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Abstract

In this article, we use the Haar wavelets (HWs) method to numerically solve the nonlinear Drinfel’d–Sokolov

(DS) system. For this purpose, we use an approximation of functions with the help of HWs, and we approximate

spatial derivatives using this method. In this regard, to linearize the nonlinear terms of the equations, we use the
quasilinearization technique. At the end, to show the effectiveness and accuracy of the method in solving this

system one numerical example is provided.
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1. Introduction

Nonlinear coupled partial differential equations are very significant in a type of scientific field, especially in fluid
mechanics, solid-state physics, plasma waves, plasma physics, and chemical physics. Since many nonlinear physical
phenomena can be explained by the exact and numerical solutions of nonlinear equations, the attempt for finding the
exact and numerical solutions to these phenomena is important.

In this article, our main goal is to solve numerically the DS system. A generalized form of the DS system is given
by: {

ϕt + (ψ2)x = 0,

ψt − αψxxx + 3βϕxψ + 3δϕψx = 0,
(1.1)

where α, β, and δ are constants.
Drinfeld and Sokolov introduced system (1.1) as an example of a special form of a system of nonlinear equations

possessing Lax pairs [8]. Many researchers have devoted considerable efforts by successfully implementing various
methods to extract solitary wave solutions and other solutions of DS and DSW (Drinfel’d–Sokolov–Wilson) systems
[2, 5, 14, 20–22].

In 1910, Alfred Haar, a Hungarian mathematician, introduced the HWs. Mathematically, HWs are among the
simplest types of wavelets and are known as piecewise constant functions. The possibility to integrate analytically
at arbitrary times of the HWs is a good property for them. Compared to other wavelets, HWs are only orthogonal
wavelets that have a compact support and explicit formulas [6]. Due to its mathematical simplicity, the HW method
is a suitable and optimal method for solving various differential and integral equations [12]. In addition, in solving
various nonlinear systems in the fields of biology, physics, fluid mechanics, and chemical reactions, this method can
be named as one of the effective methods [1, 3, 10, 11, 15, 17].

In the present article, we intend to use the HWs method to numerically solve the DS system (1.1) on (0, 1)×(0, tfin),
with the initial conditions

ϕ(x, 0) = f1(x), ψ(x, 0) = f2(x), x ∈ [0, 1], (1.2)
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and the boundary conditions

ϕ(0, t) = g1(t), ψ(0, t) = g2(t), t ∈ [0, tfin],
ψ(1, t) = k2(t), ψx(0, t) = w2(t), t ∈ [0, tfin],

(1.3)

where tfin represents the final time. The differentiable functions f1(x), f2(x), g1(t), g2(t), k2(t), and w2(t) are known.
The structure of this article is as follows: In section 2, the HWs family and their integrals are introduced. In the

following, Haar matrices for the numerical solutions, the desired issue are described and the expanding functions into
the HW series are discussed. The procedure of implementation of the HW method, for system (1.1) with specified
initial and boundary conditions (1.2) and (1.3) is presented in section 3. The numerical performance of the method is
given in section 4. Also, concluding remarks are made in section 5.

2. Haar Wavelets

2.1. HWs family and their integrals. Considering J as the maximal level of resolution, we define M = 2J and
divide the interval [a0, b0] into 2M subintervals of equal length ~x = b0−a0

2M . We get s = 0 : 1 : J, κ = 0 : 1 : (2s − 1),
and define ` = 2s + κ+ 1 as the wavelet number. So, the `-th HW is defined ([13]):

h`(x) =


1, x ∈

[
γ1(`), γ2(`)

)
,

−1, x ∈
[
γ2(`), γ3(`)

)
,

0, elsewhere,

(2.1)

where

γ1(`) = a0 + 2κµ~x, γ2(`) = a0 + (2κ+ 1)µ~x,
γ3(`) = a0 + 2(κ+ 1)µ~x, µ = M

2s .
(2.2)

For ` > 2, h`(x) are valid and for ` = 1, h1(x) ∼= 1; for all x ∈ [a0, b0]. The HWs are orthogonal to each other; In other
words from (2.1) we have:∫ b0

a0

h`1(x)h`2(x) dx =

{
(b0 − a0)2−s, `1 = `2,

0, `1 6= `2.
(2.3)

The integral of Haar functions can be calculated as follows:

pϑ,`(x) =

∫ x

a0

∫ x

a0

. . .

∫ x

a0︸ ︷︷ ︸
ϑ−times

h`(t) dtϑ =
1

(ϑ− 1)!

