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Abstract
By constructing a newly modified cubic B-splines having the optimal accuracy order four, we propose a numerical
scheme for solving the hyperbolic telegraph equation using a differential quadrature method. The spatial deriva-
tives are approximated by the differential quadrature whose weight coefficients are computed using the newly
modified cubic B-splines. Our modified cubic B-splines retain the tridiagonal structure and achieve the fourth
order convergence rate. The solution of the associated ODEs is advanced in the time domain by the SSPRK
scheme. The stability of the method is analyzed using the discretization matrix. Our numerical experiments
demonstrate the better performance of our proposed scheme over several known numerical schemes reported in
the literature.
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1. Introduction

In mathematical physics, hyperbolic equations have a significant role in understanding numerous physical mathe-
matical phenomena, especially in the case of vibrations of structures such as beams, machines, buildings, etc. Many
researchers have contributed to develop, analyze, and implement stable numerical methods to solve second-order hy-
perbolic equations in various ways. It is known that the more appropriate way to model reaction-diffusion is to use
the hyperbolic telegraph equations than the ordinary diffusion equations in many contexts. The telegraph equation
was proposed by Oliver Heaviside to depict current and voltage in an electric transmission line. The current and
voltage often form wave patterns when a reflection of electromagnetic waves are present. In a double conductor, the
flow of both electric current and voltage are modelled by the telegraph equation. In short, mathematical models in
wave propagation, random walk theory, and heat diffusion equations are special cases of the telegraph equation. Also,
the telegraph equation arises in the study of pulsating blood flow in arteries, parallel flows of viscous Maxwell fluids,
and one-dimensional random motion of bugs along a hedge. For more details, see [7, 9, 19, 28, 43, 45] and references
therein. The second-order one-dimensional hyperbolic telegraph equation has a dissipative form as follows:

utt(x, t) + 2αut(x, t) + β2u(x, t) = uxx(x, t) + f(x, t), x ∈ Ω := [a, b], t ∈ (t0, T ] ,

IC:
{
u(x, t0) = f1(x),
ut(x, t0) = f2(x),

BC:
{
u(a, t) = g1(x),
u(b, t) = g2(x).

(1.1)
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Its two-dimensional form is given by
utt(x, y, t) + 2αut(x, y, t) + β2u(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + f(x, y, t),

(x, y) ∈ Ω := [a, b]× [c, d] , t ∈ (t0, T ] ,

IC :
{
u(x, y, t0) = f1(x, y),
ut(x, y, t0) = f2(x, y),

BC :
{
u(a, y, t) = g1(y, t), u(b, y, t) = g2(y, t),
u(x, c, t) = g3(x, t), u(x, d, t) = g4(x, t),

(1.2)

where α, β are strictly positive constants, Ω is the spatial domain and (t0, T ] denotes the time interval. Several
methods have been developed in the literature to numerically solve the hyperbolic telegraph equations. Lakestani
in [20] used interpolating scaling functions, which are expressed in terms of Lagrange interpolating polynomials and
Gauss-Legendre quadrature weights introduced by Shamsi and Razzagi [36]. In this collocation method, derivatives
are arranged in terms of a block tridiagonal matrix for fast computation of the associated linear system. Motivated by
[20], Bicer et al. in [8] solved the telegraph equation (1.1) using the Bernoulli collocation. B-spline collocation method
is used to solve the problem in [46] and Sinc-Chebyshev collocation method is used to solve the time-fractional order
telegraph equation in [42]. Meshfree schemes using the radial basis functions method were found to be effective and are
widely used in interpolating scattered data. Such an approach is used by Dehghan [10] to solve the telegraph equation
with the help of thin-plate splines as radial basis functions. Dehghan et al. in [11] numerically solved (1.2) based on
a meshless local weak–strong (MLWS) method. Instead of using a pre-defined mesh for the discretized domain, they
employed a system consisting of algebraic equations for the whole domain. Petrov-Galerkin weak form is applied locally
at the nodes on the Neumann boundary for estimating the solution of the problem. Another meshless technique in [35]
solves (1.2) by discretizing the spatial derivatives with the radial basis function differentiation matrix. Abbasbandy
et al. in [1] provided a detailed comparison study between direct and indirect meshfree methods including popular
meshfree methods based on the strong form equation, the approximate particular solutions method, nonsymmetric
radial basis function collocation and their local forms. Lin et al. in [21] studied the two-dimensional telegraph equation
for arbitrary domains using an accurate meshless collocation technique. Moving least square meshless method is used
with radial basis functions to solve the problem in two-dimensions by Sepideh Niknam et al. in [31]. Aslefallah et
al. in [5] considered the problem for an arbitrary domain and the Houbolt finite difference method to discretize the
time domain. A combination of singular boundary and particular solution methods are employed to approximate the
solution. A hybrid meshless method is proposed by Zhou et al. in [47] based on the Houbolt method where the time
derivatives are approximated through finite differences. Hafez in [12] proposed a numerical technique based on shifted
Jacobi collocation to solve linear and nonlinear hyperbolic telegraph equations with variable coefficients in one and
two dimensions. Pandit et al. studied the efficiency of the reproducing kernel technique to numerically solve partial
differential equations, especially in the case of one-dimensional telegraph equation in [32]. Also the numerical solutions
of hyperbolic type partial differential equation using different approaches have been reported in [3, 18, 33]. Differential
quadrature is a well-known method for approximating the derivatives at each grid point using sample values. Different
strategies have been considered in the literature to obtain the weight coefficients if the functions can be effectively
approximated by certain polynomial spaces. Pekmen et al. in [34] used both polynomial-based and Fourier-based
differential quadrature algorithms for the discretization of the telegraph equation in one and two dimensions. The
numerical solution is obtained by choosing Gauss-Chebyshev-Lobatto grid points in the spatial domain and equally
spaced grid points in the time domain. Jiwari used the Lagrange interpolation technique and a differential quadrature
technique based on modified cubic B-spline used to numerically solve hyperbolic partial differential equations in [17]. A
lot of research in the literature employ many different variants of differential quadrature. For example, the differential
quadrature technique is used to approximate the spatial derivatives, in which the weight coefficients are calculated
through a linear system obtained from B-spline basis functions and then the Runge-Kutta method is used to progress
in time (see [2, 4, 6, 15, 16, 24, 27, 36, 39, 40, 44]). In recent years, the polynomial space spanned by the cubic B-spline
functions have been considered for the collocation method (see [22, 23, 25, 37]). In these works, a modified set of
cubic B-splines are defined as a basis for the required polynomial space in a uniform grid. But this set of modified
splines fails to preserve the optimal polynomial reproduction property near the boundary. Even though the cubic
B-splines are competent to generate the polynomial space P3 (i.e., it has an accuracy order four), the current known
modified set fails to generate the polynomial x2 especially near the boundary of the domain. This disadvantage greatly
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reduces the approximation ability of the modified cubic B-splines. In this paper, we propose a new modification of
the standard cubic splines that retains the optimal accuracy order four and preserve the desired diagonally dominant
tridiagonal structure. We follow a similar strategy as in [26] to numerically approximate the solution of the hyperbolic
telegraph equation. Since our newly modified cubic B-splines can produce all polynomials of degree up to 3 in the
whole computational domain, the approximation with such new basis functions gives a more accurate solution with
the optimal approximation order four in the computational domain, as compared to the corresponding results in the
literature. This polynomial reproduction property is found to be optimal, and hence the proposed scheme effectively
performs in the computation process. In comparison with Jacobi collocation, the cubic B-spline-based differential
quadrature is less computationally complex. Modified cubic B-splines are considered for discretization in a uniform
mesh of the spatial domain. To illustrate the effectiveness of this simple procedure, we analyze the results of test
problems and compare them with other known results in the literature. Since our modified set of splines effectively
catch the polynomial space of degree up to three, the approximation accuracy is significantly higher than the modified
cubic B-splines in [22, 23, 25, 37]. Also, at each time the solution converges to the exact solution stably. The stability
of the scheme is studied and we observe that the eigenvalues of the discretization matrix lie on the left half-plane.
The structure of this article is as follows. In section 2, we propose the numerical method to solve the telegraph
equation in one- and two-dimensions. A cubic B-spline-based differential quadrature method is used to approximate
the spatial derivatives. The newly modified cubic B-spline basis functions are introduced and the computation of weight
coefficients using these basis functions are given in section 3. The stability analysis of our proposed scheme is given in
section 4. In section 5, we illustrate the computational results for one- and two-dimensional telegraph equations and
a detailed comparison with other known works in the literature. The conclusion of the paper is provided in section 6
with remarks about the main observations and advantages of the proposed method.

