, . . . , xj+1}.
If we show this interpolation polynomial with P2(x), then we have that

p̃2(x) = P ′2(x) =

3∑

i=1

U [xj−2, · · · , xj+i−2]

i−1∑

m=0

i−1∏

l=0,l 6=m
(x− xj+l−2), (2.4)

where U [· · · ] is a divided difference of the function U(x). In order to obtain a more efficient reconstruction, p̃2(x) is
modified by interpolation over an additional point lying within the same stencil

p2(x) = p̃2(x) + U [xj−2, · · · , xj+1, xj− 1
2
]

3∑

m=0

3∏

l=0,l 6=m
(x− xj+l−2). (2.5)

Having obtained p2(x) as above, pr(x) from cell boundaries of the stencil Sr is obtained as

pr(x) = p̃r(x) + U [xj−r−1, · · · , xj−r+1, xj− 1
2
]

2∑

m=0

2∏

l=0,l 6=m
(x− xj−r+l−1), (2.6)

for r = 0, 1.

Remark 2.1. Firstly, we consider a general point as xj+ar+b, and proceed with a Taylor series expansion to recognize
the point which is giving the highest accuracy. Accordingly, we have a = 0 and b = 1

2 .

Remark 2.2. As can be seen, the polynomial p2(x) in Eq. (2.5), is of degree three, and thus the reconstruction (2.5)
reproduce exactly polynomials of degree three on the stencil.

Remark 2.3. Polynomial (2.5) interpolates more points for later approximating the cell boundaries, and if the
reconstruction is smooth (no discontinuities), we then obtain more accurate results. Hopefully, it also satisfies the
conservation property.

Remark 2.4. The purpose of all polynomials of type (2.4) and (2.5) is to approximate the boundaries of cell Ij . By
retaining more information within cell Ij , we intend to use data closer to the cell centre, rather than those further
away.

In order to be able to obtain the polynomials p0(x), p1(x) and p2(x) explicitly, a polynomial that retains information
within the cell Ij is required. Similar to the NT scheme [20] proposed to improve the first-order Lax-Friedrichs scheme,
the same polynomial is employed here,

Lj(x) =
1

∆x

(
∆ωj + (x− xj− 1

2
)u′j
)
, x ∈ Ij . (2.7)

The divided differences U [xj−r+1, xj− 1
2
] for r = 0, 1 are given by

U [xj−r+1, xj− 1
2
] =

1

xj− 1
2
− xj−r+1

∫ x
j− 1

2

xj−r+1

(∑

j

Lj(x)χj(x)

)
dx

=
1

12

(
(1 + 2r)(4

∆ωj
∆x

+ u′j) + 8(1− r)∆ωj+1

∆x

)
,

(2.8)

where χj(x) is the characteristic function of the cell Ij . The numerical derivative u′j , is approximated by the UNO
limiter [12]:

u′j =
1

∆x
MM

(
aj +

1

2
MM(bj−1, bj), aj+1 −

1

2
MM(bj , bj+1)

)
, (2.9)
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where aj := ∆ωj −∆ωj−1, bj := ∆ωj+1 − 2∆ωj + ∆ωj−1 and the definition of the MM function is:

MM(x1, . . . , xm)

=

{
k min

1≤p≤m
{|xp|} if k = sign(x1) = · · · = sign(xm),

0 otherwise.

(2.10)

Step 2. The smoothness indicators for each stencil are computed. They measure the smoothness of the functions
in each stencil: the smaller the indicator is, the smoother the function is in the stencil. The smoothness indicator of
each function, demonstrated by βi, is explicitly calculated by the following formula:

βi =

2∑

k=1

∆x2k−1
∫

Ij

(
dk

dxk
pi(x)

)2

dx, i ∈ {0, 1, 2}. (2.11)

A direct computation based on (2.5), and (2.6) yields:

β0 =
13

3
(
aj+1

∆x
− u′j)2 + (u′j)

2, β1 =
13

3
(
aj
∆x
− u′j)2 + (u′j)

2,

β2 =
9

2916
(
∆ωj−1

∆x
− ∆ωj+1

∆x
− 16u′j)

2 +
13

12
(
bj
∆x

)2 +
449856

58320
(
∆ωj−1

∆x
− ∆ωj+1

∆x
+ 2u′j)

2.

