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Abstract

In this work, solving non-linear two-dimensional Hammerstein integral equations is considered by an iterative
method of successive approximation. This method is an efficient approach based on a combination of the quad-

rature formula and the successive approximations method. Also, the convergence analysis and the numerical

stability of the suggested method are studied. Finally, to survey the accuracy of the present method, some
numerical experiments are given.
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1. Introduction

Non-linear two-dimensional Fredholm integral equations of the second kind appear in the mathematical modeling
of various physical phenomena (such as electro-magnetic fluid dynamics), engineering problems and applied sciences
[8, 18, 21, 31, 32, 34–36]. The numerical methods elaborated for two-dimensional non-linear integral equations involve
various techniques: the Galerkin and collocations methods [13, 17], successive approximations and other iterative
techniques [7, 12, 24, 25, 30, 38, 39], the Nyström type methods [16], the piecewise approximation by Chebyshev
polynomials [15], the operational matrix operational matrix [11, 26, 33], wavelet method [9], the rationalized Haar
functions [10], triangular and block-pulse functions [29], multi-step methods[37], Runge-Kutta method [27], neural
network method [20], expansion method [28] and the regularization-homotopy method [3].

For our purpose here, we consider non-linear two-dimensional Hammerstein Fredholm integral equation of the
second kind (2D-NHFIE) as follows

X(s, t) = r(s, t) + λ

∫ d

c

∫ b

a

K(s, t, x, y)ψ(x, y,X(x, y))dxdy, (s, t) ∈ I, (1.1)

and focus on a numerical iterative algorithm for solving it, where a, b, c, d ∈ R, r : I = [a, b]× [c, d]→ R,K : I× I → R
and r,K are continuous. Having a strong physical background, the Hammerstein equations arise from electro-magnetic
fluid dynamics. In particular, Eq. (1.1) arises from various reformulations of an elliptic partial differential equation
with non-linear boundary conditions [4, 6]. Also, one-dimensional analogues of Eq. (1.1) are a reformulation of
two-point boundary value problems with a certain non-linear boundary condition, [5, 14]. It should be noted that
as a special case of the Hammerstein integral equations, the Fredholm integral equations of the second kind can be
considered.

Here, by the combination of the fixed point technique and Simpson’s rule, a numerical method is presented for
solving Eq. (1.1). Our method is an iterative procedure using the successive approximations method.
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Some results about the existence and uniqueness of the solution of non-linear 2D integral equations can be studied
in [1, 2, 19, 22, 23]. In this paper, the Banach fixed point theorem is used to prove the existence and uniqueness of
the solution of Eq. (1.1).

We arranged the remainder of the paper as follows: In section 2, some required definitions and theorems are
provided. In section 3, an iterative procedure based on quadrature formula is presented. Also, the numerical stability
and the convergence are investigated. Numerical results are presented in section 4. Moreover, a comparison is made
between the method [24] and our method, to show the efficiency of our method. Some conclusions are drawn in section
5.

2. Preliminaries

In current section, some basic definitions and required theorems that will be needed are expressed.

Definition 2.1. For L ≥ 0, the function f : I → R is L-Lipschitz if

|f(x, y)− f(x′, y′)| ≤ L(|x− x′|+ |y − y′|), ∀x, x′ ∈ [a, b] and y, y′ ∈ [c, d].

Theorem 2.2. ([24]) Let f : [a, b] × [c, d] → R, be a L-Lipschitz function. Then, for any divisions a = x0 < x1 <
... < xn = b , c = y0 < y1 < ... < yn = d and any points ξi ∈ [xi−1, xi] , ηj ∈ [yj−1, yj ], we have∣∣∣∣∣∣

∫ d

c

∫ b

a

f(s, t)dsdt−
n∑

j=1

n∑
i=1

(xi − xi−1)(yj − yj−1)f(ξi, ηj)

∣∣∣∣∣∣ ≤ L

2

n∑
j=1

n∑
i=1

(yj − yj−1)(xi − xi−1)2

+
L

2

n∑
j=1

n∑
i=1

(xi − xi−1)(yj − yj−1)2.

Corollary 2.3. Let f be the function defined in Theorem 2.2. Then, we have

∣∣∣∣ ∫ d

c

∫ b

a

f(s, t)dsdt − ((γ − θ)(α− a)f(u, p) + (θ − c)(α− a)f(u, r)

− (d− γ)(α− a)f(u, s) + (γ − θ)(β − α)f(v, p)− (β − α)(θ − c)f(v, r)

+ (β − α)(d− γ)f(v, s)− (b− β)((γ − θ)f(w, p)

+ (θ − c)f(w, r)− f(w, s)(d− γ)))

∣∣∣∣
≤ L(d− c)

2
((β − v)

2
+ (b− β)

2
+ (v − α)

2
+ (α− a)

2
)

+
L(b− a)

2
((θ − c)2 + (p− θ)2 + (γ − p)2 + (d− γ)

2
)

for any α, β, γ, θ, r, s, p, u, v, w where a ≤ u < α < v < β < w ≤ b and c ≤ r < θ < p < γ < s ≤ d.

Proof. In theorem 2.2, take n = 4 and

x0 = a, x1 = α, x2 = v, x3 = β, x4 = b, ξ1 = u, ξ2 = ξ3 = v, ξ4 = w,

y0 = a2, y1 = θ, y2 = p, y3 = γ, y4 = d, η1 = r, η2 = η3 = p, η4 = s.

�
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Corollary 2.4. For the same function f , we have

∣∣∣∣ ∫ d

c

∫ b

a

f(s, t)dsdt − 1

36
(b− a)(d− c)

(
f(a, c) + f(a, d) + f(b, d) + f(b, c)

+ 4(f(
a+ b

2
, c) + f(

a+ b

2
, d) + f(a,

c+ d

2
) + f(b,

c+ d

2
))

+ 16f(
a+ b

2
,
c+ d

2
)

)∣∣∣∣
≤ 5

36
L(b− a)(d− c)(b− a+ d− c)

for all x ∈ [a, b],u ∈ [a, x], v ∈ [x, b], y ∈ [c, d],α ∈ [c, y] and β ∈ [y, d].

