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Abstract

In this paper, an optimal cubic B-spline collocation method is applied to solve the viscous coupled Burgers’

equation, which helps in modeling the polydispersive sedimentation. As it is not possible to obtain optimal order
of convergence with the standard collocation method, so to overcome this, posteriori corrections are made in

cubic B-spline interpolant and its higher-order derivatives. This optimal cubic B-spline collocation method is

used for space integration and for time-domain integration, the Crank-Nicolson scheme is applied along with the
quasilinearization process to deal with the nonlinear terms in the equations. Von-Neumann stability analysis is

carried out to discuss the stability of the technique. Few test problems are solved numerically along with the

calculation of L2, L∞ error norms as well as the order of convergence. The obtained results are compared with
those available in the literature, which shows the improvement in results over the standard collocation method

and many other existing techniques also.
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1. Introduction

In this work, the numerical analysis of the nonlinear time-dependent viscous coupled Burgers’ equation is performed.
The general form of the equation is as follows:

∂u

∂t
=
∂2u

∂x2
− αu∂u

∂x
− η ∂(uw)

∂x
, x ∈ [xL, xR], t ∈ [0, T ], (1.1)

∂w

∂t
=
∂2w

∂x2
− αw∂w

∂x
− ρ∂(uw)

∂x
, x ∈ [xL, xR], t ∈ [0, T ], (1.2)

with the initial conditions:

u(x, 0) = Φ1(x), w(x, 0) = Φ2(x), x ∈ [xL, xR], (1.3)

and the boundary conditions:

u(xL, t) = Ψ1(t), u(xR, t) = Ψ2(t),

w(xL, t) = Ψ3(t), w(xR, t) = Ψ4(t),
(1.4)

where α is a real constant, η and ρ are the arbitrary constants, depending on the value of different parameters such as
Brownian diffusivity, Stokes velocity of particles due to gravity, and Peclet number [26]. Φ1(x), Φ2(x), Ψ1(t), Ψ2(t),
Ψ3(t), and Ψ4(t) are sufficiently smooth functions. Here u and w are the components of velocity, ut is the unsteady
term, uux is the convection term, and uxx is the diffusion term. The coupled Burgers’ equation was proposed by
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Esipov [12] for the study of polydispersive sedimentation, which models the accumulation or progression of the scaled
volume assemblage of two types of particles in fluid adjournment or colloids, under gravity. Nee and Duan [26] rep-
resented the trajectories of coupled Burgers’ equation starting with the not too large initial data, which converges to
zero equilibrium as the time approaches to infinity.

In the past several decades, various techniques have been implemented to solve this coupled equation, due to its vast
applications in various fields of science and engineering. To name a few, Kaya [17] implemented the Adomian decom-
position method to solve the coupled Burgers’ equation, in which no linearization or weak nonlinearity assumptions
were required. Abdou and Soliman [2] solved this equation using the variational iteration method and showed that
this technique is better than the Adomian decomposition method. Soliman [41] implemented the modified extended
tanh-function, Khater et al. [18] opted spectral collocation method with Chebyshev polynomials (CCM) and solved the
system of equations using the fourth-order Runge-Kutta method. Rashid and Ismail [28] used Fourier pseudo-spectral
method (FPSM) and showed that this technique performs better than the Chebyshev collocation method. Abazari
and Borhanifar [1] implemented the differential transformation method (DTM), Mittal and Arora [22] applied the
classical cubic B-spline collocation method (CSCM) for the space discretization and Crank-Nicolson scheme for the
time discretization. In this, it is shown that results with CSCM are better than the Chebyshev collocation method and
the Fourier Pseudospectral method. Mittal and Jiwari [23] implemented the differential quadrature method (DQM)
for space integration and used the Runge Kutta method of fourth-order to solve the system of ODEs. Srivastava et al.
[42] proposed an implicit finite-difference method (IFDM) to discretize the coupled Burgers’ equation, which resulted
in a nonlinear system of equations. Then Newton’s iterative method has been used to convert the nonlinear system
to a linear one. Further, the Gauss elimination method has been implemented to solve the required system of equations.

Kutluay and Ucar [20] applied the quadratic B-spline Galerkin finite element method (GQFEM) and found that
results are better than the cubic B-spline collocation method, differential transformation method, etc. Dehghan et al.
[10] implemented the combination of finite difference formula and Galerkin method, using the interpolating scaling
functions to solve the Burgers’ equation. Mittal and Tripathi [25] implemented a modified cubic B-spline collocation
method (MCSCM) for space integration and strong stability preserving scheme to solve a system of ODEs. Kumar
and Pandit [19] proposed a combination of Haar wavelets (HWM) and a forward finite difference scheme to solve this
equation. Results were found to be better than the cubic B-spline collocation method, differential quadrature method,
implicit finite-difference scheme, etc. Ali et al. [3] implemented the non-polynomial spline method, Raslan et al. [29]
used the cubic trigonometric B-spline collocation method, Bhatt and Khaliq [7] implemented a fourth-order compact
finite difference scheme for space integration and opted fourth-order modified exponential Runge–Kutta scheme for
the time integration. Ersoy and Dag [11] implemented the combination of trigonometric cubic B-spline collocation
method (TCSCM) and Crank-Nicolson scheme. Ashpazzadeh et al. [4] proposed a method for constructing the wavelet
bases, derived from the symmetric biorthogonal multiwavelets (Hermite cubic splines) to solve the Burgers’ equation.
Gadain [14] implemented the modified double Laplace decomposition method, Chuathong and Kaennakham [8] used
meshfree Hermite collocation method with Gaussian radial basis function. Jafarabadi and Shivanian [16] implemented
a combination of meshless radial point interpolation and spectral collocation method with thin-plate splines for spatial
discretization, a predictor-corrector scheme to linearize the nonlinear terms, and a finite difference scheme for time-
domain discretization. Shallal et al. [36] solved this equation using the septic B-spline collocation method (SSCM)
and the Crank-Nicolson scheme and found the results to be better than the cubic trigonometric B-spline collocation
method. Bashan [5] implemented a combination of the differential quadrature method and finite difference method
for a very small value of kinematic viscosity, Fisher and Bialecki [13] used an extrapolated alternating direction im-
plicit (ADI) Crank–Nicolson orthogonal rth order spline collocation method. Zadvan and Rashidinia [43] developed a
non-polynomial cubic spline functions based on trigonometric functions. Nemati Saray et al. [35] design and analyze
the multiwavelets Galerkin method for solving the two-dimensional Burgers’ equation.