2. Methodology of the proposed numerical scheme

In this section, we explain our proposed numerical algorithm for solving hyperbolic telegraph equation in one and
two dimensions.

2.1. The one-dimensional telegraph equation. Consider the telegraph equation Eq. (1.1) with the given initial
and boundary conditions defined in the spatial domain Ω = [a, b]. Using the transformation w = ut, it can be written
in the following form:

ut(x, t) = w(x, t),
wt(x, t) = −2αw(x, t)− β2u(x, t) + uxx(x, t) + f(x, t).

(2.1)

For a positive integer N , we uniformly partition the domain [a, b] into a = x0 < x1 < · · · < xN = b with the mesh size
h = b−a

N . Using the differential quadrature technique, we could approximate the spatial derivative at each node point
xi, i = 0, 1, . . . , N as

uxx(xi, t) =
N∑
k=0

p
(2)
ik u(xk, t), (2.2)

where p(2)
ik , i, k = 0, 1, . . . , N are the weight coefficients for the second-order partial derivatives with respect to the

space variable. The coefficients are computed by using the cubic B-spline based differential quadrature algorithm,
which is explained in section 3. Eventually, we can represent Eq. (2.1) as a system of first-order ordinary differential
equations

d ui
dt

= w(xi, t),

dwi
dt

= −2αw(xi, t)− β2u(xi, t) +
N∑
k=0

p
(2)
ik u(xk, t) + f(xi, t),

(2.3)
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for i = 0, 1, . . . , N . Using the SSPRK-54 scheme (see [41]), we can solve the system of ordinary differential equations
for the next time step. We start the computation with the initial and boundary conditions given by

IC :
{
u(xi, 0) = f1(xi),
ut(xi, 0) = f2(xi),

BC :
{
u(a, t) = g1(t),
u(b, t) = g2(t).

2.2. The two-dimensional telegraph equation. Now moving to the two-dimensional case, we consider the tele-
graph equation Eq. (1.2) with the accompanying initial and boundary conditions. Using a similar approach as in the
one-dimensional case, we apply the transformation w = ut which yields a system as follows:

ut(x, y, t) = w(x, y, t),
wt(x, y, t) = −2αw(x, y, t)− β2u(x, y, t) + uxx(x, y, t) + uyy(x, y, t) + f(x, y, t).

For selected positive integers N,M , we uniformly discretize the space domain Ω as a = x0 < x1 < · · · < xN = b and
c = y0 < y1 < · · · < yM = d. For i = 0, 1, . . . , N and j = 0, 1, . . . ,M , using the differential quadrature technique we
represent the second-order partial derivatives in space variables as

uxx(xi, yj , t) =
N∑
k=0

p
(2)
ik u(xk, yj , t), uyy(xi, yj , t) =

M∑
k=0

q
(2)
jk u(xi, yk, t).

This leads to the following system of ordinary differential equations
d uij
dt

= w(xi, yj , t),

dwij
dt

= −2αw(xi, yj , t)− β2u(xi, yj , t) +
N∑
k=0

p
(2)
ik u(xk, yj , t) +

M∑
k=0

q
(2)
jk u(xi, yk, t) + f(xi, yj , t),

(2.4)

for i = 0, 1, . . . , N and j = 0, 1, . . . ,M . This system can be solved for the next time step using SSPRK-43 scheme.
The initial and boundary conditions are given by

IC :
{
u(xi, , yj , 0) = f1(xi, yj),
ut(xi, yj , 0) = f2(xi, yj),

BC :
{
u(a, yj , t) = g1(yj , t), u(b, yj , t) = g2(yj , t),
u(xj , c, t) = g3(xj , t), u(xj , d, t) = g4(xj , t).

3. Computation of weight coefficients using modified cubic B-splines

In this section we discuss how to compute the weight coefficients in the approximation (2.2) using the newly
modified cubic B-splines. We use a cubic B-spline-based differential quadrature algorithm for this purpose. Using a
newly modified cubic B-spline basis functions, we can achieve better accuracy in the approximation of a functions on
a given computational domain.

3.1. Modified cubic B-spline elements. Let h > 0 and xj := a+ jh for j ∈ Z. The standard cubic B-spline Bj(x)
is defined by

Bj(x) := 1
h3



(x− xj−2)3, x ∈ [xj−2, xj−1) ,
(x− xj−2)3 − 4(x− xj−1)3, x ∈ [xj−1, xj) ,
(xj+2 − x)3 − 4(xj+1 − x)3, x ∈ [xj , xj+1) ,
(xj+2 − x)3, x ∈ [xj+1, xj+2) ,
0, otherwise.

(3.1)

Note that the cubic spline Bj is supported inside [xj−2, xj+2] and Bj is a nonnegative polynomial of degree 3 on every
subinterval [xk, xk+1] for k = j − 2, . . . , j + 1. Moreover, Bj ∈ C2(R) is twice differentiable and Bj is symmetric
about xj . The function values, first-order derivatives and second-order derivatives of Bj at the knot points {xk}k∈Z
are known and explicitly given in Table 1.

These cubic spline functions {B−1, B0, B1, . . . , BN , BN+1} play the role of a basis in the space of spline functions
for approximating the solutions of a differential equation on the domain [a, b]. Because the standard cubic spline
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Table 1. Derivatives of cubic splines at each node

x xj−2 xj−1 xj xj+1 xj+2

Bj(x) 0 1 4 1 0
B′j(x) 0 3/h 0 −3/h 0
B′′j (x) 0 6/h2 −12/h2 6/h2 0

Bj is supported on [xj−2, xj+2] and x0 = a, xN = b, one can easily observe that the cubic splines B−1, B0, B1 and
BN−1, BN , BN+1 are not fully supported inside the problem domain [a, b]. Therefore, it is necessary to modify such
standard cubic splines near the boundary. A modification using two boundary functions at each of the boundary
points is proposed in [22]. More precisely, the basis functions used in these papers are {B̃0, B̃1} ∪ {Bj : 2 ≤ j ≤
N − 2}∪{B̃N−1, B̃N}, where the modified boundary cubic splines B̃0, B̃1 near the boundary point a and the modified
boundary cubic splines B̃N−1, B̃N near the boundary point b are given by

B̃0(x) := [B0(x) + 2B−1(x)]χ[a, b](x), B̃N (x) := [BN (x) + 2BN+1(x)]χ[a, b](x),
B̃1(x) := [B1(x)−B−1(x)]χ[a, b], B̃N−1(x) := [BN−1(x)−BN+1(x)]χ[a, b](x). (3.2)

For simplicity of presentation, we shall also define B̃j(x) := Bj(x) for all j = 2, . . . , N − 2, where Bj is the standard
interior cubic spline in Eq. (3.1). For a non-negative integer m, by Pm−1 we denote the space of all polynomials of
degree less than m. If {ϕj}Nj=0 is a collection of compactly supported functions on [a, b] and Pm−1χ[a, b] ⊂ span {ϕj}Nj=0,
then we say that {ϕj}Nj=0 has accuracy order m on [a, b], where span {ϕj}Nj=0 consists of all the elements of the form
N∑
j=0

cjϕj for all cj ∈ R. It is well known that accuracy order is closely related to the performance of the associated

numerical schemes.

Proposition 3.1. The system {B̃j : 0 ≤ j ≤ N} in [22] with modified boundary cubic splines in Eq. (3.2) and the
interior standard cubic splines B̃j := Bj for 2 ≤ j ≤ N − 2 has accuracy order two but cannot have accuracy order
three.