Proof. In Corollary 2.3, take

α =
5a+ b

6
, v =

a+ b

2
, β =

a+ 5b

6
, u = a,w = b,

θ =
5c+ d

6
, p =

c+ d

2
, γ =

c+ 5d

6
, r = c, s = d.

�

In fact, the recent corollary is the classical Simpson’s rule with a new error bound. Also, The Corollary 2.4, is
extended for uniform partitions in the following Corollary.

Corollary 2.5. Let Dx : a = s0 < s1 < s2 < ... < s2n−1 < s2n = b,Dy : c = t0 < t1 < t2 < ... < t2n−1 < t2n = d, with

si = a+ ihx, tj = c+ jhy, where hx = b−a
2n , hy = d−c

2n , i, j = 0, 1, 2, ..., 2n , then

∣∣ ∫ d

c

∫ b

a

f(s, t)dsdt− S(f)
∣∣ ≤ 5L

18
(b− a)(d− c)(hx + hy)

where

S(f) =

n∑
j=1

n∑
i=1

1

36
(s2i−2 − s2i)(t2j−2 − t2j)

×
[(
f(s2i−2, t2j−2) + f(s2i−2, t2j) + f(s2i, t2j) + f(s2i, t2j−2)

)
+ 4

(
f(s2i−1, t2j−2) + f(s2i−1, t2j) + f(s2i−2, t2j−1) + f(s2i, t2j−1)

)
+ 16f(s2i−1, t2j−1)

]
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Proof. By previous corollary, we have∣∣∣∣ ∫ t2j

t2j−2

∫ s2i

s2i−2

f(s, t)dsdt − 1

36
(s2i − s2i−2)(t2j − t2j−2)

×
[(
f(s2i−2, t2j−2) + f(s2i−2, t2j) + f(s2i, t2j) + f(s2i, t2j−2)

)
+ 4

(
f(s2i−1, t2j−2) + f(s2i−1, t2j) + f(s2i−2, t2j−1) + f(s2i, t2j−1)

)
+ 16f(s2i−1, t2j−1)

]∣∣∣∣
≤ 5L

36
(s2i − s2i−2)(t2j − t2j−2)

(
(s2i − s2i−2) + (t2j − t2j−2)

)
Where L is the Lipschitz constant of f . So, we have

∣∣ ∫ d

c

∫ b

a

f(s, t)dsdt− S(f)
∣∣ =

∣∣ n∑
j=1

n∑
i=1

∫ t2j

t2j−2

∫ s2i

s2i−2

f(s, t)dsdt− S(f)
∣∣

≤
n∑

j=1

n∑
i=1

∣∣∣∣ ∫ t2j

t2j−2

∫ s2i

s2i−2

f(s, t)dsdt− 1

36
(s2i − s2i−2)(t2j − t2j−2)

×
[(
f(s2i−2, t2j−2) + f(s2i−2, t2j) + f(s2i, t2j) + f(s2i, t2j−2)

)
+ 4

(
f(s2i−1, t2j−2) + f(s2i−1, t2j) + f(s2i−2, t2j−1) + f(s2i, t2j−1)

)
+ 16f(s2i−1, t2j−1)

]∣∣∣∣
≤

n∑
j=1

n∑
i=1

5L

36
(s2i − s2i−2)(t2j − t2j−2)

(
(s2i − s2i−2) + (t2j − t2j−2)

)
≤

n∑
j=1

n∑
i=1

5L

36
(
b− a
n

)(
d− c
n

)(
b− a
n

+
d− c
n

)

≤ 5L

18
(b− a)(d− c)(hx + hy).

�

3. Main results

3.1. The existence problem.

Theorem 3.1. ([24]) Under the conditions

(i) r ∈ C(I,R),K ∈ C(I × I,R), ψ ∈ C(I × R,R) where C(I,R) = {f : I → R; f is continuous},
(ii) there exist α, β > 0, such that
| ψ(x, y, u)− ψ(x′, y′, u′) |≤ α(| x− x′ | + | y − y′ |) + β | u− u′ |, ∀(x, y) ∈ I, ∀u, u′ ∈ R.

(iii) Θ = βλMk(b − a)(d − c) < 1, where Mk > 0 is such that | K(s, t, x, y) |≤ Mk, ∀s, x ∈ [a, b] ,t, y ∈ [c, d],
according continuity of K,
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the Eq. (1.1) has a unique solution X∗ ∈ X, and the following sequence of successive approximations

X0(s, t) = r(s, t),

Xm(s, t) = r(s, t) + λ

∫ d

c

∫ b

a

K(s, t, x, y)ψ(x, y,Xm−1(x, y))dxdy, m ≥ 1, (3.1)

converges to the solution X∗. Also, the following error estimates hold.∥∥X∗ −Xm‖ ≤
Θm

1−Θ
‖X0 −X1‖, (3.2)

∥∥X∗ −Xm‖ ≤
Θ

1−Θ
‖Xm−1 −Xm‖, (3.3)

and choosing X0 ∈ X, X0 = r, the inequality (3.2) becomes∥∥X∗ −Xm‖ ≤
Θm+1

β(1−Θ)
M0, (3.4)

where M0 is given in (3.9).