∫ x

a0

(x− t)ϑ−1h`(t) dt, ` = 1 : 1 : 2M. (2.4)

Given the values of h` in (2.1), integrals (2.4) can be calculated as follows:

pϑ,`(x) =


0, x < γ1(`),
1
ϑ! [x− γ1(`)]ϑ, x ∈ [γ1(`), γ2(`)],
1
ϑ!

{
[x− γ1(`)]ϑ − 2[x− γ2(`)]ϑ

}
, x ∈ [γ2(`), γ3(`)],

1
ϑ!

{
[x− γ1(`)]ϑ − 2[x− γ2(`)]ϑ + [x− γ3(`)]ϑ

}
, x > γ3(`).

(2.5)

The relation (2.5) for ` > 1 is hold and for ` = 1 we have:

pϑ,1(x) =
1

ϑ!
(x− a0)ϑ. (2.6)

2.2. Haar matrices. In this article, the collocation method is applied for the numerical solutions. So, we define the
collocation points xi as

xi = a0 +
(
i− 1

2

)
~x, i = 1 : 1 : 2M, (2.7)

and replace x → xi in equations (2.1), (2.5), and (2.6) for introducing the Haar matrices H(`, i) = h`(xi) and
Pϑ(`, i) = pϑ,`(xi) with dimension 2M× 2M.
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2.3. Expanding functions into the HW. Using Haar functions, any integrable function Γ(x) ∈ L2([a0, b0]) can be
approximated as an infinite series of these functions as follows ([16]):

Γ(x) =

∞∑
`=1

c`h`(x), (2.8)

where the HWs coefficients c` are determined as

c` =
2s

b0 − a0

∫ b0

a0

Γ(x)h`(x) dx.

By truncating the infinite series (2.8), we obtain an approximate representation for Γ(x) as

Γ
J
(x) ∼=

J∑
s=0

2s−1∑
κ=0

c2s+κ+1h2s+κ+1(x) = CTH(x). (2.9)

3. Application of the method

In this section, we use the HWs method for finding the approximate solutions of system (1.1) with specified initial

and boundary conditions (1.2) and (1.3). For this, we expand ϕ̇′ and ψ̇′′′ in terms of HWs as,

ϕ̇′(x, t) ∼=
J∑
s=0

2s−1∑
κ=0

c2s+κ+1h2s+κ+1(x) = CTH(x), (3.1)

ψ̇′′′(x, t) ∼=
J∑
s=0

2s−1∑
κ=0

d2s+κ+1h2s+κ+1(x) = DTH(x), (3.2)

where prime and dot mean differentiation concerning x and t, respectively. Dividing the interval [0, tfin] into N equal

parts of length ~t =
tfin

N
and denoting tj = (j − 1)~t, j = 1 : 1 : (N+ 1), in each subinterval [tj , tj+1], j = 1 : 1 : N, the

vectors CT and DT are constants.
Case 1: Considering the equation (3.1): By integrating this equation once concerning t from tj to t and once
concerning x from 0 to x, we have

ϕ′(x, t) = (t− tj)CTH(x) + ϕ′(x, tj), (3.3)

ϕ̇(x, t) = CTP1(x) + g′1(t). (3.4)

Also, integrating equation (3.4) once concerning t from tj to t, we obtain

ϕ(x, t) = (t− tj)CTP1(x) + [g1(t)− g1(tj)] + ϕ(x, tj). (3.5)

Case 2: Considering the equation (3.2): By integrating this equation once concerning t from tj to t and three times
concerning x from 0 to x, we have

ψ′′′(x, t) = (t− tj)DTH(x) + ψ′′′(x, tj), (3.6)

ψ′(x, t) = (t− tj)DTP2(x) + ψ′(x, tj) + [w2(t)− w2(tj)] + x[ψ′′(0, t)− ψ′′(0, tj)], (3.7)

ψ(x, t) = (t− tj)DTP3(x) + ψ(x, tj) + [g2(t)− g2(tj)] + x[w2(t)− w2(tj)] +
x2

2
[ψ′′(0, t)− ψ′′(0, tj)], (3.8)

ψ̇(x, t) = DTP3(x) + g′2(t) + xw′2(t) +
x2

2
ψ̇′′(0, t). (3.9)
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Using the boundary condition ψ(1, t) = k2(t) equations (3.7)-(3.9) are transformed into the following equations