Proof. In fact, by direct calculation, we have 1
6
∑N
j=0 B̃j(x) = 1 and h

6
∑N
j=0 jB̃j(x) = x for all x ∈ [a, b]. On the

other hand, for x ∈ [a, a+ h], we have

h3B̃0(x) = x3 − 3 ax2 +
(
3 a2 − 6h2)x− a3 + 6 ah2 + 6h3,

h3B̃1(x) = −2x3 + 6 ax2 + (6h2 − 6 a2)x+ 2 a3 − 6 ah2,

h3B2(x) = x3 − 3 ax2 + 3 a2x− a3,

and Bj(x) = 0 for all j > 2 and x ∈ [a, a+h]. We claim that any combination of these three functions cannot generate
the polynomials of degree two in the interval [a, a+ h]. If we denote p(x) = p0x

3 + p1x
2 + p2x+ p3 as the polynomial

to be represented as a combination of these three functions with coefficients w1, w2, w3, the corresponding matrix form
Aw = p will be

1 −2 1
−3a 6a −3a

3a2 − 6h2 6h2 − 6a2 3a2

−a3 + 6ah2 + 6h3 2a3 − 6ah2 −a3


w1
w2
w3

 =


p0
p1
p2
p3

 .
By removing the second row of A (one linearly dependent row) the resulting matrix has a nonzero determinant, ie.,

det

 1 −2 1
3a2 − 6h2 6h2 − 6a2 3a2

−a3 + 6ah2 + 6h3 2a3 − 6ah2 −a3

 = −36h5 6= 0.
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Hence A has rank 3. In the case of the augmented matrix A|p,

det(A|p) = det




1 −2 1 p0
−3a 6a −3a p1

3a2 − 6h2 6h2 − 6a2 3a2 p2
−a3 + 6ah2 + 6h3 2a3 − 6ah2 −a3 p3


 = −108ah5p0 − 36h5p1,

and det(A|p) = 0 if and only if p1 = −3ap0. Thus the system Aw = p has a solution only if Rank(A) = Rank(A|p),
ie., when p1 = −3ap0. In other words, the coefficients w1, w2, w3 exist only for the polynomials of the form p(x) =
p0(x3 − 3ax2) + p2x+ p3. Hence we can conclude that

span
(
1, x, x3 − 3ax2) = span({B̃0(x), B̃1(x), B̃2(x)}) in [a, a+ h].

In particular, x2 6∈ span({B̃0(x), B̃1(x), B̃2(x)}) on [a, a+ h].
A similar thing happens at the right boundary [b − h, b] also. In all other intervals we could find four linearly

independent polynomials passing through and hence possess accuracy order four in [a + h, b − h]. But it lacks the
optimal accuracy order on the boundary intervals. Combining the above argument, we conclude that the linear span
of {B̃j : 0 ≤ j ≤ N} cannot produce all the second and third-degree polynomials throughout the interval [a, b]. This
proves our claim. �

However, it is well known that the standard cubic B-splines have accuracy order four, that is, the standard cubic
splines can reproduce all polynomials of degree three or less. Therefore, according to Proposition 3.1, the modified
cubic splines Eq. (3.2) do not achieve the best possible accuracy order four of the standard cubic splines. The
lower accuracy order of these modified cubic splines leads to a non-optimal performance of their associated numerical
schemes. Therefore, it is necessary to make an appropriate modification near the boundary so that the modified cubic
splines can preserve the optimal accuracy order.

In this paper, we aim at modifying the cubic splines near each boundary so that the newly modified cubic splines
not only preserve the optimal accuracy order but also keep the tridiagonal matrix structure. These two properties are
very important for us to use such modified cubic splines to solve the one- and two-dimensional telegraph equation.
On one hand, as in [22], the associated matrix obtained here after discretization will be tridiagonal as well, which
allows us to use the Thomas algorithm for effectively solving the corresponding linear system. On the other hand,
our proposed modified cubic B-splines having the accuracy order four allow the associated numerical scheme to be
effective and perform well. As demonstrated by our numerical experiments in section 5, the numerical schemes using
our developed modified cubic B-splines having accuracy order four significantly outperforms the numerical schemes
described in the literature.

Theorem 3.2. Let N be a positive integer greater than seven and let a = x0 < x1 < · · · < xN = b, where xj := a+ jh

for all j ∈ Z and h := b−a
N . Define the modified cubic splines near the boundary by

B̆0 := B0 + 4B−1, B̆N := BN + 4BN+1,

B̆1 := B1 − 7
2B−1 + 5

8B0, B̆N−1 := BN−1 − 7
2BN+1 + 5

8BN ,

B̆2 := B2 + 88
37B−1 − 21

37B0 − 4
37B1, B̆N−2 := BN−2 + 88

37BN+1 − 21
37BN −

4
37BN−1,

B̆3 := B3 −B−1 + 1
4B0 − 1

4B2, B̆N−3 := BN−3 −BN+1 + 1
4BN −

1
4BN−2,

(3.3)

where the standard cubic splines Bj , j ∈ Z are defined in Eq. (3.1). For simplicity of presentation, we also define
B̆j := Bj for all j = 4, . . . , N −4. Then the system {B̆j : j = 0, . . . , N} of the modified cubic splines has the accuracy
order four on [a, b].
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Proof. Consider x ∈ [a, b], we have

h3B̆0(x) = −x3 + (3 a+ 6h)x2 − (3 a2 + 12 ah+ 12h2)x+ (a3 + 6 a2h+ 12 ah2 + 8h3),

h3B̆1(x) = 1
8

[
19x3 − (57 a+ 90h)x2 + (57 a2 + 180 ah+ 108h2)− (19 a3 + 90 a2h+ 108 ah2)

]
,

h3B̆2(x) = 1
37

[
−102x3 + (306 a+ 378h)x2 − (306 a2 + 756 ah+ 276h2)x+ (102 a3 + 378 a2h+ 276 ah2)

]
,

h3B̆3(x) = 1
2

[
3x3 − (9 a+ 9h)x2 + (9 a2 + 18 ah+ 6h2)x− (3 a3 + 9 a2h+ 6 ah2)

]
.

(3.4)

The coordinate matrix of these four polynomials relative to the standard ordered basis {x3, x2, x, 1} is given by

B =


−1 3 a+ 6h −(3 a2 + 12 ah+ 12h2) a3 + 6 a2h+ 12 ah2 + 8h3
19
8 − 1

8 (57 a+ 90h) 1
8 (57 a2 + 180 ah+ 108h2) − 1

8 (19 a3 + 90 a2h+ 108 ah2)
− 102

37
1
37 (306 a+ 378h) − 1

37 (306 a2 + 756 ah+ 276h2) 1
37 (102 a3 + 378 a2h+ 276 ah2)

3
2 − 1

2 (9 a+ 9h) 1
2 (9 a2 + 18 ah+ 6h2) − 1

2 (3 a3 + 9 a2h+ 6 ah2)


T

,

where det(B) = 108h6 6= 0. Since the coordinate matrix is invertible, the four polynomials in Eq. (3.4) are linearly
independent and thus the polynomials 1, x, x2, x3 are in the space spanned by these polynomials. A similar thing
happens on the right boundary too. Since the standard cubic B-splines have accuracy order four, thus as a whole we
have the system {B̆j : j = 0, . . . , N} has accuracy order four on [a, b]. This proves the result. In particular, for a = 0
and x ∈ Ω we have

1 =
1
8
(

B̆0(x) + B̆N (x)
)

+
7
37
(

B̆1(x) + B̆N−1(x)
)

+
5
24
(

B̆2(x) + B̆N−2(x)
)

+
1
6

N−3∑
j=3

B̆j(x),

x

h
=

8
37

B̆1(x) +
11
24

B̆2(x) +
1
2

B̆3(x) +
7
6

B̆N−3(x) +
13
8

B̆N−2(x) +
62
37

B̆N−1(x) +
5
4

B̆N (x) +
1
6

N−4∑
j=4

jB̆j(x),

x2

h2 =
8
37

B̆1(x) +
35
36

B̆2(x) +
13
9

B̆3(x) +
73
9

B̆N−3(x) +
455
36

B̆N−2(x) +
548
37

B̆N−1(x) +
25
2

B̆N (x) +
N−4∑
j=4

3j2 − 1
18

B̆j(x),

x3

h3 =
8
37

B̆1(x) + 2B̆2(x) + 4B̆3(x) + 56B̆N−3(x) + 98B̆N−2(x) +
4832
37

B̆N−1(x) + 125B̆N (x) +
1
6

N−4∑
j=4

(j3 − j)B̆j(x).