Now, for implementation of the method, we consider Eq. (1.1) where K(s, t, x, y) is a continuous kernel defined on
[a, b]× [c, d]× [a, b]× [c, d]. Also, let

Dx : a = s0 < s1 < s2 < ... < s2n−1 < s2n = b,

Dy : c = t0 < t1 < t2 < ... < t2n−1 < t2n = d, (3.5)

are uniform partitions with si = a + ihx, tj = c + jhy, where hx = b−a
2n , hy = d−c

2n , i, j = 0, 1, 2, ..., 2n or i, j = 0, 2n.
Then, the approximate solution of Eq. (1.1) in (s, t) is obtained by the following iterative procedure.

X0(s, t) = r(s, t) (3.6)

Xm(s, t) = r(s, t) +
λhxhy

9

n∑
i=1

n∑
j=1

2∑
l2=0

2∑
l1=0

(Cl2
2 )2(Cl1

2 )2 (3.7)

×K(s, t, s2i−2+l1 , t2j−2+l2)ψ(s2i−2+l1 , t2j−2+l2 , Xm−1(s2i−2+l1 , t2j−2+l2)). (3.8)

where

Cl
2 =

(
2
l

)
=

2!

l!(2− l)!
, l = 0, 1, 2

Proposition 3.2. Under the assumptions (i)-(iii) of Theorem (3.1), the sequence of successive approximations (3.1)
is uniformly bounded. Moreover, let Ψm(x, y) = ψ(x, y,Xm(x, y)),m ∈ N, and suppose that

(i) there exist η, ζ > 0, such that
| (K(s1, t1, x1, y1)−K(s2, t2, x2, y2) |≤ ζ(| s1 − s2 | + | t1 − t2 |) + η(| x1 − x2 | + | y1 − y2 |),
∀(s1, t1), (s2, t2), (x1, y1), (x2, y2) ∈ I.

(ii) there exists θ > 0, such that
| r(s1, t1)− r(s2, t2) |≤ θ(| s1 − s2 | + | t1 − t2 |), ∀(s1, t1), (s2, t2) ∈ I.

then the functions Ψm,m ∈ N is uniformly Lipschitz with constant L′ = α + β(θ + λ(b − a)(d − c)Mζ), where M is
given in (3.10).

Proof. Let ψ0 : [a, b] × [c, d] → R and ψ0(x, y) = ψ(x, y, r(x, y)). Since ψ, r are continuous, it can be concluded that
ψ0 is continuous on the compact set [a, b]× [c, d]. Hence, M0 ≥ 0 exists such that

|ψ0(x, y)| ≤M0 ∀(x, y) ∈ [a, b]× [c, d]. (3.9)
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For (s, t) ∈ [a, b]× [c, d], we have∣∣Xm(s, t)−Xm−1(s, t)
∣∣ ≤ λ∣∣K(s, t, x, y)

∣∣ ∫ d

c

∫ b

a

∣∣ψ(x, y,Xm−1(x, y))− ψ(x, y,Xm−2(x, y))
∣∣dxdy

≤ λMk

∫ d

c

∫ b

a

∣∣ψ(x, y,Xm−1(x, y))− ψ(x, y,Xm−2(x, y))
∣∣dxdy

≤ βλMk(b− a)(d− c) max
a≤x≤b
c≤y≤d

|Xm−1(x, y)−Xm−2(x, y)| = Θ
∥∥Xm−1 −Xm−2

∥∥,
and by induction,∣∣Xm(s, t)−Xm−1(s, t)

∣∣ ≤ Θm−1∥∥X1 −X0

∥∥.
So, ∣∣Xm(s, t)−X0(s, t)

∣∣ ≤ ∣∣Xm(s, t)−Xm−1(s, t)
∣∣+ ...+

∣∣X1(s, t)−X0(s, t)
∣∣

≤ (Θm−1 + Θm−2 + ...+ Θ + 1)
∥∥X1 −X0

∥∥
=

1−Θm

1−Θ
.
∥∥X1 −X0

∥∥ ≤ ΘM0

β(1−Θ)
∀(s, t) ∈ [a, b]× [c, d].

Let Mr ≥ 0 such that |r(s, t)| ≤Mr for all (s, t) ∈ [a, b]× [c, d]. Then∣∣Xm(s, t)
∣∣ ≤ ∣∣Xm(s, t)−X0(s, t)

∣∣+
∣∣X0(s, t)

∣∣ ≤ ΘM0

β(1−Θ)
+Mr = L.

Moreover, by considering

M = max
(
M0,max{|ψ(s, t, u)| : (s, t) ∈ [a, b]× [c, d], u ∈ [−L,L]}

)
, (3.10)

we get

|Ψm(s, t)| = |ψ(s, t,Xm(s, t))| ≤M,

for all (s, t) ∈ [a, b]× [c, d] and m ∈ N. Let (s1, t1), (s2, t2) ∈ [a, b]× [c, d], we obtain∣∣X0(s1, t1)−X0(s2, t2)
∣∣ ≤ θ(∣∣s1 − s2∣∣+

∣∣t1 − t2∣∣),∣∣Xm(s1, t1)−Xm(s2, t2)
∣∣ ≤ ∣∣r(s1, t1)− r(s2, t2)

∣∣
+ λ

∫ d

c

∫ b

a

| K(s1, t1, x, y)−K(s2, t2, x, y)) || ψ
(
x, y,Xm−1(x, y)

)
| dxdy

≤ θ(
∣∣s1 − s2∣∣+

∣∣t1 − t2∣∣) + λ(b− a)(d− c)Mζ(
∣∣s1 − s2∣∣+

∣∣t1 − t2∣∣)
= L0(

∣∣s1 − s2∣∣+
∣∣t1 − t2∣∣),

with L0 = θ + λ(b− a)(d− c)Mζ and∣∣Ψ0(s1, t1)−Ψ0(s2, t2)
∣∣ ≤ α(

∣∣s1 − s2∣∣+
∣∣t1 − t2∣∣) + β

∣∣X0(s1, t1)−X0(s2, t2)
∣∣

≤ (α+ βθ)(
∣∣s1 − s2∣∣+

∣∣t1 − t2∣∣),∣∣Ψm(s1, t1)−Ψm(s2, t2)
∣∣ ≤ α(

∣∣s1 − s2∣∣+
∣∣t1 − t2∣∣) + β

∣∣Xm(s1, t1)−Xm(s2, t2)
∣∣

≤ α(
∣∣s1 − s2∣∣+

∣∣t1 − t2∣∣) + βL0(
∣∣s1 − s2∣∣+

∣∣t1 − t2∣∣)
= (α+ βL0)(

∣∣s1 − s2∣∣+
∣∣t1 − t2∣∣).