ψ′(x, t) = (t− tj)DT [P2(x)− 2xP3(1)] + ψ′(x, tj) + (1− 2x)[w2(t)− w2(tj)]

+ 2x[k2(t)− k2(tj)]− 2x[g2(t)− g2(tj)], (3.10)

ψ(x, t) = (t− tj)DT [P3(x)− x2P3(1)] + ψ(x, tj) + (1− x2)[g2(t)− g2(tj)]

+ x(1− x)[w2(t)− w2(tj)] + x2[k2(t)− k2(tj)], (3.11)

ψ̇(x, t) = DT [P3(x)− x2P3(1)] + (1− x2)g′2(t) + x(1− x)w′2(t) + x2k′2(t), (3.12)

where, P1(x) = p1,`(x), P2(x) = p2,`(x), and P3(x) = p3,`(x) are obtained from (2.4).
By placing x→ xi and t→ tj+1 in equations (3.3)-(3.5) and (3.6) and (3.10)-(3.12), we get

ϕ′(xi, tj+1) = ~tCTH(xi) + ϕ′(xi, tj), (3.13)

ϕ̇(xi, tj+1) = CTP1(xi) + g′1(tj+1), (3.14)

ϕ(xi, tj+1) = ~tCTP1(xi) + [g1(tj+1)− g1(tj)] + ϕ(xi, tj), (3.15)

ψ′′′(xi, tj+1) = ~tDTH(xi) + ψ′′′(xi, tj), (3.16)

ψ′(xi, tj+1) = ~tDT [P2(xi)− 2xiP3(1)] + ψ′(xi, tj) + (1− 2xi)[w2(tj+1)− w2(tj)]

+ 2xi[k2(tj+1)− k2(tj)]− 2xi[g2(tj+1)− g2(tj)], (3.17)

ψ(xi, tj+1) = ~tDT [P3(xi)− x2iP3(1)] + ψ(xi, tj) + (1− x2i )[g2(tj+1)− g2(tj)]

+ xi(1− xi)[w2(tj+1)− w2(tj)] + x2i [k2(tj+1)− k2(tj)], (3.18)

ψ̇(xi, tj+1) = DT [P3(xi)− x2iP3(1)] + (1− x2i )g′2(tj+1) + xi(1− xi)w′2(tj+1) + x2i k
′
2(tj+1). (3.19)

To linearized the nonlinear terms ψψx, ϕxψ, and ϕψx in system (1.1), we use the quasilinearization technique [4] as
follows:

ψψx = ψx(x, tj)ψ(x, tj+1)− ψx(x, tj)ψ(x, tj) + ψ(x, tj)ψx(x, tj+1), (3.20)

ϕxψ = ψ(x, tj)ϕx(x, tj+1)− ψ(x, tj)ϕx(x, tj) + ϕx(x, tj)ψ(x, tj+1), (3.21)

ϕψx = ψx(x, tj)ϕ(x, tj+1)− ψx(x, tj)ϕ(x, tj) + ϕ(x, tj)ψx(x, tj+1). (3.22)

Using linear expressions (3.20)-(3.22), the discrete form of system (1.1) considering xi and tj+1 is as follows:
ϕ̇(xi, tj+1) + 2ψ′(xi, tj)ψ(xi, tj+1) + 2ψ(xi, tj)ψ

′(xi, tj+1) = 2ψ′(xi, tj)ψ(xi, tj),

ψ̇(xi, tj+1)− αψ′′′(xi, tj+1) + 3βψ(xi, tj)ϕ
′(xi, tj+1) + 3βϕ′(xi, tj)ψ(xi, tj+1)

+3δψ′(xi, tj)ϕ(xi, tj+1) + 3δϕ(xi, tj)ψ
′(xi, tj+1) = 3βψ(xi, tj)ϕ

′(xi, tj) + 3δψ′(xi, tj)ϕ(xi, tj).

(3.23)

Now, by using equations (3.13)-(3.19), system (3.23) leads to{
CTX1 +DTX2 = B1(xi, tj),

CTX3 +DTX4 = B2(xi, tj),
(3.24)

where

X1 = P1(xi),

X2 = 2ψ′(xi, tj)~t[P3(xi)− x2iP3(1)] + 2ψ(xi, tj)~t[P2(xi)− 2xiP3(1)],

X3 = 3βψ(xi, tj)~tH(xi) + 3δψ′(xi, tj)~tP1(xi),

X4 = P3(xi)− x2iP3(1)− α~tH(xi)

