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Abstract

In the present study, the Modified Equal Width (MEW) wave equation is going to be solved numerically by

presenting a new technique based on the collocation finite element method in which trigonometric cubic B-splines

are used as approximate functions. In order to support the present study, three test problems; namely, the motion
of a single solitary wave, the interaction of two solitary waves, and the birth of solitons are studied. The newly

obtained results are compared with some of the other published numerical solutions available in the literature.
The accuracy of the proposed method is discussed by computing the numerical conserved laws as well as the error

norms L2 and L∞.
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1. Introduction

In nature, phenomena that are nonlinear in their characteristics have a deterministic role in various fields of science
such as waves, fluid mechanics, plasma physics, optics, solid state physics, kinetics and geology. Especially, in wave
studies, all of the phenomena such as dispersion, dissipation, diffusion, reaction, and convection become important
[42].

The widely used nonlinear modeling for wave phenomena is Korteweg de-Vries (KdV) [26] equation of the following
form

ut + 6uux + uxxx = 0.

Then comes regularised long wave (RLW) equation for describing nonlinear dispersive wave phenomena of the form

ut + ux + uux − uxxt = 0 (1.1)

widely accepted as an alternative to the KdV equation. The third equation used for modeling those wave phenomena
are known as the equal width (EW) equation and is presented in the following form [30]

ut + uux − uxxt = 0.

Finally comes to the modified equal width (MEW) equation closely in relation with the RLW (1.1) is given in the
following form under the physical boundary conditions u→ 0 if x→ ±∞
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ut + εu2ux − µuxxt = 0. (1.2)

Here t and x denote time and space coordinates, respectively ε and µ are positive parameters and u is related to the
vertical displacement of the water surface. In order to obtain the numerical solutions of MEW (1.2) for x ∈ [a, b] , the
following boundary conditions

u(a, t) = u(b, t) = 0,

ux(a, t) = ux(b, t) = 0,

uxxt(a, t) = uxxt(b, t) = 0,

and the following initial condition,

u(x, 0) = f(x), a ≤ x ≤ b,

has been considered, where f(x) is a sufficently smooth function. The MEW (1.2) equation has the following solitary
wave solution

u(x, t) = A sech [k (x− x0 − ct)] (1.3)

where k = 1/
√
µ and c = A2/2. In the literature, solitary waves are defined as traveling waves while retaining their

shapes and speeds because of the delicate balance between nonlinearity and dispersive effects, whereas, a soliton is a
very special type of solitary wave, retaining its shape and speed even after colliding with another wave [14]. Although,
those solitary waves can have both positive and negative amplitudes, their speed is positive and proportional to the
square of their amplitudes. Moreover, as with RLW equation, since all of them have the same number of waves
k = 1/

√
µ, they also have the same width [39]. The conservation constants of the MEW equation for the above

boundary conditions are found by Olwer [31] as follows

I1 =

∫ +∞

−∞
udx, I2 =

∫ +∞

−∞

(
u2 + µ(ux)2

)
dx, I3 =

∫ +∞

−∞
u4dx.

In the literature, one can encounter several exact and approximate solutions of the MEW equation given with various
initial and boundary conditions. Among others, Hamdi et al. [19] have obtained exact solitary wave solutions of the
generalized equal width wave equation. Wazwaz [42] has studied the MEW equation and two of its variants with the
help of tanh and sine-cosine methods. Esen and Kutluay [9] have utilized a linearized numerical scheme based on the
finite difference method to find out solitary wave solutions of the one-dimensional MEW equation. Raslan [32] solved
generalized EW equation numerically by collocation of cubic B-splines finite element method. Jin [21] has suggested
an analytical approach based on the homotopy perturbation method for solving the MEW equation. Lu [29] has
introduced the variational iteration method for finding the solutions of the MEW equation.