�
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Corollary 3.3. The functions K(sp, tq, x, y)ψ(x, y,Xm(x, y)), p = 0, 2n, q = 0, 2n,m ∈ N are uniformly Lipschitz with
constant

L = ηM +Mk

(
α+ β(θ + λ(b− a)(d− c)Mζ)

)
.

Proof. Let (s1, t1), (s2, t2) ∈ [a, b]× [c, d]. Define the function Ψm,p,q : [a, b]× [c, d]→ R,

Ψm,p,q(x, y) = K(sp, tq, x, y)ψ(x, y,Xm(x, y)), p = 0, 2n q = 0, 2n.

Then, ∣∣Ψm,p,q(x1, y1)−Ψm,p,q(x2, y2)
∣∣ ≤ ∣∣K(sp, tq, x1, y1)ψ(x1, y1, Xm(x1, y1))

−K(sp, tq, x2, y2)ψ(x1, y1, Xm(x1, y1))
∣∣

+
∣∣K(sp, tq, x2, y2)ψ(x1, y1, Xm(x1, y1))

−K(sp, tq, x2, y2)ψ(x2, y2, Xm(x2, y2))
∣∣

≤M
∣∣K(sp, tq, x1, y1)−K(sp, tq, x2, y2)

∣∣
+Mk

∣∣ψ(x1, y1, Xm(x1, y1))− ψ(x2, y2, Xm(x2, y2))
∣∣

≤Mη(
∣∣x1 − x2∣∣+

∣∣y1 − y2∣∣) +Mk(α+ βL0)(
∣∣x1 − x2∣∣+

∣∣y1 − y2∣∣)
≤ L(

∣∣x1 − x2∣∣+
∣∣y1 − y2∣∣), (3.11)

for m ∈ N. �

3.2. Algorithm of the approach. Consider the uniform partitions 3.5 with sp = a + p b−a
2n , p = 0, 2n and tq =

c+ q d−c
2n , q = 0, 2n, on these knots, relation (3.1) becomes:

X0(sp, tq) = r(sp, tq),

Xm(sp, tq) = r(sp, tq) + λ

∫ d

c

∫ b

a

K(sp, tq, x, y)ψ(x, y,Xm−1(x, y))dxdy, p = 0, 2n q = 0, 2n, m ≥ 1 (3.12)

and applying the quadrature (2.1) to relation (3.12), we obtain:

X0(sp, tq) = r(sp, tq),

Xm(sp, tq) = r(sp, tq) +
λhxhy

9

n∑
i=1

n∑
j=1

2∑
l2=0

2∑
l1=0

(Cl2
2 )2(Cl1

2 )2

K(sp, tq, s2i−2+l1 , t2j−2+l2)ψ(s2i−2+l1 , t2j−2+l2 , Xm−1(s2i−2+l1 , t2j−2+l2)) +Rm,p,q, (3.13)

with the following remainder estimate

|Rm,p,q| ≤
5L(b− a)(d− c)

18
(hx + hy), ∀p, q = 0, 2n, ∀m ∈ N, (3.14)

according (3.11) and (2.1). It obtains the following iterative algorithm:

Step 1: Choose the functions r,K, ψ and the values a, b, c, d, λ, ε
′
, n.

Step 2: Set hx = b−a
2n and hy = d−c

2n .

Step 3: Choose ε
′
> 0. For p = 0, 2n, q = 0, 2n, set X0(sp, tq) = r(sp, tq).

Step 4: For m = 1, and for all p = 0, 2n, q = 0, 2n, Compute

X1(sp, tq) = r(sp, tq) +
λhxhy

9

n∑
i=1

n∑
j=1

2∑
l2=0

2∑
l1=0

(Cl2
2 )2(Cl1

2 )2

×K(sp, tq, s2i−2+l1 , t2j−2+l2)ψ(s2i−2+l1 , t2j−2+l2 , X0(s2i−2+l1 , t2j−2+l2)). (3.15)
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Step 5: For m ≥ 2, and for all p = 0, 2n, q = 0, 2n, Compute

Xm(sp, tq) = r(sp, tq) +
λhxhy

9

n∑
i=1

n∑
j=1

2∑
l2=0

2∑
l1=0

(Cl2
2 )2(Cl1

2 )2

×K(sp, tq, s2i−2+l1 , t2j−2+l2)ψ(s2i−2+l1 , t2j−2+l2 , Xm−1(s2i−2+l1 , t2j−2+l2)). (3.16)

Step 6: Compute | Xm(sp, tq)−Xm−1(sp, tq) |, for p = 0, 2n, q = 0, 2n.

Step 7: If | Xm(sp, tq) − Xm−1(sp, tq) |< ε
′
, print m and print Xm(sp, tq), for all p = 0, 2n, q = 0, 2n; if not set

m = m+ 1 and go to Step 5.

A practical criterion for this algorithm is presented below in Remark (3.7).