In the present paper, cubic B-splines have been chosen as the basis function in the collocation method, due to
their higher smoothness property. Also, the matrices corresponding to the spline functions are sparse in nature and
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hence easy to handle and solve. But here optimal cubic B-splines have been taken instead of standard cubic B-splines,
because they provide better accuracy in results. In this work, the scope of the optimal cubic B-spline collocation
method is extended to solve the coupled equations. To date, it is applied to ordinary differential equations [33, 39, 40],
and parabolic partial differential equations [15, 24, 30, 37, 38]. Roul [31, 32, 34] applied optimal spline collocation
method to solve the singular boundary value problems, for pricing the Asian options with the fixed strike price, for
solving a nonhomogeneous time-fractional diffusion equation, etc. For the formation of optimal spline solution, cubic
B-splines are forced to satisfy some interpolatory and specific end conditions, which enhances the order of convergence.
To solve the coupled Burgers’ equation, firstly Crank-Nicolson scheme is implemented to discretize the time domain,
the quasilinearization process is followed to tackle the nonlinear terms, and then the optimal spline collocation method
is applied for space discretization.

The paper is summed up in a synchronized manner as follows: In section 2, the formation of the optimal cubic
B-spline collocation method is presented. In section 3, the proposed combination of techniques is implemented. A
pseudo-code is given for better understanding of the implementation technique. In section 4, stability analysis of
the technique is carried out using von-Neumann analysis, and the technique is shown to be unconditionally stable.
Section 5 contain numerical examples and the corresponding results. L2, L∞ error norms and order of convergence are
calculated as well as compared with the existing results and the behavior of solutions is demonstrated via 3-D graphs.

2. Optimal Cubic B-Spline Collocation Method

The properties of cubic B-spline interpolant and the formation of optimal cubic B-spline solution are discussed
hereunder.

2.1. Properties of the Cubic B-Spline Interpolant: Consider the uniform partitioning of the spatial and temporal
domain ([xL, xR] × [0, T ]) as, xL = x0 < x1 < ... < xN−1 < xN = xR and 0 = t0 < t1 < ... < tm < ... < T
respectively, where h = xj+1 − xj is the spatial step size and ∆t = tm+1 − tm is the temporal step size. So,
xj+1 = xL + jh, j = 0, 1, 2, ..., N and tm = m∆t, m = 0, 1, ...., where N represents the number of nodal points on the
spatial domain. The cubic B-spline basis functions were explained by Prenter [27] and are given below:

Cj,3(x) =
1

h3



(x− xj−2)3, [xj−2, xj−1),

h3 + 3h2(x− xj−1) + 3h(x− xj−1)2 − 3(x− xj−1)3, [xj−1, xj),

h3 + 3h2(xj+1 − x) + 3h(xj+1 − x)2 − 3(xj+1 − x)3, [xj , xj+1),

(xj+2 − x)3, [xj+1, xj+2],

0, Otherwise.

(2.1)

The collection of cubic B-spline functions Cj,3 = {C−1(x), C0(x), C1(x), ..., CN (x), CN+1(x)}, forms the basis for
the (N + 3) dimensional subspace X of C2[xL, xR]. The cubic B-spline approximate solutions V (x, t) and Y (x, t)
corresponding to the exact solutions u(x, t) and w(x, t) are given below:

V (x, t) =

N+1∑
j=−1

δj(t)Cj(x), (2.2)

Y (x, t) =

N+1∑
j=−1

σj(t)Cj(x), (2.3)

with δj(t)’s and σj(t)’s as the unknown time-dependent quantities to be determined from the collocation form of the
differential equation and the boundary conditions.
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2.2. Posteriori Corrections to the Cubic B-Spline Interpolant: Suppose that the cubic B-spline solution V (x, t)
satisfies the following interpolatory condition:

V (xj , t) = u(xj , t), j = 0, 1, ..., N, (2.4)

and the end condition:

Vxx(xj , t) = uxx(xj , t)−
h2

12
uxxxx(xj , t), j = 0, N. (2.5)

Theorem 1. For sufficiently smooth function u(x, t) in [xL, xR] and the unique cubic B-spline interpolant (CSI)
V (x, t), satisfying Eqs. (2.4) -(2.5), the following relations hold:

Vxx(xj , t) = uxx(xj , t)−
h2

12
uxxxx(xj , t) +O(h4), j = 0, 1, ..., N, (2.6)

Vx(xj , t) = ux(xj , t) +O(h4), j = 0, 1, ..., N. (2.7)

Proof. Reported in [9, 21].

Lemma 1. For u(x,t) ∈ C6[xL, xR], the following relations hold:

uxxxx(x0, t) =
2Vxx(x0, t)− 5Vxx(x1, t) + 4Vxx(x2, t)− Vxx(x3, t)

h2
+O(h2),

uxxxx(xj , t) =
Vxx(xj−1, t)− 2Vxx(xj , t) + Vxx(xj+1, t)

h2
+O(h2), j = 1, 2, ..., N − 1,

uxxxx(xN , t) =
2Vxx(xN , t)− 5Vxx(xN−1, t) + 4Vxx(xN−2, t)− Vxx(xN−3, t)

h2
+O(h2).

Proof. This can be proved by simple application of finite differences and Taylor’s series expansion [9].

Corollary 1. For u(x,t) ∈ C6[xL, xR], the below mentioned relations hold:

ux(xj , t) = Vx(xj , t) +O(h4), j = 0, 1, ..., N,

uxx(x0, t) =
14Vxx(x0, t)− 5Vxx(x1, t) + 4Vxx(x2, t)− Vxx(x3, t)

12
+O(h4),

uxx(xj , t) =
Vxx(xj−1, t) + 10Vxx(xj , t) + Vxx(xj+1, t)

12
+O(h4), j = 1, 2, ..., N − 1,

uxx(xN , t) =
14Vxx(xN , t)− 5Vxx(xN−1, t) + 4Vxx(xN−2, t)− Vxx(xN−3, t)

12
+O(h4).

The value of Vxx(xj , t) is as follows, using Eqs. (2.1)-(2.2):

Vxx(xj , t) =
6

h
(δj−1 − 2δj + δj+1), j = 0, 1, 2, ..., N.

Substituting the value of Vxx(xj , t) in Corollary 1, the below mentioned optimal second-order derivatives are ob-
tained:

uxx(x0, t) =
14δ−1 − 33δ0 + 28δ1 − 14δ2 + 6δ3 − δ4

2h2
+O(h4),

uxx(xj , t) =
δj−2 + 8δj−1 − 18δj + 8δj+1 + δj+2

2h2
+O(h4), j = 1, 2, ..., N − 1,

uxx(xN , t) =
14δN+1 − 33δN + 28δN−1 − 14δN−2 + 6δN−3 − δN−4

2h2
+O(h4).
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The values of u(x, t) and ux(x, t) are as follows ”at nodal points” using definition of cubic B-splines:

u(xj , t) = δj−1 + 4δj + δj+1 +O(h4),

ux(xj , t) = − 3

h
(δj−1 − δj+1) +O(h4).