This proves our claim. �

See Figure 1 for the modified cubic splines in Proposition 3.1 with accuracy order two and our improved modified
cubic splines in Theorem 3.2 with accuracy order four. For the system {B̆j : j = 0, . . . , N}, we define

~B(x) :=
[
B̆0(x), B̆1(x), B̆2(x), B̆3(x), B̆4(x), . . . , B̆N−4(x), B̆N−3(x), B̆N−2(x), B̆N−1(x), B̆N (x)

]
.

Then [ ~B(x0)T , ~B(x1)T , . . . , . . . , ~B(xN−1)T , ~B(xN )T ]T is a diagonally dominant tridiagonal matrix:

~B(x0)
~B(x1)
~B(x2)
~B(x3)
~B(x4)
~B(x5)

 =


8 0 0 0 0 0 0 0 . . .
1 37

8 0 0 0 0 0 0 . . .
0 1 144

37 0 0 0 0 0 . . .
0 0 1 15

4 1 0 0 0 . . .
0 0 0 1 4 1 0 0 . . .
0 0 0 0 1 4 1 0 . . .

 ,


~B(xN−5)
~B(xN−4)
~B(xN−3)
~B(xN−2)
~B(xN−1)
~B(xN )

 =


. . . 0 1 4 1 0 0 0 0
. . . 0 0 1 4 1 0 0 0
. . . 0 0 0 1 15

4 1 0 0
. . . 0 0 0 0 0 144

37 1 0
. . . 0 0 0 0 0 0 37

8 1
. . . 0 0 0 0 0 0 0 8

 .
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B̃0

B̃1 B2 B3 B4

(a)

B̆0

B̆1

B̆2 B̆3
B4

(b)

Figure 1. (a) Modified cubic B-spline basis elements in Proposition 3.1 with accuracy order 2 (see
[22, 23, 25]). B̃0 and B̃1 are modified boundary cubic splines at the boundary point 0 in Eq. (3.2),
while B2, B3, B4 are the standard cubic splines with h = 1 in Eq. (3.1). (b) Our improved modified
cubic B-spline basis elements in Theorem 3.2 with the accuracy order 4. B̆0, . . . , B̆3 are the modified
boundary cubic splines at the boundary point 0 in Eq. (3.3).

Therefore, we can use the Thomas algorithm for finding its inverse. Also the matrices of the first and second-order
derivatives ~B′ and ~B′′ at each node point xj are given below:

~B′(x0)
~B′(x1)
~B′(x2)
~B′(x3)
~B′(x4)
~B′(x5)

 = 1
h


−12 27

2 − 276
37 3 0 0 0 0 . . .

−3 − 15
8

174
37 − 3

2 0 0 0 0 . . .
0 −3 12

37 3 0 0 0 0 . . .
0 0 −3 3

4 3 0 0 0 . . .
0 0 0 −3 0 3 0 0 . . .
0 0 0 0 −3 0 3 0 . . .

 ,

~B′(xN−5)
~B′(xN−4)
~B′(xN−3)
~B′(xN−2)
~B′(xN−1)
~B′(xN )

 = 1
h


. . . 0 −3 0 3 0 0 0 0
. . . 0 0 −3 0 3 0 0 0
. . . 0 0 0 −3 − 3

4 3 0 0
. . . 0 0 0 0 −3 − 12

37 3 0
. . . 0 0 0 0 3

2 − 174
37

15
8 3

. . . 0 0 0 0 −3 276
37 − 27

2 12

 ,

~B′′(x0)
~B′′(x1)
~B′′(x2)
~B′′(x3)
~B′′(x4)
~B′′(x5)

 = 1
h2


12 − 45

2
756
37 −9 0 0 0 . . .

6 − 33
4

144
37 0 0 0 0 . . .

0 6 − 468
37 9 0 0 0 . . .

0 0 6 − 27
2 6 0 0 . . .

0 0 0 6 −12 6 0 . . .
0 0 0 0 6 −12 6 . . .

 ,

~B′′(xN−5)
~B′′(xN−4)
~B′′(xN−3)
~B′′(xN−2)
~B′′(xN−1)
~B′′(xN )

 = 1
h2


. . . 6 −12 6 0 0 0 0
. . . 0 6 −12 6 0 0 0
. . . 0 0 6 − 27

2 6 0 0
. . . 0 0 0 9 − 468

37 6 0
. . . 0 0 0 0 144

37 − 33
4 6

. . . 0 0 0 −9 756
37 − 45

2 12

 .
Looking upon the modification described in Eq. (3.3) and if we consider the case x ∈ [x0, x1], there are four linearly

independent polynomials as in Figure 1(b) that are capable to produce polynomials 1, x, x2, x3 in this interval. It is a
remarkable resolution for the issue of the modification Eq. (3.2). Polynomial reproduction property and high accuracy
order of the basis {B̆j : j = 0, . . . , N} guarantee better numerical accuracy and performance.

3.2. Method to compute the weight coefficients for differential quadrature. We first derive the weight
coefficients corresponding to the first-order derivative representation and then connect it to find the coefficients of
second-order derivatives. Differential quadrature representation of the first-order derivative using the modified cubic
splines {B̆j(x) : j = 0, . . . , N} is given by

B̆′j(xi) =
N∑
k=0

p
(1)
ik B̆j(xk), i, j = 0, . . . , N, (3.5)
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where p(1)
ik , i, k = 0, 1, . . . , N are the weight coefficients associated with the representation of the first-order derivatives.

Equivalently, this can be written as a tridiagonal matrix system by Table 1 as follows:

8 1
37
8 1

144
37 1

15
4 1
1 4 1

. . . . . . . . .
1 4 1

1 15
4
1 144

37
1 37

8
1 8





p
(1)
i0
p

(1)
i1
p

(1)
i2
p

(1)
i3
...

p
(1)
iN−3
p

(1)
iN−2
p

(1)
iN−1
p

(1)
iN


=



B̆′0(xi)
B̆′1(xi)
B̆′2(xi)
B̆′3(xi)
B̆′4(xi)

...
B̆′N−3(xi)
B̆′N−2(xi)
B̆′N−1(xi)
B̆′N (xi)


,

for each i = 0, . . . , N . Let A denote the above N + 1 order tridiagonal matrix. Then the above system can be
represented in the matrix equation form as APT = B̆, where the matrix P is given by

P =


p

(1)
00 · · · p

(1)
0N

...
. . .

...
p

(1)
N0 · · · p

(1)
NN

 ,
and

B̆ =

 B̆
′
0(x0) · · · B̆′0(xM )

...
. . .

...
B̆′N (x0) · · · B̆′N (xN )

 = 1
h



−12 −3
27
2 − 15

8 −3
− 276

37
174
37

12
37 −3

3 − 3
2 3 3

4 −3
3 0 −3

. . . . . . . . .
3 0 −3

3 − 3
4 −3 3

2 −3
3 − 12

37 −
174
37

276
37

3 15
8 − 27

2
3 12



.

Since the tridiagonal coefficient matrix A is invertible, the matrix P is obtained by the matrix relation: PT = A−1B̆.
Weight coefficients corresponding to the second-order derivatives can be computed using the following recurrence
relation as described in [38]:

p
(2)
ij = 2

[
p

(1)
ij p

(1)
ii −

p
(1)
ij

xi − xj

]
, i 6= j, p

(2)
ii = −

N∑
j=0
j 6=i

p
(2)
ij , for each i, j = 0, . . . N, (3.6)

where p(2)
ij , i, j = 0, 1, . . . , N are the weight coefficients associated with the representation of the second-order deriva-

tives.