3.3. The convergence analysis. In this section, an upper bound of the error for the present method is obtained.

Theorem 3.4. Consider the assumptions of Theorem 3.1. Then, the iterative procedure (3.6) converges to X∗ (the
unique solution of Eq. (1.1)). Also, the upper bound of the error is as follows

d(X∗, Xm) ≤ Θm+1

β(1−Θ)
M0 +

5L(b− a)(d− c)
1−Θ

(hx + hy),

Proof. Using (3.4) we have

d(X∗, Xm) ≤ d(X∗, Xm) + d(Xm, Xm) ≤ Θm+1

β(1−Θ)
M0 + d(Xm, Xm). (3.17)

Therefore, it is necessary to estimate | Xm(s, t, r)−Xm(s, t, r) |.
Form (3.12) for m = 1, (3.15) and (3.14) we obtain

∣∣X1(sp, tq)−X1(sp, tq)
∣∣ ≤ |R1,p,q| ≤

5L(b− a)(d− c)
18

(hx + hy).

Using (3.13) and (3.16) we get

∣∣Xm(sp, tq)−Xm(sp, tq)
∣∣ ≤ |Rm,p,q|+

λhxhy
9

n∑
i=1

n∑
j=1

2∑
l2=0

2∑
l1=0

(Cl2
2 )2(Cl1

2 )2|K(sp, tq, s2i−2+l1 , t2j−2+l2)|

|ψ(s2i−2, t2j−2, Xm−1(s2i−2+l1 , t2j−2+l2))− ψ(s2i−2, t2j−2, Xm−1(s2i−2+l1 , t2j−2+l2))|

≤ 5L(b− a)(d− c)
18

(hx + hy) +
5MkβL(b− a)(d− c)

36

2∑
l2=0

2∑
l1=0

(Cl2
2 )2(Cl1

2 )2||Xm−1 −Xm−1||. (3.18)

Now, from (3.18) for m = 2 it follows that

∣∣X2(sp, tq)−X2(sp, tq)
∣∣ ≤ 5L(b− a)(d− c)

18
(hx + hy) +

5λMkβL(b− a)(d− c)
36

2∑
l2=0

2∑
l1=0

(Cl2
2 )2(Cl1

2 )2||X1 −X1||

≤ 5L(b− a)(d− c)
18

(hx + hy) + 5λMkβL(b− a)(d− c)||X1 −X1||

≤ (1 + λMkβL(b− a)(d− c))5L(b− a)(d− c)
18

(hx + hy).
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For m ∈ N , m ≥ 3 and by using induction, we get

| Xm(sp, tq)−Xm(sp, tq) | ≤ [1 + λβMK(b− a)(d− c) + ...+ (λβMK(b− a)(d− c))m−1]
5L(b− a)(d− c)

18
(hx + hy)

=
1− (λβMK(b− a)(d− c)

)m
1− λβMK(b− a)(d− c)

5L(b− a)(d− c)
18

(hx + hy)

≤ 1

1− λβMK(b− a)(d− c)
5L(b− a)(d− c)

18
(hx + hy)

=
5L(b− a)(d− c)

18(1−Θ)
(hx + hy).

Therefore,

d(Xm, Xm) ≤ 5L(b− a)(d− c)
18(1−Θ)

(hx + hy). (3.19)

Hence, from (3.4) and (3.19) we conclude that

d(X∗, Xm) ≤
(

Θm+1

β(1−Θ)

)
M0 +

5L(b− a)(d− c)
18(1−Θ)

(hx + hy).

Since Θ < 1, it is easy to see that

lim
m→∞

hx,hy→0

d(X∗, Xm) = 0,

This means that the proposed method is convergent.

3.4. The stability analysis. Here, the numerical stability of the suggested method is studied. To do this, we consider
the term X0(s, t) = f(s, t) ∈ C([a, b]×[c, d], R) such that for an ε > 0 we have

∣∣r(s, t)−f(s, t)
∣∣ < ε,∀(s, t) ∈ [a, b]×[c, d].

Consider θ′ and M ′0 such that

| f(s, t)− f(s′, t′) |≤ θ′(| s− s′ | + | t− t′ |) ∀(s, t), (s′, t′) ∈ I,
M ′0 = max{|ψ(x, y, r(x, y))| : (s, t) ∈ I}

and L′ the Lipschitz contant obtained similar as in Proposition (3.2) and Corollary (3.3).
By replacing r(s, t) = f(s, t) in Eq. (1.1) and applying the iterative method to the obtained equation, we have

Y (s, t) = f(s, t) + λ
∫ d

c

∫ b

a
K(s, t, x, y)ψ(x, y, Y (x, y))dxdy, (s, t) ∈ I, (3.20)

The following sequence of successive approximations on the knots sp = a+p b−a
2n , p = 0, 2n and tq = c+ q d−c

2n , q = 0, 2n
is obtained.

Y0(sp, tp) = f(sp, tp), (3.21)

Ym(sp, tp) = f(sp, tp) + λ

∫ d

c

∫ b

a

K(sp, tp, x, y)ψ(x, y, Ym−1(x, y))dxdy, m ≥ 1. (3.22)

Now, by using the iterative procedure (3.6), the following values are obtained.

Y 0(s, t) = f(s, t).

Y m(s, t) = f(s, t) +
λhxhy

9

n∑
i=1

n∑
j=1

2∑
l2=0

2∑
l1=0

(Cl2
2 )2(Cl1

2 )2

K(s, t, s2i−2+l1 , t2j−2+l2)ψ(s2i−2+l1 , t2j−2+l2 , Y m−1(s2i−2+l1 , t2j−2+l2)). (3.23)

Theorem 3.5. Under assumptions of theorem 3.4 and with respect to the first iteration, the iterative procedure (3.6)
is numerically stable.
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Proof. We have

d(Ym, Y m) ≤ 5L′(b− a)(d− c)
36(1−Θ)

(hx + hy).

Clearly, we have

‖Xm − Y m‖ ≤ ‖Xm −Xm‖+ ‖Xm − Ym‖+ ‖Ym − Y m‖

≤ 5L(b− a)(d− c)
36(1−Θ)

(hx + hy) +
5L′(b− a)(d− c)

36(1−Θ)
(hx + hy) + ‖Xm − Ym‖.