(2.8)

The value of w(x, t) and its higher-order derivatives can be obtained from the above relations, just by replacing δ
with σ.

3. Implementation of Proposed Technique

Apply Crank-Nicolson scheme to discretize the temporal domain of coupled Burgers’ equations (1.1) and (1.2) as
follows:

um+1 − um

∆t
=
um+1
xx + umxx

2
−α

[
(uux)m+1 + (uux)m

2

]
−η
[

(uwx)m+1 + (uwx)m

2

]
−η
[

(wux)m+1 + (wux)m

2

]
.

(3.1)

wm+1 − wm

∆t
=
wm+1
xx + wmxx

2
−α

[
(wwx)m+1 + (wwx)m

2

]
−ρ
[

(uwx)m+1 + (uwx)m

2

]
−ρ
[

(wux)m+1 + (wux)m

2

]
.

(3.2)

Linearize the nonlinear terms using the quasilinearization process, reported by [6] as follows:

(uwx)m+1 = (uwx)m + (um+1 − um)

(
∂(uwx)

∂u

)m
+ (wm+1

x − wmx )

(
∂(uwx)

∂wx

)m
+O(∆t2).

Similar relation holds for the terms (uux)m+1 and (wux)m+1. Substitute the above values in Eqs. (3.1)-(3.2) and
separate the terms of (m+ 1)th and mth time level:

[
1

∆t
+
α

2
umx +

η

2
wmx

]
um+1+

[α
2
um +

η

2
wm
]
um+1
x −u

m+1
xx

2
+

(
η

2
umx

)
wm+1+

(
η

2
um
)
wm+1
x =

um

∆t
+
umxx
2
. (3.3)

[
1

∆t
+
α

2
wmx +

ρ

2
umx

]
wm+1 +

[α
2
wm +

ρ

2
um
]
wm+1
x − wm+1

xx

2
+

(
ρ

2
wmx

)
um+1 +

(
ρ

2
wm
)
um+1
x =

wm

∆t
+
wmxx

2
.

(3.4)

At any jth nodal point, Eqs. (3.3)-(3.4) can be written as follows:

P1(j)um+1
j +Q1(j)(ux)m+1

j −
(uxx)m+1

j

2
+R1(j)wm+1

j + S1(j)(wx)m+1
j = E1(j). (3.5)

R2(j)wm+1
j + S2(j)(wx)m+1

j −
(wxx)m+1

j

2
+ P2(j)um+1

j +Q2(j)(ux)m+1
j = E2(j). (3.6)

Substitute the optimal values of u(x, t), w(x, t), and their higher-order derivatives and clubbing the coefficients of
δm+1
j ’s and σm+1

j ’s for j = 0, 1, ..., N :
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For j = 0:[
P1(0) − 3Q1(0)

h
− 7

2h2

]
δm+1
−1 +

[
4P1(0) +

33

4h2

]
δm+1
0 +

[
P1(0) +

3Q1(0)

h
− 7

h2

]
δm+1
1 +

7

2h2
δm+1
2 −

3

2h2
δm+1
3 +

1

4h2
δm+1
4 +

[
R1(0) − 3S1(0)

h

]
σm+1
−1 + 4R1(0)σm+1

0 +

[
R1(0) +

3S1(0)

h

]
σm+1
1 = E1(0) +O(h4).

a0δ
m+1
−1 + b0δ

m+1
0 + c0δ

m+1
1 +d0δ

m+1
2 + e0δ

m+1
3 +f0δ

m+1
4 +g0σ

m+1
−1 + l0σ

m+1
0 +n0σ

m+1
1 = E1(0) +O(h4). (3.7)

[
P2(0) − 3Q2(0)

h

]
δm+1
−1 + 4P2(0)δm+1

0 +

[
P2(0) +

3Q2(0)

h

]
δm+1
1 +

[
R2(0) − 3S2(0)

h
− 7

2h2

]
σm+1
−1 +[

4R2(0) +
33

4h2

]
σm+1
0 +

[
R2(0) +

3S2(0)

h
− 7

h2

]
σm+1
1 +

7

2h2
σm+1
2 − 3

2h2
σm+1
3 +

1

4h2
σm+1
4 = E2(0) +O(h4).

p0δ
m+1
−1 +q0δ

m+1
0 +r0δ

m+1
1 +s0σ

m+1
−1 +v0σ

m+1
0 +y0σ

m+1
1 +d0σ

m+1
2 +e0σ

m+1
3 +f0σ

m+1
4 = E2(0)+O(h4). (3.8)

For j = 1, 2, ..., N − 1:

− 1

4h2
δm+1
j−2 +

[
P1(j) − 3Q1(j)

h
− 2

h2

]
δm+1
j−1 +

[
4P1(j) +

9

2h2

]
δm+1
j +

[
P1(j) +

3Q1(j)

h
− 2

h2

]
δm+1
j+1 −

1

4h2
δm+1
j+2 +

[
R1(j) − 3S1(j)

h

]
σm+1
j−1 + 4R1(j)σm+1

j +

[
R1(j) +

3S1(j)

h

]
σm+1
j+1 = E1(j) +O(h4).

ajδ
m+1
j−2 + bjδ

m+1
j−1 + cjδ

m+1
j + djδ

m+1
j+1 + ajδ

m+1
j+2 + gjσ

m+1
j−1 + ljσ

m+1
j + njσ

m+1
j+1 = E1(j) +O(h4). (3.9)

[
P2(j) − 3Q2(j)

h

]
δm+1
j−1 + 4P2(j)δm+1

j +

[
P2(j) +

3Q2(j)

h

]
δm+1
j+1 − 1

4h2
σm+1
j−2 +

[
R2(j) − 3S2(j)

h
− 2

h2

]
σm+1
j−1 +[

4R2(j) +
9

2h2

]
σm+1
j +

[
R2(j) +

3S2(j)

h
− 2

h2

]
σm+1
j+1 − 1

4h2
σm+1
j+2 = E2(j) +O(h4).

pjδ
m+1
j−1 + qjδ

m+1
j + rjδ

m+1
j+1 + ajσ

m+1
j−2 + sjσ

m+1
j−1 + vjσ

m+1
j + yjσ

m+1
j+1 + ajσ

m+1
j+2 = E2(j) +O(h4). (3.10)