4. Stability analysis

In this section, we study the stability of our proposed scheme. This analysis is done with a focus on the eigenvalues
of the discretization matrix obtained from the system of first-order ordinary differential equations Eq. (2.3). If all its
eigenvalues have negative real parts, then we say that the discretized system is stable. Note that our proposed scheme
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depends solely on this discretized system matrix. Similar approach can be carried out to handle the stability analysis
both in one- and two-dimensions. For convenience we can express the system Eq. (2.3) in block matrix form with the
boundary points excluded as follows:

d

dt

[
w
u

]
=
[
−2αI C
I O

] [
w
u

]
+
[
F
Õ

]
, (4.1)

where I and O are the identity and null matrices of size N − 1 each, and

C =


p

(2)
11 − β2 p

(2)
12 · · · p

(2)
1N−1

p
(2)
21 p

(2)
22 − β2 · · · p

(2)
2N−1

...
. . .

...
p

(2)
N−1 1 p

(2)
N−1 2 · · · p

(2)
N−1N−1 − β2

 .
Solution of Eq. (4.1) can be treated as a column vector,[

w u
]T =

[
w1 w2 . . . wN−1 u1 u2 . . . uN−1

]
.

The column vector
[
Õ F

]T in Eq. (4.1) includes the non-homogenous part and boundary conditions shown in
Eq. (2.4), where Õ is the zero column vector of length N −1. The removal of boundary grid points changes the entries
of the column vector FT =

[
f1 f2 . . . fN−1

]
, where

fi = − (pi 0u0 + piNuN ) + f(xi, t), i = 1, . . . , N − 1.

To establish the stability of the discretization matrix, we use the following well-known result:

Theorem 4.1. [29] Consider real n × n matrices S and T and the 2n × 2n block matrix
[
S T
I O

]
and assume that

Sii = a < 0, Tii < 0 for all i and Sij = 0 for all i 6= j. If T is stable (ie., all eigenvalues of T have negative real parts)
and in addition |a| > |γ|/

√
−ρ for all eigenvalues λ = ρ+ γi of T , then the above block matrix is stable.

Remark 4.2. If T has no complex roots then the inequality follows trivially.

Remark 4.3. Note that A is centrosymmetric and B̆ is skew-centrosymmetric, P (1) will be a skew-centrosymmetric
matrix. The recurrence relation Eq. (3.6) guarantees P (2) a centrosymmetric matrix with negative diagonal entries.
Hence C is also centrosymmetric.

Remark 4.4. The characteristic polynomial of C satisfies the Hurwitz matrix criterion for different discretizations
and hence all its eigenvalues have a negative real part. This ensures the stability of matrix C.

Since α > 0, note that the scalar matrix −2αI has all the diagonal entries negative. For different discretizations N ,
we get Cii < 0. However, all the eigenvalues of C are found to be negative real numbers for different discretizations
(see Figure 2). Thus the scheme will be stable by the above theorem.

5. Results and Discussions

Using the proposed cubic B-spline-based differential quadrature method in the previous sections, we now numerically
solve one-dimensional and two-dimensional hyperbolic telegraph equations Eq. (1.1) and Eq. (1.2) for different choices
of the parameters α, β up to the required time bounds. From the initial numerical solution, a solution at the desired
time step is naturally achieved by solving the obtained system recursively with a time step ∆t. The computations in
all our numerical examples are done on uniform meshes. The proposed numerical scheme is applied to solve several
one-dimensional and two-dimensional hyperbolic telegraph equations with different spatial discretizations and time
steps. The effectiveness of our proposed method is demonstrated by comparing our proposed scheme with several
other well-known numerical methods in the literature. We analyze the accuracy of the approximated solution with
the exact solution of these problems in terms of L2, L∞ norms as well as relative and root mean square errors.
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Figure 2. Eigenvalues of the matrix C for different spatial discretizations.

Example 5.1. Consider the one-dimensional telegraph equation Eq. (1.1) for α = 10, β = 5 and Ω = (0, 2) with the
initial and boundary conditions:

u(x, 0) = tan
(x

2

)
, ut(x, 0) = 1

2

(
1 + tan2

(x
2

))
, u(0, t) = tan

(
t

2

)
, u(2, t) = tan

(
2 + t

2

)
,

respectively. The source term is f(x, t) = α(1 + tan2(x+t
2 )) + β2 tan(x+t

2 ). The exact solution of this problem is
u(x, t) = tan(x+t

2 ). The computation is done with N = 100. The computed numerical solution is plotted by taking
∆t = 0.001 for t = 0.2, 0.4, 0.6, 0.8, 1.0 s and the surface plot is also given up to t = 1 s in Figure 3. The L2 and
L∞ errors are calculated and compared with results in [25, 30, 37] in Table 2. The tabulated data show that the
computed numerical solutions with the proposed modified basis functions are much more accurate than these works.
The convergence rate is calculated in Table 3, showing that the scheme has an overall fourth-order convergence.
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Figure 3. Example 5.1. (a) is for computed solutions with N = 100 and ∆t = 0.001. (b) is for the
surface plot.
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Table 2. Example 5.1: L2 and L∞ errors comparison for N = 100 and for various ∆t; total CPU
time = 0.4 s.

Methods t L2 L∞ L2 L∞
∆t = 0.01 ∆t = 0.001

0.2 1.0975 × 10−7 5.0027 × 10−7 1.1462 × 10−7 5.1120 × 10−7

0.4 3.4507 × 10−7 1.5838 × 10−6 3.5544 × 10−7 1.6045 × 10−6

Proposed 0.6 1.4459 × 10−6 6.9892 × 10−6 1.4699 × 10−6 7.0288 × 10−6

0.8 1.1002 × 10−5 5.7991 × 10−5 1.1060 × 10−5 5.7949 × 10−5

1.0 4.0339 × 10−4 2.4742 × 10−3 4.0174 × 10−4 2.4582 × 10−3

∆t = 0.0001 ∆t = 0.001
0.2 5.0305 × 10−5 3.4797 × 10−5 1.8782 × 10−4 2.6332 × 10−4

0.4 9.5163 × 10−5 5.3456 × 10−5 4.8888 × 10−4 6.9997 × 10−4

[25] 0.6 2.2041 × 10−4 9.4725 × 10−5 9.4864 × 10−4 1.4860 × 10−3

0.8 7.8267 × 10−4 1.8792 × 10−4 1.8743 × 10−3 3.4057 × 10−3

1.0 7.9277 × 10−3 5.8720 × 10−4 5.0981 × 10−3 1.1148 × 10−2

∆t = 0.0001 ∆t = 0.001
0.2 2.13 × 10−5 3.35 × 10−5 1.85 × 10−4 2.79 × 10−4

0.4 5.25 × 10−5 7.92 × 10−5 4.43 × 10−4 6.35 × 10−4

[30] 0.6 1.02 × 10−4 1.63 × 10−4 7.96 × 10−4 1.17 × 10−3

0.8 2.39 × 10−4 4.65 × 10−4 1.47 × 10−3 2.40 × 10−3

1.0 1.73 × 10−3 5.59 × 10−4 4.19 × 10−3 9.51 × 10−3

∆t = 0.001
[37] 0.2 9.99 × 10−6 6.83 × 10−5

0.4 7.07 × 10−6 4.28 × 10−5

Table 3. Example 5.1: Convergence rate of the problem for with ∆t = 0.001 at t = 1 s.