(2.12)

Step 3. The non-linear weights wj are computed by

wj =
w̄j∑
k w̄k

, w̄k = γk

(
1 +

τ

ε+ βk

)
, j, k = 0, 1, 2, (2.13)

where γk are the linear weights and ε = 10−40 is considered to avoid the denominator to be zero. Here, τ is a global
smoothness indicator which in this paper, we propose a new global smooth indicator as:

τ =

∣∣∣∣
β0 + β1

2
− β2

∣∣∣∣. (2.14)

Step 4. The final WHybENO reconstruction is given by

R(x) = w2

( 1

γ2
p2(x)− γ0

γ2
p0(x)− γ1

γ2
p1(x)

)
+ w1p1(x) + w0p0(x). (2.15)

The right side of Eq. (2.15) is different from the traditional WHybENO [2, 3, 23] schemes. Reconstruction (2.15)
clearly allows the linear weights to be arbitrary provided γ0 + γ1 + γ2 = 1. Accordingly,

u−j = R(xj), u+j−1 = R(xj−1).

Remark. For the two-dimensional problems, all of these reconstruction steps are performed in a dimension-by-
dimension fashion.

2.3. 2D viscous Hamilton-Jacobi equations. Consider Eq. (1.3). Let (xj , yk) be a discretization of Ω ⊆ R2 with
uniform spacing ∆x and ∆y. Also, denoting ω(xj , yk), ωx(xj , yk) and ωy(xj , yk) by ωj,k, uj,k and vj,k, respectively.
Then the following ODE is obtained as:

dωj,k
dt

= −Ĥ(u−j,k, u
+
j,k, v

−
j,k, v

+
j,k) + ε

(
∆ω
)
|x=xj ,y=yk , (2.16)

where, Ĥ(u−j,k, u
+
j,k, v

−
j,k, v

+
j,k) is the simple Lax-Friedrichs flux. To approximate

(
∆ω
)
|x=xj ,y=yk by ∆ωj,k, the fourth-

order central differencing is employed as:

∆ωj,k =
−wj+2,k + 16wj+1,k − 30wj,k + 16wj−1,k − wj−2,k

12∆x2
+
−wj,k+2 + 16wj,k+1 − 30wj,k + 16wj,k−1 − wj,k−2

12∆y2
.

(2.17)

Since the Hamiltonian (H(wx, wy) = ũwx + ṽwy) is global, the implementation of WHybUNO requires the velocities
{ũj,k, ṽj,k} to be recovered from the known values of the vorticity {wj,k} at each time level. This issue can be solved
with the help of the stream function ψ, such that ũ = ψy, ṽ = −ψx and ∆ψ = −w. As can be seen, we are faced with
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Table 1. Errors and orders of convergence for Example 3.1 at T=2

Nx ×Ny L1 error L1 order L∞ error L∞ order
WENO3-JP scheme

20× 20 1.47(-1) - 2.15(-1) -
40× 40 5.33(-2) 1.46 9.47(-2) 1.18
80× 80 1.47(-2) 1.86 3.73(-2) 1.34

160× 160 1.84(-3) 2.99 8.30(-3) 2.17
320× 320 2.06(-4) 3.16 1.44(-3) 2.53

WHybUNO(1) scheme

20× 20 2.54(-2) - 8.72(-2) -
40× 40 3.96(-3) 2.69 1.25(-2) 2.80
80× 80 5.38(-4) 2.88 1.48(-3) 3.08

160× 160 5.87(-5) 3.19 1.80(-4) 3.04
320× 320 9.64(-6) 2.61 2.58(-5) 2.80

WHybUNO(2) scheme

20× 20 3.08(-2) - 8.72(-2) -
40× 40 4.07(-3) 2.92 1.15(-2) 2.92
80× 80 5.38(-4) 2.93 1.48(-3) 2.96