For j = N :

1

4h2
δm+1
N−4 − 3

2h2
δm+1
N−3 +

7

2h2
δm+1
N−2 +

[
P1(N) − 3Q1(N)

h
− 7

h2

]
δm+1
N−1 +

[
4P1(N) +

33

4h2

]
δm+1
N +[

P1(N) − 3Q1(N)

h
− 7

2h2

]
δm+1
N+1 +

[
R1(N) − 3S1(N)

h

]
σm+1
N−1 + 4R1(N)σm+1

N +

[
R1(N) +

3S1(N)

h

]
σm+1
N+1 =

E1(N) +O(h4).

aNδ
m+1
N−4 +bNδ

m+1
N−3 +cNδ

m+1
N−2 +dNδ

m+1
N−1 +eNδ

m+1
N +fNδ

m+1
N+1 +gNσ

m+1
N−1 + lNσ

m+1
N +nNσ

m+1
N+1 = E1(N)+O(h4).

(3.11)

[
P2(N) − 3Q2(N)

h

]
δm+1
N−1 + 4P2(N)δm+1

N +

[
P2(N) +

3Q2(N)

h

]
δm+1
N+1 +

1

4h2
σm+1
N−4 − 3

2h2
σm+1
N−3 +

7

2h2
σm+1
N−2+[

R2(N) − 3S2(N)

h
− 7

h2

]
σm+1
N−1 +

[
4R2(N) +

33

4h2

]
σm+1
N +

[
R2(N) +

3S2(N)

h
− 7

2h2

]
σm+1
N+1 = E2(N) +O(h4).
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pNδ
m+1
N−1 +qNδ

m+1
N +rNδ

m+1
N+1 +aNσ

m+1
N−4 +bNσ

m+1
N−3 +cNσ

m+1
N−2 +sNσ

m+1
N−1 +vNσ

m+1
N +yNσ

m+1
N+1 = E2(N)+O(h4).

(3.12)

The system of (2N + 2) equations is obtained in (2N + 6) unknowns. The value of four extra unknowns δ−1, δN+1,
σ−1, and σN+1 can be obtained using the boundary conditions (1.4) i.e.,

δ−1 + 4δ0 + δ1 = Ψ1(t), δN−1 + 4δN + δN+1 = Ψ2(t),

σ−1 + 4σ0 + σ1 = Ψ3(t), σN−1 + 4σN + σN+1 = Ψ4(t).
(3.13)

The system of equations can be represented in matrix form as:

AX = B, (3.14)

where A is a (2N + 2)× (2N + 2) square matrix, X and B are (2N + 2)× 1 column matrices. The nonzero entries in
matrix A are marked with ‘×’ and remaining entries are zero.

A =



× × × × × 0 0 ... 0 0 0 0 0 0 0 × × 0 0 0 0 0 ... 0 0 0 0 0 0 0
× × × × 0 0 0 ... 0 0 0 0 0 0 0 × × × 0 0 0 0 ... 0 0 0 0 0 0 0
× × × × × 0 0 ... 0 0 0 0 0 0 0 0 × × × 0 0 0 ... 0 0 0 0 0 0 0
0 × × × × × 0 ... 0 0 0 0 0 0 0 0 0 × × × 0 0 ... 0 0 0 0 0 0 0
. . . . . . . ... . . . . . . . . . . . . . . ... . . . . . .
. . . . . . . ... . . . . . . . . . . . . . . ... . . . . . .
0 0 0 0 0 0 0 ... 0 × × × × × 0 0 0 0 0 0 0 0 ... 0 0 × × × 0 0
0 0 0 0 0 0 0 ... 0 0 × × × × × 0 0 0 0 0 0 0 ... 0 0 0 × × × 0
0 0 0 0 0 0 0 ... 0 0 0 × × × × 0 0 0 0 0 0 0 ... 0 0 0 0 × × ×
0 0 0 0 0 0 0 ... 0 0 × × × × × 0 0 0 0 0 0 0 ... 0 0 0 0 0 × ×
× × 0 0 0 0 0 ... 0 0 0 0 0 0 0 × × × × × 0 0 ... 0 0 0 0 0 0 0
× × × 0 0 0 0 ... 0 0 0 0 0 0 0 × × × × 0 0 0 ... 0 0 0 0 0 0 0
0 × × × 0 0 0 ... 0 0 0 0 0 0 0 × × × × × 0 0 ... 0 0 0 0 0 0 0
0 0 × × × 0 0 ... 0 0 0 0 0 0 0 0 × × × × × 0 ... 0 0 0 0 0 0 0
. . . . . . . ... . . . . . . . . . . . . . . ... . . . . . .
. . . . . . . ... . . . . . . . . . . . . . . ... . . . . . .
0 0 0 0 0 0 0 ... 0 0 × × × 0 0 0 0 0 0 0 0 0 ... 0 × × × × × 0
0 0 0 0 0 0 0 ... 0 0 0 × × × 0 0 0 0 0 0 0 0 ... 0 0 × × × × ×
0 0 0 0 0 0 0 ... 0 0 0 0 × × × 0 0 0 0 0 0 0 ... 0 0 0 × × × ×
0 0 0 0 0 0 0 ... 0 0 0 0 0 × × 0 0 0 0 0 0 0 ... 0 0 × × × × ×



X = [δ0, δ1, δ2, δ3, ..., δN−3, δN−2, δN−1, δN , σ0, σ1, σ2, σ3, ..., σN−3, σN−2, σN−1, σN ]T ,

B =[E1(0)− a0Ψ1((m+ 1)∆t)− g0Ψ3((m+ 1)∆t), E1(1)− a1Ψ1((m+ 1)∆t), E1(2), ...,

E1(N − 1)− aN−1Ψ2((m+ 1)∆t), E1(N)− fNΨ2((m+ 1)∆t)− nNΨ4((m+ 1)∆t), E2(0)−
p0Ψ1((m+ 1)∆t)− s0Ψ3((m+ 1)∆t), E2(1)− a1Ψ3((m+ 1)∆t), E2(2), ..., E2(N − 1)−
aN−1Ψ4((m+ 1)∆t), E2(N)− rNΨ2((m+ 1)∆t)− yNΨ4((m+ 1)∆t)]T .

3.1. Initial Values: The value at initial time levels i.e., δ0 and σ0 is required to calculate the solution at every
successive time-level. The initial conditions (1.3) gives:

δ0
j−1 + 4δ0

j + δ0
j+1 = Φ1(xj),

σ0
j−1 + 4σ0

j + σ0
j+1 = Φ2(xj), j = 0, 1, ..., N.