+ 3βϕ′(xi, tj)~t[P3(xi)− x2iP3(1)] + 3δϕ(xi, tj)~t[P2(xi)− 2xiP3(1)],
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B1(xi, tj) =− 2ψ(xi, tj)ψ
′(xi, tj)− g′1(tj+1)

− 2ψ′(xi, tj)
[
(1− x2i )[g2(tj+1)− g2(tj)] + xi(1− xi)[w2(tj+1)− w2(tj)]

+ x2i [k2(tj+1)− k2(tj)]
]
− 2ψ(xi, tj)

[
(1− 2xi)[w2(tj+1)− w2(tj)]

+ 2xi[k2(tj+1)− k2(tj)]− 2xi[g2(tj+1)− g2(tj)]
]
,

B2(xi, tj) =αψ′′′(xi, tj)− 3βψ(xi, tj)ϕ
′(xi, tj)−

[
(1− x2i )g′2(tj+1) + xi(1− xi)w′2(tj+1)

+ x2i k
′
2(tj+1)

]
− 3βϕ′(xi, tj)

[
(1− x2i )[g2(tj+1)− g2(tj)]

+ xi(1− xi)[w2(tj+1)− w2(tj)] + x2i [k2(tj+1)− k2(tj)]
]

− 3δϕ(xi, tj)
[
(1− 2xi)[w2(tj+1)− w2(tj)] + 2xi[k2(tj+1)− k2(tj)]

− 2xi[g2(tj+1)− g2(tj)]
]
− 3δψ′(xi, tj)[g1(tj+1)− g1(tj) + ϕ(xi, tj)].

The matrix-vector form of system (3.24) is as follows:[
(X1)2M×2M (X2)2M×2M
(X3)2M×2M (X4)2M×2M

]
4M×4M

[
(C)2M×1
(D)2M×1

]
4M×1

=

[
(B1)2M×1
(B2)2M×1

]
4M×1

(3.25)

From (3.25), the coefficients vectors C and D can be calculated. With these coefficients and using the equations (3.15)
and (3.18), the approximate solutions are successively obtained.

Theorem 3.1. (Convergence analysis) Suppose that ϕ(x, t) and ψ(x, t) satisfy the Lipschitz condition that is,

∃ ι1 > 0, ∀ x1, x2 ∈ [0, 1] : |ϕ(x1, t)− ϕ(x2, t)| ≤ ι1|x1 − x2|, (3.26)

∃ ι2 > 0, ∀ x1, x2 ∈ [0, 1] : |ψ(x1, t)− ψ(x2, t)| ≤ ι2|x1 − x2|. (3.27)

Then the error bound for ‖(EϕJ , E
ψ
J )‖2 is obtained as

‖(EϕJ , E
ψ
J )‖2 ≤

√
2

3

ι

M
,

where EϕJ (x, t) = ϕ(x, t) − ϕJ(x, t) and EψJ (x, t) = ψ(x, t) − ψJ(x, t) are the corresponding errors at J-th level, and
ι = max{ι1, ι2}. Moreover, the convergence is of order one, that is,

‖(EϕJ , E
ψ
J )‖2 = O

(
1

M

)
.

Proof. See [7]. �

4. Numerical experiment

In this section, we apply the HWs method to obtain the numerical solutions of the DS system (1.1). To compare
the obtained numerical results, we use the following solutions obtained by the Tanh method ([21]):ϕ(x, t) = c

2β+δ tanh2
(√

c
2α (x− ct)

)
,

ψ(x, t) = c√
2β+δ

tanh
(√

c
2α (x− ct)

)
.

To show the effectiveness and accuracy of the proposed method, we considered an example with α = β = δ = 1,
tfin = 1, ~t = 0.01. Numerical results are compared with the Legendre wavelets method (LWs) [18].
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Remark 4.1. For describing the error, we introduce the root mean square (RMS) error norm as follows:

RMSϕ =

[
1

2M

2M∑
i=1

(
ϕ(xi, t)− ϕ∗(xi, t)

)2] 1
2

, (4.1)

where ϕ∗ is the approximate solution of ϕ. Similarly, the RMSψ is obtained according to formula (4.1).

The numerical results are shown in Tables 1-4. Also, the RMS errors (4.1) are stated in Table 5. The CPU times
for various dimensions of HWs and LWs are reported in Table 6. The values of the absolute errors ϕ and ψ are plotted
in Figures 1 and 2, respectively.

Table 1: The numerical results for ϕ(x, t) at t = 1.