Esen [10] has obtained a numerical solution of the one-dimensional MEW equation with the help of a lumped
Galerkin method using the quadratic B-spline finite element method. Çelikkaya [5] has used the operator splitting
method for the numerical solution of a modified equal width equation. Essa [11] has applied the multigrid method for
the numerical solution of the modified equal width wave equation. Zaki [39] has taken the solitary wave interactions
for the MEW equation into consideration by collocation method based on quintic B-spline finite elements and he [40]
also found the numerical solution of the EW equation by using the least-squares method. Karakoç and Zeybek [22]
have obtained the numerical solutions of the generalized equal width (GEW) wave equation by using lumped Galerkin
approach with the cubic B-spline functions and they [41] have also used quintic B-spline collocation algorithm with two
different linearization techniques. Yağmurlu and Karakaş [37] have solved the equal width (EW) equation numerically.
Roshan [33] has sought the solutions for the equation by using the Petrov-Galerkin method.

Geyikli and Karakoç [15] obtained numerical solutions of the MEW equation by using the collocation method
with septic B-spline finite elements with three different linearization techniques and they [16] have also utilized the
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subdomain finite element method with quartic B splines. Saka [35] has obtained numerical solutions for time split
the MEW equation and space split the MEW equation using quintic B-spline collocation method. Karakoç and
Geyikli [23] have obtained a numerical solution of the MEW equation using sextic B-splines. Geyikli and Karakoç [17]
have applied Petrov–Galerkin method with the cubic B-splines for solving the MEW equation. Karakoç and Geyikli
[24] have obtained a numerical solution of the modified equal width wave equation. Karakoç [25] has worked with
applying the cubic B-spline function to develop a numerical method for approximating the analytic solution of the
MEW equation. Evans and Raslan [12] have obtained solitary waves for the generalized equal width (GEW) equation.
Kaplan and Dereli [18] have solved GEW equation by using the moving least squares collocation method.

Cheng [4] has applied the improved element-free Galerkin method applied to the MEW equation. Başhan et al
[2] have used the finite difference method combined with differential quadrature method with Rubin and Graves
linearizing technique for the numerical solution of the MEW equation. In a recently published article, Başhan et al
[3] have presented a new perspective for the numerical solution of the MEW equation. One can see some recently
published articles about physical phenomena such as given in Refs [1]-[13]. The presented method has the advantage
of using less computer storage capacity and less running computational time. This resulted in accurate results in a
short simulation time. More recently, Shallal et al [36] have obtained exact solutions of the conformable fractional
EW and MEW equations by a new generalized expansion method.

The reader can also refer to the following articles about the different numerical approaches. Zadhan and Rashidina
[38] have developed a non polynomial cubic spline function which they called ”TS” spline based on trigonometric
functions. Dehghan and Lakestani [8] have presented a numerical technique for the solution of a nonclassical problem
for the one-dimensional wave equation. Daba and Dureessa [6] have presented a robust computational method involving
an exponential cubic spline for solving singularly perturbated parabolic convection-diffusion equations arising in the
modeling of neuronal variability. Lakestani and Dehghan [27] have presented a numerical technique for the solution
of Fokker-Planck equation. Lakestani [28] has presented a numerical technique based on the finite difference and
collocation methods for the solution of the Korteweg-de Vries (KdV) equation.

In this article, the error norms L2 and L∞ are going to be used to compare the differences between exact and
approximate solutions. Those widely used error norms L2 and L∞ are computed by the following formulae

L2 =
∥∥uexact − UN

∥∥
2
'

√√√√h

N∑
J=0

∣∣∣uexactj − (UN )j

∣∣∣2,
L∞ =

∥∥uexact − UN

∥∥
∞ ' max

j

∣∣∣uexactj − (UN )j

∣∣∣ .
In the present article, the MEW equation is going to be handled using the finite element trigonometric B-spline

cubic collocation method. During the solution process, a Rubin-Graves type linearization technique is going to be
utilized to overcome the nonlinear term appearing in the equation. Then the newly obtained results are going to be
compared with some of those available in the literature.