160× 160 6.73(-5) 3.00 1.80(-4) 3.03
320× 320 8.41(-6) 3.00 2.31(-5) 2.96

WHybUNO(3) scheme

20× 20 2.55(-2) - 8.96(-2) -
40× 40 3.36(-3) 2.92 1.12(-3) 3.00
80× 80 4.82(-4) 2.80 1.61(-3) 2.80

160× 160 5.55(-5) 3.12 1.85(-4) 3.12
320× 320 7.96(-6) 2.80 2.13(-5) 3.12

a Poisson equation at each time level that can be solved using the FFT based pseudo-spectral technique. Thus, the
velocities via the fourth-order finite differences of the stream function are computed as:

ũj,k =
−ψj,k+2 + 8ψj,k+1 − 8ψj,k−1 + ψj,k−2

12∆y
,

ṽj,k =
ψj+2,k − 8ψj+1,k + 8ψj−1,k − ψj−2,k

12∆x
.

(2.18)

3. Computational results

In this section, the numerical performance of WHybUNO scheme is compared with the classical third-order WENO
[14], named as WENO3-JP. To test the claim that linear weights in WHybUNO scheme can be arbitrarily selected,
the following types of linear weights are first considered: (1)γ0 = γ1 = 0.01, γ2 = 0.98; (2)γ0 = γ1 = γ2 = 1

3 ;
(3)γ0 = γ1 = 0.495, γ2 = 0.01.

Example 3.1. In this example, the accuracy of the WHybUNO scheme for Eq. (1.3) with ε = 0.01 and periodic
boundary conditions in [0, 2π] × [0, 2π] is tested [31]. The initial condition is ω(x, y, 0) = −2 sin(x) sin(y). The exact
solution is ω(x, y, t) = −2 sin(x) sin(y) exp(−2εt). The errors and numerical orders of accuracy at T = 2 are reported
in Table 1. The WHybUNO scheme achieves its designed order of accuracy and generates less absolute errors. Table 1
also presents the results of the WHybUNO scheme with different types of linear weights. As can be seen, WHybUNO
scheme with different types of linear weights has also been able to achieve third-order accuracy.
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Table 2. Errors and orders of convergence for Example 3.2 at T=4

Nx ×Ny L1 error L1 order L∞ error L∞ order
WENO3-JP scheme

20× 20 3.17(-1) - 3.24(-1) -
40× 40 1.08(-1) 1.56 1.55(-1) 1.06
80× 80 3.49(-2) 1.62 6.34(-2) 1.29

160× 160 9.21(-3) 1.92 2.31(-2) 1.46
320× 320 1.80(-3) 2.35 8.59(-3) 1.43

WHybUNO(1) scheme

20× 20 1.48(-1) - 1.91(-1) -
40× 40 2.20(-2) 2.75 3.41(-2) 2.49
80× 80 3.27(-3) 2.75 4.62(-3) 2.88

160× 160 3.95(-4) 3.05 5.84(-4) 2.98
320× 320 4.56(-5) 3.12 7.05(-5) 3.05

WHybUNO(2) scheme

20× 20 1.35(-1) - 2.00(-1) -
40× 40 2.06(-2) 2.72 3.57(-2) 2.49
80× 80 2.92(-3) 2.82 4.89(-3) 2.87

160× 160 3.69(-4) 2.98 6.12(-4) 3.00
320× 320 4.25(-5) 3.12 7.56(-5) 3.02

WHybUNO(3) scheme

20× 20 1.52(-1) - 1.89(-1) -
40× 40 2.31(-2) 2.72 3.26(-2) 2.54
80× 80 3.59(-3) 2.69 4.31(-3) 2.92

160× 160 4.23(-4) 3.08 5.45(-4) 2.98
320× 320 5.00(-5) 3.08 6.74(-5) 3.01

Example 3.2. Now, the Burgers vortex problem is considered. It is a steady viscous vortex maintained by a secondary
flow. The corresponding equation is