(3.15)

These equations form a system of (2N + 2) equations in (2N + 6) unknowns. The value of four unknowns
δ0
−1, δ

0
N+1, σ

0
−1 and σ0

N+1 can be obtained using the boundary conditions (1.4) as follows:

ux(xL, 0) =
dΦ1

dx
(xL), ux(xR, t) =

dΦ1

dx
(xR),

wx(xL, 0) =
dΦ2

dx
(xL), wx(xR, t) =

dΦ2

dx
(xR).

(3.16)
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3.2. Pseudocode:

• Input the values of xL, xR, h, ∆t, t, N , x0, t0;
• Space integration
FOR (j = 1; j < N + 1; j + +)
xj = x0 + jh;
ENDFOR

• Time integration
FOR (m = 1; m < t

∆t + 1; m+ +)

tm = t0 +m∆t;
ENDFOR

• Input matrix corresponding to initial condition, to calculate the value of δ and σ at initial time using Eqs.
(3.15)-(3.16);

• Calculate the value of u(x, t) and ux(x, t) using Eq. (2.8);
• Similarly calculate the value of w(x, t) and wx(x, t);
• Input matrix A and B to solve the system (3.14);
• The value of δ and σ will be calculated at next time level.;
• Using Eq. (2.8), the value of u(x, t), ux(x, t), w(x, t), and wx(x, t) can be calculated at next time level;
• Continue until the value at required time level is obtained;
• Compute L∞ and L2 error norms using Eq. (5.1);
• Compute order of convergence using Eq. (5.2);

4. Stability Analysis

The stability analysis of the proposed optimal spline collocation technique is carried out using the von-Neumann
scheme. To linearize the nonlinear terms in the Eqs. (1.1)-(1.2), take u and w as local constants λ1 and λ2 respectively.
With this, Eq. (1.1) becomes the following:

∂u

∂t
=
∂2u

∂x2
− αλ1

∂u

∂x
− ηλ2

∂u

∂x
− ηλ1

∂w

∂x
. (4.1)

Apply the Crank-Nicolson scheme to discretize the temporal domain at any nodal point ‘j’:

um+1
j − um

j

∆t
=

(uxx)m+1
j + (uxx)mj

2
− αλ1

[
(ux)m+1

j + (ux)mj

2

]
− ηλ2

[
(ux)m+1

j + (ux)mj

2

]
− ηλ1

[
(wx)m+1

j + (wx)mj

2

]
.

(4.2)

Separate the terms of (m+ 1)th and mth time level:

um+1
j

∆t
+(αλ1+ηλ2)

(ux)m+1
j

2
−

(uxx)m+1
j

2
+ηλ1

(wx)m+1
j

2
=
umj
∆t
−(αλ1+ηλ2)

(ux)mj
2

+
(uxx)mj

2
−ηλ1

(wx)mj
2

. (4.3)

Substitute the optimal values of u(x, t), w(x, t), and their higher-order derivatives and clubbing the coefficients of
δm+1
j ’s and σm+1

j ’s:

− 1

4h2
δm+1
j−2 +

[
1

∆t
− 3(αλ1 + ηλ2)

2h
− 2

h2

]
δm+1
j−1 +

[
4

∆t
+

9

2h2

]
δm+1
j +

[
1

∆t
+

3(αλ1 + ηλ2)

2h
− 2

h2

]
δm+1
j+1 −

1

4h2
δm+1
j+2 − 3ηλ1

2
σm+1
j−1 +

3ηλ1

2
σm+1
j+1 =

1

4h2
δmj−2 +

[
1

∆t
+

3(αλ1 + ηλ2)

2h
+

2

h2

]
δmj−1 +

[
4

∆t
− 9

2h2

]
δmj +[

1

∆t
− 3(αλ1 + ηλ2)

2h
+

2

h2

]
δmj+1 +

1

4h2
δmj+2 +

3ηλ1

2
σm
j−1 −

3ηλ1

2
σm
j+1.

(4.4)
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For simplification, write the above equation in the following form:

z1δ
m+1
j−2 + z2δ

m+1
j−1 + z3δ

m+1
j + z4δ

m+1
j+1 + z1δ

m+1
j+2 + z5σ

m+1
j−1 − z5σ

m+1
j+1 = −z1δ

m
j−2 + z6δ

m
j−1+

z7δ
m
j + z8δ

m
j+1 − z1δ

m
j+2 − z5σ

m
j−1 + z5σ

m
j+1.

(4.5)

Put δmj = Aχmeijφ and σmj = Bχmeijφh, where χ is the amplification factor, A, B are the amplitudes, i =
√
−1,

and φ = κh, where κ is the mode number and h is the spatial step length.

χ =
−z1Ae

−2iφ + z6Ae
−iφ + z7A+ z8Ae

iφ − z1Ae
2iφ − z5Be

−iφ + z5Be
iφ

z1Ae−2iφ + z2Ae−iφ + z3A+ z4Aeiφ + z1Ae2iφ + z5Be−iφ − z5Beiφ
,

=
−2z1Acos(2φ) + (z6 + z8)Acos(φ) + z7A+ i(−z6 + z8)Asin(φ) + i2z5Bsin(φ)

2z1Acos(2φ) + (z2 + z4)Acos(φ) + z3A+ i(−z2 + z4)Asin(φ)− i2z5Bsin(φ)
,

=
F1 + iG1

F2 + iG2
,

(4.6)

where

F1 = A

[
1

2h2
cos(2φ) +

(
2

∆t
+

4

h2

)
cos(φ) +

4

∆t
− 9

2h2

]
,

G1 = −3A(αλ1 + ηλ2)

h
sin(φ)− 3ηλ1Bsin(φ),

F2 = A

[
− 1

2h2
cos(2φ) +

(
2

∆t
− 4

h2

)
cos(φ) +

4

∆t
+

9

2h2

]
,

G2 =
3A(αλ1 + ηλ2)

h
sin(φ) + 3ηλ1Bsin(φ).

For the stability of the technique, one needs to prove that |χ| ≤ 1. Since G1 = −G2, so G2
1 = G2

2. For |χ| ≤ 1, one
only needs to prove that F2 ≥ F1 or F2 − F1 ≥ 0.

F2 − F1 = A

[
− 1

h2
cos(2φ)− 8

h2
cos(φ) +

9

h2

]
. (4.7)

Take cos(φ) = 1 for the minimum possible value of F2 − F1, which gives F2 − F1 = 0. Hence F2 − F1 ≥ 0. Since
G2

1 = G2
2 and F 2

2 ≥ F 2
1 , so |χ| ≤ 1. Hence the scheme is unconditionally stable. This means that there is no restriction

on the spatial and temporal step size, i.e., on h and ∆t. Due to symmetric nature of u and w, similar results can be
obtained for Eq. (1.2).