N L∞ error CPU time (sec) Convergence rate
27 1.19 × 10−3 0.41 -
28 1.24 × 10−4 0.52 3.26
29 1.02 × 10−5 1.00 3.60
210 7.57 × 10−7 4.41 3.75

Example 5.2. Consider the one-dimensional telegraph equation Eq. (1.1) for α = 10, β = 5 and Ω = (0, 1) with the
initial and boundary conditions:

u(x, 0) = sinh(x), ut(x, 0) = −2 sinh(x) and u(0, t) = 0, u(1, t) = e−2t sinh(1),
respectively. The source term is f(x, t) = e−2t sinh(x)

(
3− 4α+ β2). The exact solution of this problem is u(x, t) =

e−2t sinh(x). The numerical approximation using our proposed method yields much better accuracy than those in
[14]. This can be observed from the error comparison in Table 4 and the plots in Figure 4. The convergence rate of
the scheme has been discussed in Table 5. The results here show much better performance of the proposed scheme in
terms of accuracy of the solution and its computational time.

Example 5.3. Consider the one-dimensional telegraph equation Eq. (1.1) for α = 6, β = 2 and Ω = (0, 1) with the
initial and boundary conditions:

u(x, 0) = sin(x), ut(x, 0) = 0 and u(0, t) = 0, u(1, t) = cos(t) sin(1),
respectively. The source term is f(x, t) = −2α sin(t) sin(x) + β2 cos(t) sin(x). The exact solution of this problem is
u(x, t) = cos(t) sin(x). The computation is done by taking N = 100 here. Computed numerical solutions are plotted
for various time up to t = 2 s shown in Figure 5. The L2 and L∞ errors up to time t = 5s are calculated and compared
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Figure 4. Example 5.2. (a) is for computed solutions with N = 33 and ∆t = 0.001. (b) is for the
surface plot.

Table 4. Example 5.2: L2, L∞ and RMS errors comparison for N = 51, ∆t = 0.01; total CPU time
= 0.06 s.

t Method L2 L∞ RMS
1 Proposed Method 1.20 × 10−9 2.49 × 10−9 1.19 × 10−9

[14] 8.35 × 10−5 1.70 × 10−5 1.19 × 10−5

2 Proposed Method 2.47 × 10−10 4.03 × 10−10 2.45 × 10−10

[14] 2.37 × 10−5 4.63 × 10−6 3.38 × 10−6

Table 5. Example 5.2: Convergence rate of the problem for with ∆t = 0.001 at t = 1 s.

N L∞ error CPU time (sec) Convergence rate
23 2.00 × 10−6 0.22 -
24 1.49 × 10−7 0.23 3.74
25 1.00 × 10−8 0.26 3.89
26 7.35 × 10−10 0.30 3.76

with three known methods in [25, 30, 37], tabulated in Table 6 and Table 7. Comparison of root-mean-square error
can be found in Table 6 and the convergence rate is tabulated in Table 8.

Example 5.4. Consider the one-dimensional telegraph equation Eq. (1.1) for α = 1
2 , β = 1 and Ω = (0, 1) with

the initial conditions u(x, 0) = 0 = ut(x, 0) and boundary conditions u(0, t) = 0 = u(1, t). The source term is
f(x, t) = e−t(2t2 + (x− x2)(t2 − 2t+ 2)). The exact solution of this problem is u(x, t) = e−t(x− x2)t2. We compute
the numerical solution by using N = 100 grid points and time step ∆t = 0.001. Figure 6 illustrates the behaviour of
the solution we obtained as time progresses from t = 1 s to t = 10 s. The L2, L∞ and RMS errors are tabulated in
Table 9 and Table 10 and compared with known results reported [10, 14, 25, 30, 37]. The polynomial in the exact
solution of this problem is effectively captured by our modified basis functions near the boundary and therefore, yields
significantly better numerical performance.
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Figure 5. Example 5.3. (a) is for computed solutions with N = 100 and ∆t = 0.001. (b) is for the
surface plot.

Table 6. Example 5.3: L2, L∞ and RMS errors comparison for N = 100,∆t = 0.0001 and at various
times; total CPU time = 2.48 s.

t L2 L∞ RMS L2 L∞ RMS
Proposed Method [25]

0.2 1.7141 × 10−10 5.5379 × 10−10 1.7056 × 10−10 2.6903 × 10−6 5.2412 × 10−6 2.6775 × 10−6

0.4 1.9603 × 10−10 5.3219 × 10−10 1.9505 × 10−10 5.6183 × 10−6 8.6095 × 10−6 5.5904 × 10−6

0.6 2.0429 × 10−10 4.9235 × 10−10 2.0328 × 10−10 9.7545 × 10−6 1.2529 × 10−5 9.7061 × 10−6

0.8 2.0231 × 10−10 4.3383 × 10−10 2.0131 × 10−10 1.3774 × 10−5 2.0274 × 10−5 1.3706 × 10−5

1.0 1.9219 × 10−10 3.5991 × 10−10 1.9123 × 10−10 1.7347 × 10−5 2.7555 × 10−5 1.7261 × 10−5

[30] [37]
0.2 2.96 × 10−6 4.63 × 10−6 2.94 × 10−6 2.33 × 10−8 2.10 × 10−7 1.49 × 10−8

0.4 6.77 × 10−6 1.01 × 10−5 6.73 × 10−6 4.55 × 10−8 4.30 × 10−7 3.04 × 10−8

Table 7. Example 5.3: L2 and L∞ errors comparison for various N and ∆t = 0.001; total CPU time
= 0.8 s.

Methods t N=100 N=200
L2 L∞ L2 L∞

0.2 1.7133 × 10−10 5.5379 × 10−10 1.1580 × 10−11 3.7266 × 10−11

0.4 1.9599 × 10−10 5.3220 × 10−10 1.5794 × 10−11 3.9851 × 10−11

Proposed 0.6 2.0436 × 10−10 4.9239 × 10−10 2.0695 × 10−11 4.3584 × 10−11

0.8 2.0254 × 10−10 4.3389 × 10−10 2.6223 × 10−11 4.8410 × 10−11

1.0 1.9261 × 10−10 3.6000 × 10−10 3.2111 × 10−11 5.4166 × 10−11

0.2 3.6711 × 10−5 7.9139 × 10−5 3.4308 × 10−5 6.8272 × 10−5

0.4 8.8989 × 10−5 1.5967 × 10−4 8.5756 × 10−5 1.4935 × 10−4

[25] 0.6 1.3733 × 10−4 2.3362 ×10−4 1.3367 × 10−4 2.2410 × 10−4

0.8 1.7913 × 10−4 2.9820 × 10−4 1.7532 × 10−4 2.8978 × 10−4

1.0 2.1302 × 10−4 3.5085 × 10−4 2.0929 × 10−4 3.4386 × 10−4

Example 5.5. Consider the one-dimensional telegraph equation Eq. (1.1) for α = β = 1 and Ω = (0, 1) with the
initial conditions u(x, 0) = x2 = ut(x, 0) and boundary conditions u(0, t) = 0 and u(1, t) = et. The source term is
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Table 8. Example 5.3: Convergence rate of the problem for with ∆t = 0.001 at t = 1 s.

N L∞ error CPU time (sec) Convergence rate
23 6.58 × 10−6 0.15 -
24 4.58 × 10−7 0.17 3.84
25 3.01 × 10−8 0.20 3.92
26 1.96 × 10−9 0.26 3.94
27 1.55 × 10−10 0.35 3.66
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Figure 6. 5.4. (a) is for computed solutions with N = 100 and ∆t = 0.001. (b) is for the surface
plot.