ωt + (−α0x+ u)ωx + (−α1y + v)ωy = (α0 + α1)ω + ε∆ω. (3.1)

When α0 = α1 > 0, ω(x, y) = A exp(−α0(x
2+y2)
2ε ) is an exact steady solution [24]. For parameters in this problem,

the constants A = 10, α0 = 0.012 and ε = 0.0025 are chosen. The errors and numerical orders of accuracy at T = 4
for the computing domain [−3.5, 3.5] × [−3.5, 3.5] are reported in Table 2. Table 2 also demonstrates the errors and
convergence orders of WHybUNO scheme with different types of linear weights. The WHybUNO scheme achieves its
designed order of accuracy and generates less absolute errors.

Example 3.3. In this example, the Lamb-Oseen vortex problem is considered [25]. This problem models a line
vortex that decays due to viscosity and it is named after Horace Lamb and Carl Wilhelm Oseen. Eq. (1.3) in
the computing domain [−2π, 2π] × [−2π, 2π] with ε = 0.00037 is solved. The initial condition in this problem is

ω(x, y, 0) = 2π exp(−(x2 + y2)) and the exact solution is ω(x, y, t) = 2π
1+4εt exp

(
−x2+y2

1+4εt

)
. In Table 3, the errors

and numerical orders of accuracy at T = 4 are listed. This table also reports the errors and numerical convergence
orders of WHybUNO scheme with different types of linear weights. As can be seen, the WHybUNO method attains
its designed order of accuracy and generates less absolute errors.
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Table 3. Errors and orders of convergence for Example 3.3 at T=4

Nx ×Ny L1 error L1 order L∞ error L∞ order
WENO3-JP scheme

20× 20 6.11(-1) - 5.31(-1) -
40× 40 2.18(-1) 1.49 2.13(-1) 1.32
80× 80 6.62(-2) 1.72 8.56(-2) 1.32

160× 160 1.62(-2) 2.03 2.53(-2) 1.76
320× 320 2.33(-3) 2.80 6.69(-3) 1.92

WHybUNO(1) scheme

20× 20 8.56(-2) - 6.32(-2) -
40× 40 1.06(-2) 3.00 8.25(-3) 2.94
80× 80 1.39(-3) 2.94 9.37(-4) 3.13

160× 160 1.74(-4) 3.01 1.19(-4) 2.97
320× 320 2.11(-5) 3.03 1.60(-5) 2.90

WHybUNO(2) scheme

20× 20 8.56(-2) - 6.32(-2) -
40× 40 1.17(-2) 2.87 8.85(-3) 2.84
80× 80 1.46(-3) 3.00 1.08(-3) 3.04

160× 160 1.78(-4) 3.04 1.41(-4) 2.94
320× 320 2.16(-5) 3.04 1.67(-5) 3.07

WHybUNO(3) scheme

20× 20 9.63(-2) - 7.45(-2) -
40× 40 1.23(-2) 2.97 9.95(-3) 2.90
80× 80 1.53(-3) 3.00 1.27(-3) 2.97

160× 160 1.91(-4) 3.00 1.51(-4) 3.07
320× 320 2.38(-5) 3.00 1.75(-5) 3.11

Example 3.4. In this example, the vortex patch problem is considered [31]. Thus, the INS equation (1.3) with
ε = 0.01 in the computing domain [0, 2π]× [0, 2π] is solved. the initial condition is

ω(x, y, 0) =





−1, (x, y) ∈ [π2 ,
3π
2 ]× [π4 ,

3π
4 ],

1, (x, y) ∈ [π2 ,
3π
2 ]× [ 5π4 ,

7π
4 ],

0, otherwise,

(3.2)

while the periodic boundary conditions are assigned. The data at T = 1 and T = 5 is recorded with Nx×Ny = 64×64
sub-equal intervals and the numerical solution of WHybUNO(1) is presented in Figure 1. The results compare well
with those reported in [31].