2. Implementation of the method for space discretization

The MEW equation is generally given in the following form

ut + εu2ux − µuxxt = 0, a ≤ x ≤ b
together with the physical boundary conditions U → 0 as x→ ±∞, in which t is time , x is the space coordinate and
µ is a positive parameter. For the considered problems, the appropriate boundary conditions will be chosen as

U(a, t) = 0, U(b, t) = 0,
Ux(a, t) = 0, Ux(b, t) = 0.

Let us consider the solution interval [a, b] is divided into N finite elements having equal lengths using the nodal
points xi, i = 0(1)N in such a way that a = x0 < x1 · · · < xN = b and h = (xi+1 − xi). The trigonometric cubic
B-splines T 3

m(x) , (m = −1(1)N + 1), at the knots xm are defined over the interval [a, b] by [7],
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T 3
m(x) =

1

θ



ρ3(xm−2)
−ρ2(xm−2)ρ(xm)

−ρ(xm−2)ρ(xm+1)ρ(xm−1)
−ρ(xm+2)ρ2(xm−1)
ρ(xm−2)ρ2(xm+1)

+ρ(xm+2)ρ(xm−1)ρ(xm+1)
+ρ2(xm+2)ρ(xm)
−ρ3(xm+2)

0

,

,

,

,
,

xm−2 ≤ x ≤ xm−1

xm−1 ≤ x ≤ xm

xm ≤ x ≤ xm+1

xm+1 ≤ x ≤ xm+2

otherwise

in which

ρ(xm) = sin

(
x− xm

2

)
, θ = sin

(
h

2

)
sin(h) sin

(
3h

2

)
, m = 0(1)N.

The set of trigonometric cubic B-splines
{
T 3
−1(x), T 3

0 (x), . . . , T 3
N+1(x)

}
forms a basis for the smooth functions defined

over [a,b]. Therefore, an approximation solution UN (x, t) can be written in terms of the trigonometric cubic B- splines
as trial functions:

U(x, t) ≈ UN (x, t) =

m+2∑
i=m−1

T 3
i (x)δi(t), (2.1)

where δi(t)’s are unknown, time dependent quantities to be determined from the boundary and trigonometric cubic
B-spline collocation conditions. Each trigonometric cubic B-spline covers four elements so that each element [xi, xi+1]
is covered by four trigonometric cubic B-splines. For this problem, the finite elements are identified with the interval
[xi, xi+1]. Using the nodal values Ui, U

′

i and U
′′

i are given in terms of the parameter δi by:

Ui = α1δi−1 + α2δi + α1δi+1,

U
′

i = β1δi−1 + β1δi+1,

U
′′

i = γ1δi−1 + γ2δi + γ1δi+1,

where

α1 = sin2

(
h

2

)
csc(h) csc

(
3h

2

)
, α2 =

2

(1 + 2 cos(h))
,

β1 = −
3 csc

(
3h
2

)
4

, β2 =
3 csc

(
3h
2

)
4

,

γ1 =
3((1 + 3 cos (h)) csc2(h

2 ))

16
(
2 cos(h

2 ) + cos
(

3h
2

)) , γ2 = −
3 cot2

(
h
2

)
(2 + 4 cos(h))

.

During the solution process, firstly, for the time discretization forward finite difference scheme and then for the space
discretization finite element collocation method based on trigonometric cubic B-spline basis functions are going to be
implemented.

3. Implementation of the method for time discretization

Now, the MEW wave equation is discretized as follows

ut + εu2ux − µuxxt = 0.
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For this purpose, the Crank-Nicolson type scheme is implemented. Firstly the equation is discretized as,

Un+1 − Un

∆t
+ ε

(U2Ux)n+1 + (U2Ux)n

2
− µU

n+1
xx − Un

xx

∆t
= 0, (3.1)

where Rubin and Graves type linearization technique [34] is used at the left hand side of the Eq. (3.1) to linearize the
nonlinear terms as given below

(U2Ux)n+1 = Un+1UnUn
x + UnUn+1Un

x + UnUnUn+1
x − 2UnUnUn

x .