5. Numerical Examples

To illustrate the applicability of the proposed optimal collocation technique, few problems of coupled Burgers’
equations are solved hereunder. The L∞ and L2 error norms are calculated using the following formulae:

L∞ = max
0≤j≤N

|uexactj − unumj | , L2 =

√
N∑
j=0

|uexactj − unumj |2√
N∑
j=0

|uexactj |2
, (5.1)
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where uexactj and unumj represents the exact and optimal cubic B-spline solutions respectively at any nodal point ‘xj ’
for some fixed time.

To show the improvement in the results over the standard CSCM, the following formula is used to compute the
order of convergence:

Order =
log(Err(N1)/Err(N2))

log(N2/N1)
, (5.2)

where Err(N1) and Err(N2) represents the error with N1 and N2 number of partitions of the spatial domain. Order
of convergence is calculated corresponding to both L∞ and L2 error norms.

Example 1. Consider the coupled Burgers’ equations (1.1) and (1.2) with α = −2, η = 1, ρ = 1 in the spatial
domain [−π, π], with the following initial conditions:

u(x, 0) = w(x, 0) = sin(x), (5.3)

and the boundary conditions:

u(−π, t) = u(π, t) = w(−π, t) = w(π, t) = 0. (5.4)

The exact solution of the problem is given in [17] as:

u(x, t) = w(x, t) = exp(−t)sin(x). (5.5)

Numerical results are obtained for different spatial and temporal step sizes and are compared with existing results.
Table 1 show the comparison of L∞(u) and L2(u) error norms with α = −2, η = 1, ρ = 1, ∆t = 0.001, and t = 0.1.
It is observed that the results with the proposed optimal cubic B-spline collocation technique are better than septic
B-spline collocation method [36]. In Table 2 values of exact and numerical solutions is compared at different nodal
points with α = −2, η = 1, ρ = 1, ∆t = 0.001, and N = 50 at different time levels. In Table 3, a comparison of
order of convergence is given with ∆t = 0.001. Comparison shows that proposed OCSCM provides fourth-order while
the classical CSCM [22] gives second-order of convergence in spatial domain. In Table 4, the order of convergence is
obtained numerically which agrees with the theoretical results. In Table 5, L∞(u) error norm is calculated at different
time levels t = 0.5, 1.0, 2.0, and 3.0. The comparison shows that results are better than many existing techniques
such as the differential quadrature method [23], Galerkin quadratic B-spline finite element method [20], modified cubic
B-spline collocation method [25], and trigonometric cubic B-spline collocation method [11]. In Table 6, the comparison
of L∞(u) and L2(u) error norms is presented at different time levels. The result shows that the proposed technique
is more accurate than the cubic B-spline collocation method [22], implicit finite difference scheme [42], Haar wavelets
[19], etc even with less number of spatial nodal points. In Table 7, a comparison of L∞(u) and L∞(w) error norm is
given at different time levels and it is shown that the technique is computationally efficient. In Table 8 comparison
of L∞(u) and L∞(w) error norm is given with α = −20, η = 10, and ρ = 10. Figure 1 shows the similarity between
numerical and exact solutions at different time levels and Figure 2 represents the 3-D plot of the exact and numerical
solutions with N = 100, ∆t = 0.005, and t = 1.

Example 2. Consider the coupled Burgers’ equations (1.1) and (1.2) with α = 2, for different value of η and ρ in
the spatial domain [−10, 10], with the following initial conditions:

u(x, 0) = %[1− tanh(ϑx)],

w(x, 0) = %

[(
2ρ− 1

2η − 1

)
− tanh(ϑx)

]
.

(5.6)
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The exact solution of the problem is given in [41] as:

u(x, t) = %[1− tanh(ϑ(x− 2ϑt))],

w(x, t) = %

[(
2ρ− 1

2η − 1

)
− tanh(ϑ(x− 2ϑt))

]
,

(5.7)

where

% = 0.05, ϑ =
%

2

(
4ηρ− 1

2η − 1

)
.

In Table 9, values of exact and numerical solutions are compared at different nodal points with α = 2, η = 0.1,
ρ = 0.3, ∆t = 0.001, and N = 100 at different time levels. Table 10-11 give the comparison of L∞(u) and L∞(w) error
norms with α = 2 and ∆t = 0.01 for different values of η and ρ. The comparison shows that results with OCSCM are
better than Chebyshev spectral collocation method [18], Fourier pseudospectral method [28], cubic B-spline collocation
method [22],differential quadrature method [23], and Haar wavelets [19]. Also, better results are obtained even with
fewer collocation points, which reduces computations also. In Table 12, a comparison of L∞(u), L∞(w) error norms,
and CPU time are given. Figure 3 shows the comparison of numerical and exact solutions and Figure 4 gives the 3-D
plot of exact and numerical solutions N = 100, ∆t = 0.005, and T = 1.

Example 3. Consider the coupled Burgers’ equations (1.1) and (1.2) for different value of α, η, and ρ in the spatial
domain [0, 1], with the following initial conditions:

u(x, 0) =


sin(2πx), 0 ≤ x ≤ 0.5,

0, 0.5 < x ≤ 1,

w(x, 0) =


0, 0 ≤ x ≤ 0.5,

−sin(2πx), 0.5 < x ≤ 1,

(5.8)

and boundary conditions:

u(0, t) = u(1, t) = 0, w(0, t) = w(1, t) = 0. (5.9)

Very limited work is available in the literature dealing with the coupled Burgers’ equation with a periodic initial
condition in contrast to coupled Burgers’ equation with non-periodic initial condition. Also, the exact solution of
this problem is not available in the literature. The solution of this problem is examined numerically at different time
levels. In Table 13, a comparison of L∞(u) error norm and order of convergence is reported with ∆t = 0.01, α = 2,
and ρ = η = 10 at t = 0.1. Due to the non-availability of the exact solution, the solution with a different number
of partitions is compared with the solution with 400 number of partitions, considering it as exact solution. Figure 5
represents the 2-D plots of numerical solution with N = 100, ∆t = 0.001, η = ρ = 10, for different values of α at differ-
ent time levels. In Figure 6, 3-D plots is given with N = 100, ∆t = 0.001, η = ρ = 10 and α = 2 at t = 0.01 and t = 0.5.