Now, we can write
| X0(s, t)− Y0(s, t) |< ε , for all (s, t) ∈ I,

and

| X1(s, t)− Y1(s, t) | ≤| X0(s, t) + λ

∫ d

c

∫ b

a

K(s, t, x, y)Ψ
(
x, y,X0(x, y)

)
dxdy

− Y0(s, t)− λ
∫ d

c

∫ b

a

K(s, t, x, y)Ψ
(
x, y, Y0(x, y)

)
dxdy |

≤ ε+ βλMk

∫ d

c

∫ b

a

| X0(s, t)− Y0(s, t) | dxdy

≤ ε+ βλMk(b− a)(d− c)ε,

By considering the condition βλMk(b− a)(d− c) < 1, and using induction for m > 2, we obtain

‖Xm − Ym‖ ≤
1

1−Θ
ε,

for m ≥ 0. Therefore, we can write

‖Xm − Ym‖ ≤
1

1−Θ
ε+

5L(b− a)(d− c)
18(1−Θ)

(hx + hy) +
5L′(b− a)(d− c)

36(1−Θ)
(hx + hy).

�

Remark 3.6. Since Θ < 1, it can be concluded that

lim
hx,hy,ε→0

∥∥Xm − Ym
∥∥ = 0.

Remark 3.7. The relation (3.3) can be used to get the stopping criterion as follows:

Consider previously chosen ε
′
> 0. The first integer positive number m is determined such that

| Xm(sp, tq)−Xm−1(sp, tq) |< ε
′
.

We can write

‖X∗ −Xm‖ ≤ ‖X∗ −Xm‖+ ‖Xm −Xm‖

≤ Θ

1−Θ
‖Xm −Xm−1‖+

5L(b− a)(d− c)
18(1−Θ)

(hx + hy),
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and

‖Xm −Xm−1‖ ≤ ‖Xm −Xm‖+ ‖Xm −Xm−1‖+ ‖Xm−1 −Xm−1‖

≤ 5L(b− a)(d− c)
9(1−Θ)

(hx + hy) + ‖Xm −Xm−1‖.

So,

‖X∗ −Xm‖ ≤
Θ

1−Θ
‖Xm −Xm−1‖+

5ΘL(b− a)(d− c)
9(1−Θ)2

(hx + hy) +
5L(b− a)(d− c)

18(1−Θ)
(hx + hy).

In order to get | X∗(s, t)−Xm(s, t) |< ε, it is necessary that

5L(b− a)(d− c)(1 + Θ)

18(1−Θ)2
(hx + hy) <

ε

2
(3.24)

and
Θ

1−Θ
‖Xm −Xm−1‖ <

ε

2
.

Now, to hold inequality (3.24), the smallest integer positive number n can be selected. Finally, the smallest number
m ∈ N (as the last iterative step) is obtained and

‖Xm −Xm−1‖ <
ε

2
.
1−Θ

Θ
= ε

′
.

With these, the inequality | Xm(sp, tq)−Xm−1(sp, tq) |< ε
′

leads to | X∗(sp, tq)−Xm(sp, tq) |< ε.

4. Numerical examples

In this section, some examples are studied to show the applicability, efficiency and accuracy of the proposed method.
We introduce the notations

Ep,q := |X∗(sp, tq)−Xm(sp, tq)|, (4.1)

and

‖En‖∞ := max{Ep,q|p, q = 0, 1, ..., n}, (4.2)

where X∗ and Xm are the exact and approximate solutions of the integral equation, respectively. The numerical
implementation is carried out in Maple 17.

Example 1. As the first example, a 2D non-linear Fredholm integral equation is considered as

X(s, t) = s2 + t2 + 1 +
0.00568783

(s+ 1)(t+ 3)
+

∫ 1

0

∫ 1

0

xy

(s+ 1)(t+ 3)
sin(x2 + y +X(x, y))dxdy, (s, t) ∈ [0, 1]2, (4.3)

with the exact solution

X(s, t) = s2 + t2 + 1.

In order to ensure that there is an unique solution for equation (4.3) with above r and k and ψ, we test conditions of
Theorem (3.1).
It is obvious that r ∈ C([0, 1]2,R),K ∈ C([0, 1]4,R), ψ ∈ C([0, 1]2 ×R,R). We show that Conditions (ii) and (iii) also
holds. Since x, x′, y, y′ ∈ [0, 1] and X,X ′ : [0, 1]2 → [1, 3], we have

|ψ(x, y,X)− ψ(x′, y′, X ′)| = | sin(x2 + y +X)− sin(x′2 + y′ +X ′)|
≤ |x2 − x′2|+ |y − y′|+ |X −X ′|
≤ 2(|x− x′|+ |y − y′|) + |X −X ′|.

So, α = 2, β = 1. Also |k(s, t, x, y)| ≤ 1
3 = Mk and λ = 1, therefore we have Θ = (1)(1)( 1

3 )(1− 0)(1− 0) < 1. Now, by

using the algorithm for n = 10, ε
′

= 10−15, we obtain m = 9 (m is the number of iterations).
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For more details, see Table 1. For testing the numerical stability, we put ε = 0.1. The computed values Dp,q =

|X9(sp, tq)− Y 9(sp, tq)|,p, q = 0, 10 in Table 1 show that the algorithm has the numerical stability.

In order to study the convergence, by taking n = 100, ε
′

= 10−15, we have m = 11. Now, one can see how
Ep,q, p, q = 0, n decreases when hx and hy decrease. For this case, the results are presented in Table 2. Also, for

n = 1000, ε
′

= 10−15 with m = 15, the results are listed in 3. The values ‖En‖∞ for ε
′

= 10−15 and n ∈ {10, 100, 1000}
are 8.6950× 10−7, 6.8423× 10−11 and 4.5911× 10−14, respectively. The reported results in Tables 1-3 show that the
numerical method is convergent, that is Ep,q → 0 as hx, hy → 0.