HWs (2M = 4) LWs (k = 2, M = 2)
xi ϕ(xi, t) ϕ∗(xi, t) |ϕ(xi, t)− ϕ∗(xi, t)| ϕ∗(xi, t) |ϕ(xi, t)− ϕ∗(xi, t)|

0.125 0.000000 −0.000000 2.386936e− 11 0.005036 5.036477e− 03
0.375 0.000162 0.000162 9.441407e− 09 0.005195 5.033097e− 03
0.625 0.000644 0.000644 3.087889e− 08 0.005679 5.035138e− 03
0.875 0.001431 0.001431 6.314510e− 08 0.006485 5.053942e− 03

CPU time (s) 163.460017 731.121861

Table 2: The numerical results for ψ(x, t) at t = 1.

HWs (2M = 4) LWs (k = 2, M = 2)
xi ψ(xi, t) ψ∗(xi, t) |ψ(xi, t)− ψ∗(xi, t)| ψ∗(xi, t) |ψ(xi, t)− ψ∗(xi, t)|

0.125 0.000000 0.000000 1.280109e− 09 0.000013 1.251707e− 05
0.375 0.004505 0.004505 1.381351e− 10 0.004557 5.267140e− 05
0.625 0.008974 0.008974 1.278569e− 09 0.009053 7.825935e− 05
0.875 0.013375 0.013375 8.757810e− 10 0.013372 3.653990e− 06

CPU time (s) 163.460017 731.121861
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Table 3: The numerical results for ϕ(x, t) at collocation point x = 0.375.

HWs (2M = 4) LWs (k = 2, M = 2)
tj ϕ(x, tj) ϕ∗(x, tj) |ϕ(x, tj)− ϕ∗(x, tj)| ϕ∗(x, tj) |ϕ(x, tj)− ϕ∗(x, tj)|

0.1 0.000340 0.000340 1.368867e− 09 0.000876 5.357247e− 04
0.2 0.000317 0.000317 2.643632e− 09 0.001286 9.683819e− 04
0.3 0.000295 0.000295 3.824172e− 09 0.001854 1.558918e− 03
0.4 0.000274 0.000274 4.910369e− 09 0.002349 2.075418e− 03
0.5 0.000253 0.000253 5.902117e− 09 0.002755 2.501692e− 03
0.6 0.000233 0.000233 6.799325e− 09 0.003164 2.930167e− 03
0.7 0.000215 0.000215 7.601914e− 09 0.003726 3.511928e− 03
0.8 0.000196 0.000196 8.309823e− 09 0.004360 4.163695e− 03
0.9 0.000179 0.000179 8.922999e− 09 0.004887 4.708348e− 03
1 0.000162 0.000162 9.441407e− 09 0.005195 5.033097e− 03

CPU time (s) 163.460017 731.121861

Table 4: The numerical results for ψ(x, t) at collocation point x = 0.375.

HWs (2M = 4) LWs (k = 2, M = 2)
tj ψ(x, tj) ψ∗(x, tj) |ψ(x, tj)− ψ∗(x, tj)| ψ∗(x, tj) |ψ(x, tj)− ψ∗(x, tj)|

0.1 0.006522 0.006522 1.215435e− 11 0.006584 6.131815e− 05
0.2 0.006299 0.006299 1.063830e− 11 0.006328 2.906959e− 05
0.3 0.006075 0.006075 5.389050e− 12 0.006131 5.574840e− 05
0.4 0.005851 0.005851 3.602231e− 12 0.005901 4.968168e− 05
0.5 0.005627 0.005627 1.637221e− 11 0.005690 6.301798e− 05
0.6 0.005403 0.005403 3.295689e− 11 0.005460 5.704236e− 05
0.7 0.005178 0.005178 5.339150e− 11 0.005240 6.183361e− 05
0.8 0.004954 0.004954 7.771047e− 11 0.005024 6.992855e− 05
0.9 0.004729 0.004729 1.059474e− 10 0.004784 5.516922e− 05
1 0.004505 0.004505 1.381351e− 10 0.004557 5.267140e− 05

CPU time (s) 163.460017 731.121861

5. Conclusion

In this article, using the HWs method and using the initial and boundary conditions (1.2) and (1.3), we solved the
DS system (1.1) numerically. Numerical comparisons have been made between the implementations of the proposed
method and the Legendre wavelet method. Due to the numerical solutions which are presented in the Tables and
Figures, the obtained numerical solutions by the presented method are the most accurate in comparison with the
LWs method and are in good agreement with the exact solutions. It can be concluded that the presented method for
solving the DS system (1.1) is an efficient and high accuracy method. The strength of this method is the simplicity of
calculations with low storage space.