6. Conclusion

In this analysis, a simple numerical technique has been implemented to solve the coupled Burgers’ equation. Just
by making few posteriori corrections in cubic B-spline interpolant, the optimal cubic B-spline collocation method
is providing better results in terms of accuracy than many other techniques such as Chebyshev spectral collocation
method [18], Fourier pseudospectral method [28], implicit finite difference scheme [42], cubic B-spline [22], modified
cubic B-spline [25], trigonometric cubic B-spline [11], septic B-spline collocation method [36], differential quadrature
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Figure 1. Comparison of numerical and exact solution of Example 1 at different time levels with
N = 32 and ∆t = 0.01.
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Figure 2. 3-D plots of Example 1 with N = 100, ∆t = 0.005, and t = 1.

method [23], Galerkin quadratic B-spline FEM [20], etc. Also, it is computationally efficient, as better accuracy is
achieved with a very small number of nodal points. This technique can be extended to solve higher-order problems
arising in various fields of science and engineering.
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Table 1. Comparison of L∞(u) and L2(u) error norms of Example 1 with α = −2, η = 1, ρ = 1,
∆t = 0.001, and t = 0.1.

OCSCM SSCM [36] OCSCM SSCM [36]

N L∞(u) L2(u) L∞(u) L2(u) L∞(w) L2(w) L∞(w) L2(w)

50 7.0019E-8 7.0001E-8 7.4345E-7 6.7212E-7 7.0019E-8 7.0001E-8 7.4345E-7 6.7212E-7
100 1.1457E-8 1.1455E-8 7.9486E-7 7.3458E-7 1.1457E-8 1.1455E-8 7.9486E-7 7.3458E-7
128 8.9994E-9 8.9992E-9 8.1239E-7 7.8341E-7 8.9994E-9 8.9992E-9 8.1239E-7 7.8341E-7
200 7.7851E-9 7.7851E-9 9.6414E-7 9.0329E-7 7.7851E-9 7.7851E-9 9.6414E-7 9.0329E-7

Table 2. Absolute error of Example 1 with α = −2, η = 1, ρ = 1, ∆t = 0.001, and N = 50 at
different time levels.

t = 0.1 t = 0.5

x uext unum Absolute Error uext unum Absolute Error

-3.1416 -1.108106248E-16 -1.548379480E-13 1.5495E-13 -7.427858310E-17 -1.483466128E-13 1.4827E-13
-2.5133 -0.531850090044 -0.531850049240 4.0804E-08 -0.356509776842 -0.356509639736 1.3710E-07
-1.8850 -0.860551522611 -0.860551455900 6.6711E-08 -0.576844936252 -0.576844713105 2.2315E-07
-1.2566 -0.860551522611 -0.860551455886 6.6724E-08 -0.576844936252 -0.576844712766 2.2349E-07
-0.6283 -0.531850090044 -0.531850048806 4.1238E-08 -0.356509776842 -0.356509638659 1.3818E-07

0 4.018285340E-16 -2.983724379E-16 7.0020E-16 2.693537214E-16 -2.777292285E-15 3.0466E-15
0.6283 0.531850090044 0.531850048806 4.1238E-08 0.356509776842 0.356509638659 1.3818E-07
1.2566 0.860551522611 0.860551455886 6.6724E-08 0.576844936252 0.576844712766 2.2349E-07
1.8850 0.860551522611 0.860551455900 6.6711E-08 0.576844936252 0.576844713105 2.2315E-07
2.5133 0.531850090044 0.531850049240 4.0805E-08 0.356509776842 0.356509639736 1.3710E-07
3.1416 -6.928464432E-16 -2.775557561E-17 6.6509E-16 -4.644288597E-16 1.734723476E-18 4.6616E-16

Table 3. Comparison of order of convergence with ∆t = 0.001.

OCSCM (t = 0.1) CSCM [22] (t = 0.1) OCSCM (t = 0.5) CSCM [22] (t = 0.5)

N L∞(u) Order L∞(u) Order L∞(u) Order L∞(u) Order

8 1.1310E-4 - - - 2.2378e-04 - - -
16 6.9261E-6 4.0294 - - 1.3089e-05 4.0957 - -
32 3.8023E-7 4.1871 2.9104E-4 - 8.0682E-7 4.0200 9.7478E-4 -
64 2.0876E-8 4.1870 7.2704E-5 2.001 5.0343E-8 4.0024 2.4361E-4 2.005
128 1.9994E-9 3.3842 1.8178E-5 1.999 5.0162E-9 3.3271 6.0896E-5 2.001

Table 4. Order of convergence with ∆t = 0.005, and t = 1.

N L∞(u) Order L2(u) Order

8 2.1807E-4 - 2.1402E-4 -
16 1.3446E-5 4.0195 1.3030E-5 4.0378
32 9.2700E-7 3.8584 9.2669E-7 3.8136
64 8.6120E-8 3.4282 8.6118E-8 3.4277
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Table 5. Comparison of L∞(u) error norm of Example 1 with α = −2, η = 1, ρ = 1, ∆t = 0.01, and
N = 50 at different time levels.

t OCSCM DQM [23] GQFEM [20] MCSCM [25] TCSCM [11]

0.5 2.7315E-6 1.5169E-4 2.2336E-5 1.1031E-4 3.7144E-4
1.0 3.3133E-6 1.8397E-4 1.4618E-5 1.3369E-4 4.5072E-4
2.0 2.4377E-6 1.3525E-4 0.7380E-5 9.8182E-5 3.3183E-4
3.0 1.3451E-6 7.4601E-5 0.4027E-5 1.02995E-5 1.8322E-4

Table 6. Comparison of L∞(u) and L2(u) error norms of Example 1 with α = −2, η = 1, ρ = 1,
and ∆t = 0.001 at different time levels.

t 0.1 0.5 1.0

L∞(u) L2(u) L∞(u) L2(u) L∞(u) L2(u)

OCSCM (N = 32) 3.8023E-7 4.1669E-7 1.2682E-6 2.0812E-6 1.5348E-6 4.1620E-6
CPU time(s) 0.05921 0.05797 0.13794 0.13998 0.22829 0.23394

CSCM [22] (N = 200) 7.4500E-6 8.2100E-6 4.1000E-5 2.4900E-5 8.2100E-5 3.0000E-5
CSCM [22] (N = 400) 1.8600E-6 2.0500E-6 6.2200E-6 1.0200E-5 7.5600E-6 2.0400E-5
IFDM [42] (N = 200) 5.3000E-5 5.8600E-5 1.7900E-4 2.9004E-4 2.1700E-4 5.9100E-4
HWM [19] (N = 32) 3.7650E-5 3.2690E-8 7.2700E-6 1.0540E-8 2.3810E-5 5.0290E-7