Table 9. Example 5.4: L2 and L∞ errors comparison for N = 100, ∆t = 0.001 and at various times;
total CPU time = 1.12 s.

t Proposed Method [25] [10]
L2 L∞ L2 L∞ L2 L∞

1 3.8017 × 10−12 5.3167 × 10−12 4.5526 × 10−5 5.9153 × 10−5 1.4386 × 10−4 1.8479 × 10−5

2 3.1440 × 10−12 4.4222 × 10−12 1.4307 × 10−5 1.7864 × 10−5 8.0879 × 10−5 1.0713 × 10−5

3 4.8213 × 10−13 6.8479 × 10−13 6.4273 × 10−6 1.4309 × 10−5 1.2944 × 10−4 1.8161 × 10−5

4 1.1137 × 10−12 1.5544 × 10−12 8.9203 × 10−6 1.3529 × 10−5 1.1845 × 10−4 1.6489 × 10−5

5 1.4593 × 10−13 2.1010 × 10−13 3.0161 × 10−6 5.2032 × 10−6 7.5545 × 10−5 1.0455 × 10−5

f(x, t) = et(β2 x2 + 2αx2 + x2 − 2). In this problem, the exact solution is u(x, t) = x2 et, where the polynomial x2

here is well captured by our proposed modified cubic B-splines and hence we obtain very accurate computed numerical
solutions as shown in Table 11. L2, L∞ and RMS errors are calculated with N = 32 grid points for various ∆t and
the computed numerical solutions are drawn up to t = 12 s as in Figure 7.

Example 5.6. Consider the two-dimensional telegraph equation Eq. (1.2) with α = β = 1, Ω = (0, 1)2, and the source
term f(x, y, t) = 2(cos(t)− sin(t)) sin(x) sin(y) such that the initial conditions and boundary conditions are given by

IC :
{
u(x, y, 0) = sin(x) sin(y),
ut(x, y, 0) = 0,

BC :
{
u(0, y, t) = 0, u(1, y, t) = cos(t) sin(1) sin(y),
u(x, 0, t) = 0, u(x, 1, t) = cos(t) sin(x) sin(1).
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Table 10. Example 5.4: L2 and L∞ errors comparison for N = 100, ∆t = 0.005 and for various
time; total CPU time = 1.02 s.

t Proposed Method [14]
L2 L∞ RMS L2 L∞ RMS

1 8.63 × 10−12 1.03 × 10−11 8.59 × 10−12 7.54 × 10−6 9.93 × 10−7 7.58 × 10−7

2 7.92 × 10−12 8.84 × 10−12 7.88 × 10−12 1.57 × 10−5 2.12 × 10−6 2.58 × 10−6

t [30] [37]
L2 L∞ RMS L2 L∞ RMS

1 6.31 × 10−5 8.76 × 10−5 - 2.61 × 10−8 1.67 × 10−7 1.68 × 10−8

2 2.34 × 10−5 3.29 × 10−5 - 6.10 × 10−8 4.72 × 10−7 4.74 × 10−8
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Figure 7. Example 5.5. (a) is for computed solutions with N = 33 and ∆t = 0.01. (b) is for the
surface plot.

Table 11. Example 5.5: L2, L∞ and RMS errors comparison for various ∆t and N = 32; total CPU
time = 2.0 s.

t ∆ t = 0.01 ∆ t = 0.001
L2 L∞ RMS L2 L∞ RMS

2 5.2924 × 10−10 7.9206 × 10−10 5.2116 × 10−10 3.0167 × 10−10 5.6077 × 10−10 2.9706 × 10−10

4 3.9723 × 10−9 5.9098 × 10−9 3.9117 × 10−9 2.5397 × 10−9 4.7043 × 10−9 2.5009 × 10−9

6 2.9356 × 10−8 4.3660 × 10−8 2.8908 × 10−8 1.9078 × 10−8 3.5321 × 10−8 1.8786 × 10−8

8 2.1691 × 10−7 3.2260 × 10−7 2.1360 × 10−7 1.4128 × 10−7 2.6155 × 10−7 1.3912 × 10−7

10 1.6027 × 10−6 2.3836 × 10−6 1.5783 × 10−6 1.0442 × 10−6 1.9332 × 10−6 1.0283 × 10−6

The exact solution of this problem is u(x, y, t) = cos(t) sin(x) sin(y). Using the proposed scheme discussed in Section 2,
we compute the numerical solution of this problem on a uniform mesh consisting of 100 points in each coordinate
direction (i.e., N = M = 10) and then we progress the numerical solution up to t = 5 s using a time step ∆t = 0.01.
Figure 8 illustrates the computed numerical solution at time t = 10, 100 s. The L2, L∞ and relative errors are
tabulated for different time steps ∆t = 0.01, 0.001 and spatial discretizations N = M = 10, 20 when the numerical
solution progresses up to time t = 10 s (see Table 12 and Table 13). In comparison with the results in [26], the
proposed method is much more accurate than the method in [26]. The computed numerical solution seems to be very
much close to the exact solution in terms of different norms.
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Figure 8. The computed numerical solutions in Example 5.6 using N = M = 10 and ∆t = 0.01 at
(a) t = 10 s, (b) t = 100 s.

Table 12. L2, L∞ and relative errors comparison in Example 5.6 for ∆t = 0.01 and N = M = 10;
total CPU time = 0.69 sec.

t Proposed Method [26]
L2 L∞ Relative error L2 L∞ Relative error

1 1.0412 × 10−6 2.2529 × 10−6 6.8638 × 10−6 9.9722 × 10−4 2.2746 × 10−3 5.9762 × 10−3

2 4.7169 × 10−7 1.5909 × 10−6 4.0372 × 10−6 1.0926 × 10−3 2.8706 × 10−3 8.5019 × 10−3

3 1.4112 × 10−6 3.8455 × 10−6 5.0771 × 10−6 2.2877 × 10−4 6.0818 × 10−4 7.4720 × 10−4

5 3.0552 × 10−7 1.0116 × 10−6 3.8363 × 10−6 1.1562 × 10−3 2.9942 × 10−3 1.2767 × 10−3

7 1.1357 × 10−6 3.0264 × 10−6 5.3656 × 10−6 7.2867 × 10−4 1.8781 × 10−3 3.1572 × 10−3

10 1.2444 × 10−6 3.3501 × 10−6 5.2823 × 10−6 5.8889 × 10−4 1.5158 × 10−3 2.2874 × 10−3

Table 13. L2, L∞ and relative errors comparison in Example 5.6 for ∆t = 0.001 and N = M = 20;
total CPU time = 8.73 sec

t Proposed Method [26]
L2 L∞ Relative error L2 L∞ Relative error

1 7.1329 × 10−8 1.5204 × 10−7 4.7706 × 10−7 9.8870 × 10−5 2.4964 × 10−4 6.2977 × 10−4

2 3.6669 × 10−8 1.1652 × 10−7 3.1842 × 10−7 1.2148 × 10−4 3.2296 × 10−4 1.0025 × 10−3

3 1.0049 × 10−7 2.7289 × 10−7 3.6680 × 10−7 3.7627 × 10−5 9.9310 × 10−5 1.3078 × 10−4

5 2.3447 × 10−8 7.6682 × 10−8 2.9870 × 10−7 1.2762 × 10−4 3.3205 × 10−4 1.5411 × 10−3

7 7.9990 × 10−8 2.0971 × 10−7 3.8341 × 10−7 6.7672 × 10−5 1.7679 × 10−4 3.0892 × 10−4

10 8.7928 × 10−8 2.3304 × 10−7 3.7867 × 10−7 5.1764 × 10−5 1.3521 × 10−4 2.1245 × 10−4

Example 5.7. Consider the two-dimensional telegraph equation Eq. (1.2) with Ω = (0, 1)2, the source term f(x, y, t) =
sinh(x) sinh(y)(−3 cos(t)− 2α sin(t) + β2 cos(t)) and the initial and boundary conditions:

IC :
{
u(x, y, 0) = sinh(x) sinh(y),
ut(x, y, 0) = 0,

BC :
{
u(0, y, t) = 0, u(1, y, t) = cos(t) sinh(1) sinh(y),
u(x, 0, t) = 0, u(x, 1, t) = cos(t) sinh(x) sinh(1).

The exact solution of this problem is u(x, y, t) = cos(t) sinh(x) sinh(y). The computation is done with a spatial
discretization N = M = 20 and a time step ∆t = 0.001. For α = 10, β = 5, the computed numerical solution is
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plotted at time t = 10, 100s (see Figure 9). The numerical errors are computed up to t = 10 s for various values of
α, β. Comparison of these results with [16, 26] is summarized in Table 14, showing that our proposed method performs
much better than those in [16, 26] in the literature. Also, our algorithm takes less than 19 seconds on an Intel core
i5 processor. Our proposed approach is capable to compute the solution up to a larger time with less computational
cost.
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Figure 9. The computed numerical solutions in Example 5.7 for α = 10, β = 5, N = M = 20 and
∆t = 0.001 at (a) t = 10 s, (b) t = 100 s.