CMDE Vol. 10, No. 4, 2022, pp. 1086-1096 1093

Table 5: The RMS errors at different times.

t
HWs (2M = 4) LWs (k = 2, M = 2)

ϕ(x, t) ψ(x, t) ϕ(x, t) ψ(x, t)

0.2 8.112137e− 09 2.260094e− 10 9.697420e− 04 2.681494e− 05
0.4 1.571690e− 08 4.357983e− 10 2.078281e− 03 4.815645e− 05
0.6 2.281139e− 08 6.357693e− 10 2.934143e− 03 5.218810e− 05
0.8 2.939332e− 08 8.261827e− 10 4.169215e− 03 6.705956e− 05
1 3.546107e− 08 1.007409e− 09 5.039670e− 03 4.761520e− 05

t
HWs (2M = 8) LWs (k = 3, M = 2)

ϕ(x, t) ψ(x, t) ϕ(x, t) ψ(x, t)

0.2 2.698335e− 10 1.656756e− 12 1.007237e− 03 8.424354e− 05
0.4 5.312738e− 10 3.069774e− 12 1.954106e− 03 4.687166e− 05
0.6 7.843147e− 10 4.448526e− 12 2.889904e− 03 3.732068e− 05
0.8 1.028952e− 09 5.792596e− 12 3.841224e− 03 8.410049e− 05
1 1.265184e− 09 7.101738e− 12 4.945043e− 03 8.056653e− 05

t
HWs (2M = 16) LWs (k = 4, M = 2)

ϕ(x, t) ψ(x, t) ϕ(x, t) ψ(x, t)

0.2 8.667650e− 12 1.490447e− 14 9.624309e− 04 3.898140e− 05
0.4 1.720039e− 11 2.368515e− 14 1.868619e− 03 9.220079e− 05
0.6 2.559825e− 11 3.238861e− 14 2.906207e− 03 4.249411e− 05
0.8 3.386126e− 11 4.101297e− 14 3.846596e− 03 5.850635e− 05
1 4.198946e− 11 4.955633e− 14 4.819426e− 03 4.743753e− 05

t
HWs (2M = 32) LWs (k = 5, M = 2)

ϕ(x, t) ψ(x, t) ϕ(x, t) ψ(x, t)

0.2 2.743417e− 13 1.914177e− 16 9.268936e− 04 5.146389e− 05
0.4 5.465452e− 13 2.378363e− 16 1.805207e− 03 4.677735e− 05
0.6 8.166110e− 13 2.840893e− 16 2.841064e− 03 6.889437e− 05
0.8 1.084540e− 12 3.303265e− 16 3.904342e− 03 4.754377e− 05
1 1.350332e− 12 3.764246e− 16 4.985977e− 03 5.679880e− 05

Table 6: The CPU times in seconds for HWs and LWs.

2M = 4 2M = 8 2M = 16 2M = 32
HWs

163.460017 414.718527 1307.473296 4529.120789

k = 2, M = 2 k = 3, M = 2 k = 4, M = 2 k = 5, M = 2
LWs

731.121861 1441.642294 2734.317669 5585.482952
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Figure 1: Plot of the absolute errors ϕ(x, t).
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bäcklund transformation of riccati equation and trial function approach, Pramana, 86 (2016), 1153–1160.

[3] I. Aziz, S. Islam, and F. Khan, A new method based on Haar wavelet for the numerical solution of two-dimensional
nonlinear integral equations, Journal of Computational and Applied Mathematics, 272 (2014), 70–80.

[4] R. E. Bellman and R. E. Kalaba, Quasilinearization And Nonlinear Boundary-Value Problems, 1965.
[5] C. Cattani, T. A. Sulaiman, H. M. Baskonus, and H. Bulut, On the soliton solutions to the Nizhnik-Novikov-

Veselov and the Drinfel’d-Sokolov systems, Optical and Quantum Electronics, 50 (2018), 1–11.
[6] I. Daubechies and W. Sweldens, Factoring wavelet transforms into lifting steps, Journal of Fourier analysis and

applications, 4 (1998), 247–269.
[7] S. Foadian, R. Pourgholi, S. H. Tabasi, and J. Damirchi, The inverse solution of the coupled nonlinear reaction–

diffusion equations by the Haar wavelets, International Journal of Computer Mathematics, 96 (2019), 105–125.
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