Example 3.5. In this example, a study of the axisymmetrization of an isolated vortex will be conducted. This
problem was first proposed by Melander, McWilliams and Zabusky in 1987 [19] and in this paper it is named as MMZ
vortex. Therefore, Eq. (1.3) with the following initial condition:

ω(x, y, 0) =

{
20− 20 exp

(
−κr exp( 1

r−1 )
)
, r < 1,

0, r ≥ 0,
(3.3)

where r =
√

x2

2 + 2y2 and κ = 1
2e

2 ln(2) is solved. Eq. (3.3) is an elliptical vortex with a smooth transition between

irrotational and rotational fluid. The computing domain for simulations is [−π, π]× [−π, π] and we test this problem
with two different viscosity, ε = 10−7 and ε = 3.125 × 10−8. The obtained results by WHybUNO(1) scheme with
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Figure 1. The vortex patch problem in the computing domain [0, 2π] × [0, 2π], left: T = 1 and right: T = 5.

0

0

0

0

0

0

Figure 2. The MMZ vortex problem in the computing domain [−π, π] × [−π, π] with ν = 10−7, left:
T = 0.25; middle: T = 0.9 and right: T = 1.65. (Only the box [−2.2, 2.2] × [−2.2, 2.2] in which the vortex is
non-zero is displayed.)

Nx × Ny = 128 × 128 sub-equal intervals at different final times for ε = 10−7 are demonstrated in Figure 2. The
results agree well with the results given in [6, 19]. Now, the WHybUNO(1) scheme is employed to obtain solution of
the MMZ vortex problem at different times with Nx ×Ny = 128× 128 sub-equal intervals and ε = 3.125× 10−8. The
results are demonstrated in Figure 3. Again, the results agree well with the results given in [16].

Example 3.6. As the last example, consider the double shear-layer model problem. This problem was first proposed
by Bell, Colella and Glaz in 1989 [7] and see [8, 17] for more details on this problem. Accordingly, Eq. (1.3) with
initial condition

ũ(x, y, 0) =





tanh( 1
ρ (y − π

2 )), y ≤ π,

tanh( 1
ρ ( 3π

2 − y)), y > π,
ṽ(x, y, 0) = δ. sinx, (3.4)

where ρ = π
15 and δ = 0.05 in the computing domain [0, 2π] × [0, 2π] is solved. The final time of this problem is

T = 10. The WHybUNO(1) scheme is used to obtain the vorticity of the double shear-layer model problem with
Nx ×Ny = 256× 256 sub-equal intervals. Figure 4 demonstrates the vorticity for ε = 0 and ε = 5× 10−4 and as can
be seen WHybUNO scheme generates a super resolution without any spurious oscillations typically appearing near
the stagnation point. Also, the results compare well with those reported in [10].
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Figure 3. The MMZ vortex problem in the computing domain [−π, π] × [−π, π] with ν = 3.125 × 10−8,
top(left): T = 1; top(right): T = 4; bottom(left): T = 8 and bottom(right): T = 10. (Only the box
[−2.2, 2.2] × [−2.2, 2.2] in which the vortex is non-zero is displayed.)
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Figure 4. The double shear-layer model problem in the computing domain [0, 2π]× [0, 2π] at the final time
T = 10. Left: ε = 5 × 10−4 and right: ε = 0.

4. Concluding remarks

In this work, a new weighted hybrid ENO (WHybUNO scheme) reconstruction for solving 2D incompressible
Navier-Stokes equations is designed. This new reconstruction results from a non-linear convex combination of three
polynomials. It is explored that this reconstruction generates a third-order scheme in smooth regions and maintains
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non-oscillatory properties for problems with strong shocks. As the next research work, this scheme will be developed
to track the Oseen vortex as a maximum entropy state of a 2D flow. The WHybUNO schemes may also be employed
in tracking the phenomena of thermocapillary drop migration, where velocity far away from the drop is almost zero.
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