Table 1. Numerical results for Example 1 for n = 10

(sp, tq) X∗(sp, tq) X9(sp, tq) Ep,q Dp,q

(0.0,0.0) 1.00 1.0000008198280153642 8.1982801 ×10−7 0.108
(0.1,0.1) 1.02 1.0200007212563185023 7.2125632 ×10−7 0.106
(0.2,0.2) 1.08 1.0800006404906370033 6.4049064 ×10−7 0.104
(0.3,0.3) 1.18 1.1800005733063044505 5.7330630 ×10−7 0.103
(0.4,0.4) 1.32 1.3200005166983290111 5.1669832 ×10−7 0.102
(0.5,0.5) 1.50 1.5000004684731516367 4.6847315 ×10−7 0.101
(0.6,0.6) 1.72 1.7200004269937580022 4.2699376 ×10−7 0.101
(0.7,0.7) 1.98 1.9800003910149516841 3.9101495 ×10−7 0.101
(0.8,0.8) 2.28 2.2800003595736909492 3.5957369 ×10−7 0.100
(0.9,0.9) 2.62 2.6200003319141762608 3.3191418 ×10−7 0.100
(1.0,1.0) 3.00 3.0000003074355057616 3.0743551 ×10−7 0.100

Table 2. Numerical results for Example 1 for n = 100

(sp, tq) X∗(sp, tq) X11(sp, tq) Ep,q

(0.0,0.0) 1.00 1.0000000000823828075 8.2382807 ×10−11

(0.1,0.1) 1.02 1.0200000000724775433 7.2477543 ×10−11

(0.2,0.2) 1.08 1.0800000000643615684 6.4361568 ×10−11

(0.3,0.3) 1.18 1.1800000000576103549 5.7610355 ×10−11

(0.4,0.4) 1.32 1.3200000000519219375 5.1921937 ×10−11

(0.5,0.5) 1.50 1.5000000000349954371 4.7075890 ×10−11

(0.6,0.6) 1.72 1.7200000000429077122 4.2907712 ×10−11

(0.7,0.7) 1.98 1.9800000000292092282 3.9292277 ×10−11

(0.8,0.8) 2.28 2.2800000000361328103 3.6132810 ×10−11

(0.9,0.9) 2.62 2.6200000000333533634 3.3353363 ×10−11

(1.0,1.0) 3.00 3.0000000000308935528 3.0893553 ×10−11

Example 2. Here, we consider the following 2D non-linear Fredholm integral equation [24]

X(s, t) = r(s, t) +

∫ 1

0

∫ 1

0

K(s, t, x, y)Ψ(X(x, y))dxdy, (s, t) ∈ [0, 1]× [0, 1], (4.4)

where

r(s, t) = sin(t)− 1

18
st2
(
1− cos(1)(

1

2
sin2(1) + 1)

)
,

K(s, t, x, y) =
1

6
xst2,

Ψ(X) = X3,
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Table 3. Numerical results for Example 1 for n = 1000

(sp, tq) X∗(sp, tq) X15(sp, tq) Ep,q

(0.0,0.0) 1.00 1.00000000000004010262 4.0102061 ×10−14

(0.1,0.1) 1.02 1.02000000000003528040 3.5280405 ×10−14

(0.2,0.2) 1.08 1.08000000000003132973 3.1329735 ×10−14

(0.3,0.3) 1.18 1.18000000000002804340 2.8043399 ×10−14

(0.4,0.4) 1.32 1.32000000000002527441 2.5274408 ×10−14

(0.5,0.5) 1.50 1.50000000000002291546 2.2915463 ×10−14

(0.6,0.6) 1.72 1.72000000000002088649 2.0886490 ×10−14

(0.7,0.7) 1.98 1.98000000000001912658 1.9126579 ×10−14

(0.8,0.8) 2.28 2.28000000000001758862 1.7588623 ×10−14

(0.9,0.9) 2.62 2.62000000000001623565 1.6235652 ×10−14

(1.0,1.0) 3.00 3.00000000000001503827 1.5038273 ×10−14

Table 4. Comparison of errors of numerical results for Example 2 for n = 10

(sp, tq) X∗(sp, tq) Present method Method of [24]
(0.0,0.0) 0. 0. 0.
(0.1,0.1) 0.09983341664682815230 3.899410 ×10−11 8.203942576330200 ×10−8

(0.2,0.2) 0.19866933079506121546 3.119528 ×10−10 6.563154061064100 ×10−7

(0.3,0.3) 0.29552020666133957511 1.052848 ×10−9 2.215064495609150 ×10−6

(0.4,0.4) 0.38941834230865049167 2.495623 ×10−9 5.250523248851320 ×10−6

(0.5,0.5) 0.47942553860420300027 4.874263 ×10−9 1.025492822041272 ×10−5

(0.6,0.6) 0.56464247339503535720 8.422726 ×10−9 1.772051596487319 ×10−5

(0.7,0.7) 0.64421768723769105367 1.337498 ×10−8 2.813952303681252 ×10−5

(0.8,0.8) 0.71735609089952276163 1.996498 ×10−8 4.200418599081052 ×10−5

(0.9,0.9) 0.78332690962748338846 2.842670 ×10−8 5.980674138144701 ×10−5

(1.0,1.0) 0.84147098480789650665 3.899410 ×10−8 8.203942576330180 ×10−5

with the exact solution

X(s, t) = sin(t).