Table 14. L2 and relative errors comparison in Example 5.7 for ∆t = 0.001 and N = M = 20; total
CPU time = 18.90 sec.

t Proposed Method [26] [16]
L2 Relative error L2 Relative error Relative error

α = 10, β = 5
0.5 9.0872 × 10−8 2.4598 × 10−7 1.0696 × 10−4 1.3787 × 10−5 2.0149 × 10−5

1 6.9860 × 10−8 3.0716 × 10−7 1.7174 × 10−4 3.5957 × 10−5 4.6003 × 10−5

2 2.8496 × 10−8 1.6267 × 10−7 1.6468 × 10−4 4.4722 × 10−5 4.4460 × 10−5

3 9.8186 × 10−8 2.3560 × 10−7 8.9858 × 10−6 1.0266 × 10−6 6.4830 × 10−6

5 1.7618 × 10−8 1.4755 × 10−7 1.7737 × 10−4 7.0735 × 10−5 7.3626 × 10−5

7 8.9634 × 10−8 2.8244 × 10−7 1.4200 × 10−4 2.1307 × 10−5 -
10 9.5999 × 10−8 2.7179 × 10−7 1.2241 × 10−4 1.6514 × 10−5 2.4901 × 10−5

α = 50, β = 5
0.5 5.8561 × 10−8 1.5852 × 10−7 9.8800 × 10−5 1.2735 × 10−5 2.8724 × 10−5

1 5.8618 × 10−8 2.5773 × 10−7 1.6766 × 10−4 3.5104 × 10−5 7.0064 × 10−5

2 2.0342 × 10−8 1.1612 × 10−7 1.7109 × 10−4 4.6408 × 10−5 6.7759 × 10−5

3 6.6142 × 10−8 1.5871 × 10−7 1.7406 × 10−5 1.9886 × 10−6 1.3856 × 10−5

5 2.9417 × 10−8 2.4636 × 10−7 1.8420 × 10−4 7.3460 × 10−5 1.2840 × 10−4

7 7.6652 × 10−8 2.4153 × 10−7 1.3760 × 10−4 2.0647 × 10−5 -
10 7.8380 × 10−8 2.2190 × 10−7 1.1691 × 10−4 1.5772 × 10−5 4.4202 × 10−5
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Example 5.8. Consider the two-dimensional telegraph equation Eq. (1.2) with α = β = 1, Ω = (0, 1)2, the source
term f(x, y, t) = 1

(1+x+y+t)2 + 2α
1+x+y+t + β2 log(1 + x+ y + t) and the initial and boundary conditions:

IC :
{
u(x, y, 0) = log (1 + x+ y) ,
ut(x, y, 0) = 1

1+x+y ,
BC :

{
u(0, y, t) = log (1 + y + t) , u(1, y, t) = log (2 + y + t) ,
u(x, 0, t) = log (1 + x+ t) , u(x, 1, t) = log (2 + x+ t) .

The exact solution of this problem is u(x, y, t) = log(1 + x + y + t). This problem is solved on a uniform mesh with
N = M = 20, and progresses with the time step ∆t = 0.001. The computed numerical solutions at time t = 10, 100 s
are illustrated in Figure 10. L2, L∞ and relative errors are computed for a time-bound t = 10 s and compared with the
results in [11, 26] (see Table 15). It is interesting to observe that the numerical errors of our solutions is significantly
reduced in this problem. This shows that the proposed method effectively computes the solution and can progress to
a larger time.
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Figure 10. The computed numerical solutions in Example 5.8 for α = β = 1, N = M = 20 and
∆t = 0.001 at (a) t = 10 s, (b) t = 100 s.

Table 15. L2 and relative errors comparison in Example 5.8 for ∆t = 0.001 and N = M = 20; total
CPU time = 10.16 sec.

t Proposed Method [26] [11]
L2 RE L2 RE RE(MLWS) RE(MLPG)

1 9.1950 × 10−8 8.3753 × 10−8 1.5293 × 10−3 1.3266 × 10−3 9.098 × 10−5 7.198 × 10−5

2 4.4921 × 10−8 3.2440 × 10−8 4.6468 × 10−4 3.1954 × 10−4 8.705 × 10−4 8.784 × 10−5

3 1.1117 × 10−8 6.9138 × 10−9 2.1994 × 10−4 1.3024 × 10−4 9.931 × 10−4 4.801 × 10−4

4 2.6699 × 10−9 1.3727 × 10−9 2.7151 × 10−4 1.4435 × 10−5 4.703 × 10−3 6.091 × 10−4

5 2.5072 × 10−10 1.1414 × 10−10 1.7201 × 10−4 8.4225 × 10−5 7.302 × 10−3 9.498 × 10−4

10 1.1125 × 10−10 4.4780 × 10−11 7.7285 × 10−5 2.9624 × 10−5 - -

Example 5.9. Consider the two-dimensional telegraph equation Eq. (1.2) with α = β = 1, Ω = (0, 1)2, the source
term f(x, y, t) = x2 + y2 + t− 2, and the initial and boundary conditions:

IC :
{
u(x, y, 0) = x2 + y2,

ut(x, y, 0) = 1,
BC :

{
u(0, y, t) = y2 + t, u(1, y, t) = 1 + y2 + t,

u(x, 0, t) = x2 + t, u(x, 1, t) = 1 + x2 + t.
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The exact solution is u(x, y, t) = x2 + y2 + t. This problem progresses for a time step ∆t = 0.01. The computed
numerical solution at time t = 10, 100 is illustrated in Figure 11 for a spatial discretization N = M = 20. L∞ is
calculated for N = M = 10 up to t = 10 s and compared with the results in [13] (see Table 16). The computational
time shows the efficiency of the algorithm. It effectively captures the solution of the problem up to a large time-bound
with the use of large time step ∆t.
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Figure 11. The computed numerical solutions in Example 5.9 for α = β = 1, N = M = 20 and
∆t = 0.01 at (a) t = 10, (b) t = 100.

Table 16. Example 5.9 L∞ error comparison for ∆t = 0.01 and N = M = 10.

t Proposed [13]
L∞ CPU time (s) L∞ CPU time (s)

1 2.1316 × 10−14 0.03 1.2517 × 10−12 0.27
2 4.2632 × 10−14 0.05 2.2538 × 10−12 0.29
3 6.3948 × 10−14 0.07 2.0494 × 10−11 0.31
5 1.0658 × 10−13 0.12 1.3824 × 10−11 0.35
10 2.1316 × 10−13 0.21 4.7326 × 10−11 0.47

6. Conclusion

In this article, we numerically solve the one- and two-dimensional hyperbolic telegraph equations using a modified
cubic B-splines-based differential quadrature algorithm. Weight coefficients are determined using a newly modified
set of cubic B-spline basis functions. This set of splines is capable to maintain the optimal polynomial reproduction
property in the spatial domain and to ensure more accuracy near the boundaries. Also, the proposed modification of
the cubic B-splines retains the tridiagonal matrix property, making the computation process effective. The convergence
rate of the scheme is also discussed, and it is found that the algorithm possesses the fourth-order convergence. Thus
the proposed method could achieve a better approximation than other known published methods in the literature. The
spatial derivatives are approximated through the differential quadrature technique. The discretized telegraph equation
is transformed into a system of first-order ordinary differential equations and is then solved by the SSPRK−54, 43
schemes. Eigenvalues of the discretization matrix are found to lie on the left half-plane and this guarantees the stability
of the proposed method. Several test examples are solved by the proposed method. A comparative study is performed
against certain published methods in the literature, especially in [10, 11, 13, 14, 16, 25, 26, 30, 37]. It is observed that
the proposed scheme is efficient and computationally less complex.
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