CPU time(s) 0.145 0.153 0.506 0.539 0.961 0.992

Table 7. Comparison of L∞(u) and L∞(w) error norms of Example 1 with α = −20, η = 10, ρ = 10,
N = 16 and ∆t = 0.001 at different time levels.

t OCSCM HWM [19]

L∞(u) L∞(w) CPU time(s) L∞(u) L∞(w) CPU time(s)

0.1 3.8023E-7 3.8023E-7 0.071487 3.765E-5 3.765E-5 0.15
0.5 1.2682E-6 1.2682E-6 0.176013 7.270E-6 7.270E-6 0.52
1.0 1.5348E-6 1.5348E-6 0.294007 2.381E-4 2.381E-4 0.95
2.0 1.1279E-6 1.1279E-6 0.387541 8.125E-4 8.125E-4 1.84

Table 8. Comparison of L∞(u) and L∞(w) error norms of Example 1 with α = −20, η = 10, ρ = 10,
N = 16, and ∆t = 0.0001 at different time levels.

t OCSCM HWM [19]

L∞(u) L∞(w) CPU time(s) L∞(u) L∞(w) CPU time(s)

0.2 6.7385E-7 6.7399E-7 0.412670 2.645E-6 2.645E-6 2.28
0.4 1.1002E-6 1.1002E-6 0.706992 2.101E-5 2.101E-5 11.13
0.6 5.3535E-5 5.3535E-5 0.963793 8.753E-5 8.753E-5 22.44
0.5 1.4711E-6 1.4710E-6 1.260307 2.245E-5 2.245E-5 35.79
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Figure 3. Comparison of numerical and exact solution of Example 2 at different time levels with
N = 32 and ∆t = 0.01.
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Figure 4. 3-D plots of Example 2 with N = 100, ∆t = 0.005, and t = 1.

Table 9. Absolute error of Example 2 with α = 2, η = 0.1, ρ = 0.3, N = 100 and ∆t = 0.001 at
different time levels.

t = 0.1 t = 0.5

x uext unum Absolute Error uext unum Absolute Error

-10 0.0634205770475 0.0634205770475 2.3176E-15 0.0634486431326 0.0634486431326 5.6482E-14
-8 0.0608331108080 0.0608415529515 8.4421E-06 0.0608619370148 0.0609036066266 4.1670E-05
-6 0.0581832977931 0.0581915285569 8.2308E-06 0.0582127345817 0.0582539176980 4.1183E-05
-4 0.0554853951137 0.0554933475837 7.9525E-06 0.0555152790429 0.0555550768408 3.9798E-05
-2 0.0527547700412 0.0527623832857 7.6132E-06 0.0527849272084 0.0528230338414 3.8107E-05
0 0.0500075624999 0.0500147834711 7.2210E-06 0.0500378124928 0.0500739617361 3.6149E-05
2 0.0472603092976 0.0472670943564 6.7851E-06 0.0472904694723 0.0473244420603 3.3972E-05
4 0.0445295483399 0.0445358643071 6.3160E-06 0.0445594382121 0.0445910671461 3.1629E-05
6 0.0418314227888 0.0418372474662 5.8247E-06 0.0418608683152 0.0418900413952 2.9173E-05
8 0.0391813051308 0.0391866272811 5.3222E-06 0.0392101426680 0.0392365453825 2.6403E-05
10 0.0365934594148 0.0365934594148 6.9389E-18 0.0366215391690 0.0366215391690 6.9389E-18
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Figure 5. 2-D plots of Example 3 with N = 100, ∆t = 0.001, and η = ρ = 10.
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Figure 6. 3-D plots of Example 3 with N = 100, ∆t = 0.001, α = 2, and η = ρ = 10.
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Table 10. Comparison of L∞(u) error norm of Example 2 with α = 2 and ∆t = 0.01.

t η ρ OCSCM CCM [18] FPSM [28] CSCM [22] DQM [23] HWM [19]
(N = 16) (N = 20) (N = 20) (N = 100) (N = 21) (N = 16)

0.5 0.1 0.3 4.1923E-5 4.43E-5 9.619E-4 4.167E-5 4.173E-5 5.709E-5
0.3 0.03 4.5905E-5 4.48E-5 4.310E-4 4.590E-5 4.585E-5 1.682E-5

1.0 0.1 0.3 8.2569E-5 8.66E-5 1.153E-3 8.258E-5 8.275E-5 1.100E-5
0.3 0.03 9.1816E-5 9.16E-5 1.268E-3 9.182E-5 9.167E-5 3.223E-5

Table 11. Comparison of L∞(w) error norm of Example 2 with α = 2 and ∆t = 0.01 at different
time levels.

t η ρ OCSCM CCM [18] FPSM [28] CSCM [22] DQM [23] HWM [19]
(N = 16) (N = 20) (N = 20) (N = 100) (N = 21) (N = 16)

0.5 0.1 0.3 2.1581E-5 4.99E-5 3.332E-4 1.480E-4 5.418E-5 3.697E-5
0.3 0.03 1.8093E-4 1.81E-4 1.148E-3 5.729E-4 2.826E-5 2.639E-5

1.0 0.1 0.3 4.2137E-5 9.92E-5 1.162E-3 4.770E-5 1.074E-4 6.940E-5
0.3 0.03 3.6173E-4 3.62E-4 1.638E-3 3.617E-4 5.673E-5 5.219E-4

Table 12. Comparison of L∞(u) and L∞(w) error norms of Example 2 with α = 2, η = 0.1, ρ = 0.3,
and ∆t = 0.001 at different time levels.

t OCSCM (N = 16) HWM [19] (N = 64)

L∞(u) L∞(w) CPU time(s) L∞(u) L∞(w) CPU time(s)

0.5 4.1923E-5 2.1581E-5 0.053673 5.675E-5 3.679E-5 3.064
1 8.2569E-5 4.2137E-5 0.065548 2.085E-5 1.359E-5 6.131
2 1.6216E-4 7.9579E-5 0.070561 2.085E-4 1.359E-4 11.95
3 2.4079E-4 1.1535E-4 0.095301 3.006E-4 2.049E-4 18.33

Table 13. Comparison of L∞(u) error norm and order of convergence of Example 3 with α = 2 at
t = 0.1.

N OCSCM CSCM [22]

L∞(u) Order L∞(u) Order

50 9.9540E-3 - 0.018812 -
100 1.0123E-3 3.2976 0.005508 1.772
200 1.0541E-4 3.2637 0.001649 1.740
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