In this example, we have a = c = 0, b = d = 1, λ = 1,Mk = 1
6 . Also

|ψ(x, y,X)− ψ(x′, y′, X ′)| = |X3 −X ′3| ≤ 3|X −X ′|,

for X,X ′ : [0, 1]2 → [0, 1]. Therefore, β = 3 and we have Θ = (1)(3)( 1
6 )(1−0)(1−0) = 1

2 < 1. Because of all conditions
hold, Theorem (3.1) implies the existence of unique solution for equation.

Comparisons between the obtained errors by the present method and the method in [24] are shown in Tables 4-6.

Example 3. [17, 24] As the last example, we consider the integral equation (4.3) with

r(s, t) = − s

6(1 + t)
+

1

(1 + s+ t)2
,

K(s, t, x, y) =
s

1 + t
(1 + y + x),

Ψ(X) = X2,

where the exact solution is

X(s, t) =
1

(1 + s+ t)2
.
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Table 5. Comparison of errors of numerical results for Example 2 for n = 100

(sp, tq) X∗(sp, tq) Present method Method of [24]
(0.0,0.0) 0. 0. 0.
(0.1,0.1) 0.09983341664682815230 3.888832 ×10−15 8.1846966058500 ×10−10

(0.2,0.2) 0.19866933079506121546 3.111065 ×10−14 6.5477572846800 ×10−9

(0.3,0.3) 0.29552020666133957511 1.049985 ×10−13 2.2098680835790 ×10−8

(0.4,0.4) 0.38941834230865049167 2.488852 ×10−13 5.2382058277440 ×10−8

(0.5,0.5) 0.47942553860420300027 4.861039 ×10−13 1.0230870757312 ×10−7

(0.6,0.6) 0.56464247339503535720 8.399876 ×10−13 1.7678944668635 ×10−7

(0.7,0.7) 0.64421768723769105367 1.333869 ×10−12 2.8073509358064 ×10−7

(0.8,0.8) 0.71735609089952276163 1.991082 ×10−12 4.1905646621950 ×10−7

(0.9,0.9) 0.78332690962748338846 2.834958 ×10−12 5.9666438256644 ×10−7

(1.0,1.0) 0.84147098480789650665 3.888832 ×10−12 8.1846966058496 ×10−7

Table 6. Comparison of errors of numerical results for Example 2 for n = 1000

(sp, tq) X∗(sp, tq) Present method Method of [24]
(0.0,0.0) 0. 0. 0.
(0.1,0.1) 0.09983341664682815230 6.2226423 ×10−18 9.093915900300 ×10−12

(0.2,0.2) 0.19866933079506121546 4.9781138 ×10−17 7.275132720200 ×10−11

(0.3,0.3) 0.29552020666133957511 1.6801134 ×10−16 2.455357293070 ×10−10

(0.4,0.4) 0.38941834230865049167 3.9824911 ×10−16 5.820106176170 ×10−10

(0.5,0.5) 0.47942553860420300027 7.7783029 ×10−16 1.136739487534 ×10−9

(0.6,0.6) 0.56464247339503535720 1.3440907 ×10−15 1.964285834459 ×10−9

(0.7,0.7) 0.64421768723769105367 2.1343663 ×10−15 3.119213153794 ×10−9

(0.8,0.8) 0.71735609089952276163 3.1859928 ×10−15 4.656084940940 ×10−9

(0.9,0.9) 0.78332690962748338846 4.5363062 ×10−15 6.629464691299 ×10−9

(1.0,1.0) 0.84147098480789650665 6.2226423 ×10−15 9.093915900273 ×10−9

Table 7. Comparison of errors of the numerical results for Example 3 for n = 10, n = 100, n = 1000

Method of [24] Present Method
(s , t) n=10 n=100 n=1000 n=10 n=100 n=1000

(0.0,0.0) 0 0 0 0 0 0
(0.1,0.1) 1.381× 10−6 1.380× 10−8 2.839× 10−10 1.071× 10−7 1.078× 10−11 8.302× 10−16

(0.2,0.2) 5.525× 10−6 5.520× 10−8 6.389× 10−10 1.963× 10−7 1.977× 10−11 1.530× 10−15

(0.3,0.3) 1.243× 10−5 1.242× 10−7 1.775× 10−9 2.718× 10−7 2.737× 10−11 2.112× 10−15

(0.4,0.4) 2.210× 10−5 2.208× 10−7 2.555× 10−9 3.365× 10−7 3.388× 10−11 2.624× 10−15

(0.4,0.5) 3.453× 10−5 3.450× 10−7 3.478× 10−9 3.925× 10−7 3.953× 10−11 3.061× 10−15

(0.6,0.6) 4.972× 10−5 4.968× 10−7 4.543× 10−9 4.416× 10−7 4.447× 10−11 3.436× 10−15

(0.7,0.7) 6.768× 10−5 6.762× 10−7 5.750× 10−9 4.850× 10−7 4.883× 10−11 3.771× 10−15

(0.8,0.8) 8.836× 10−5 8.832× 10−7 7.099× 10−9 5.234× 10−7 5.280× 10−11 4.077× 10−15

(0.9,0.9) 1.119× 10−4 1.118× 10−6 1.147× 10−8 5.578× 10−7 5.618× 10−11 4.343× 10−15

(1.0,1.0) 1.381× 10−4 1.380× 10−6 1.394× 10−8 5.888× 10−7 5.930× 10−11 4.582× 10−15

Table 7 shows comparisons between the obtained errors by the present method and the method in [24]. According to
the reported results, our proposed method has a reasonable convergence rate. Also, the absolute errors in the solutions
by our method are accurate in comparison with [24].
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5. Conclusions

This paper applied an iterative method of successive approximation for solving the 2D non-linear Hammerstein
integral equations. The basic results of this paper are presented in Theorems 3.1, 3.4, and 3.5 which survey the
numerical stability and convergence of the proposed method. These two aspects of the method were studied and
confirmed by three numerical examples. The numerical results show that to obtain a good approximate solution a
small number of iterations is required.
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