Accordingly, the following iterative scheme is obtained

Un+1 + ε
∆t

2
(Un+1UnUn

x + UnUn+1Un
x + UnUnUn+1

x − UnUnUn
x )− µUn+1

xx = Un + ε
∆t

2
(U2Ux)n − µUn

xx

This scheme results in a system of equations consisting of (N + 1) equations and (N + 3) unknowns. Using the
appropriate boundary conditions given with the problem, the unknowns lying outside the solution domain of the
problem are eliminated. Thus a solvable system of equations is obtained. Now utilizing this system, the calculations
are carried out until the desired time level. But for this, first of all, the initial values of the unknowns at time t = 0
are needed. The following section will deal with this step of the solution process.

3.1. Initial state. The initial vector d0 is determined from the initial and boundary conditions. So the approximation
Eq. (2.1) must be rewritten for the initial condition

UN (x, 0)=

N+1∑
m=−1

δ0
m(t)T 3

m(x)

where the δ0
m’s are unknown parameters. The initial numerical approximation UN (x, 0) is required to satisfy the

following conditions:

UN (x, 0) = U(xi, 0), i = 0, 1, ..., N
(UN )x(a, 0) = 0, (UN )x(b, 0) = 0.

Thus, these conditions lead to the matrix equation

Wd0 = b

where

d0 = (δ0, δ1, δ2, . . . , δN−2, δN−1, δN )T

and

b = (U(x0, 0), U(x1, 0), U(x2, 0), . . . , U(xN−2, 0), U(xN−1, 0), U(xN , 0))
T .

4. Numerical examples

In this section, three common test problems about the MEW equation are going to be solved and the results will
be compared with some of those available in the literature. If the exact solution of the test problem is available, then
the accuracy of the numerical method is going to be controlled by using the error norms L2 and L∞.
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Figure 1. The single solitary wave solutions for values of A = 0.25, 0.50, 0.75 and 1.0 at time
tfinal = 20.

4.1. Problem I: Motion of a single solitary wave. The solitary wave solution of the Eq.(1.2) is given by

u(x, t) = A sech(k[x− x0 − vt])

where k =
√

1/µ, A =
√

6v/ε. This solution corresponds to the motion of a single solitary wave of magnitude A,
initially centered at the position x0 and propagating to the right side with a constant velocity v. The solitary wave
type solution (1.3) of Eq. (1.2) is not only on an unbounded region, but also at the same time it has a solitary wave
solution on the closed interval a ≤ x ≤ b. The three invariants I1, I2 and I3 satisfied by the MEW (1.2) equation are

computed as follows by taking Uj and U
′

j as the mesh values calculated from the numerical solution

I1 = h

N∑
j=0

Uj , I2 = h

N∑
j=0

[
U2
j + µ(U

′

j)
2
]
, I3 = h

N∑
j=0

U4
j .

For this problem the analytical values of the invariants are [39]

I1 =
Aπ

k
, I2 =

2A2

k
+

2µkA2

3
, I3 =

4A4

3k
.

In order to be able to make a comparison with some of the studies in the literature, the parameters as t = 20, µ = 1,
x0 = 30, A = 0.25 and ∆t = 0.05 are used. In Figure 1, the movement of solitary wave has been given for various
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Table 1. A comparison of the error norms L2 and L∞ of Problem I for h = 0.1, ∆t = 0.2, A = 0.25,
x0 = 30 on 0 ≤ x ≤ 80 at times tfinal = 5, 10, 15, 20.

Method tfinal L2 × 104 L∞ × 104 I1 I2 I3
Present 5 1.276445 0.681926 0.7850300 0.1666259 0.0052058

10 1.319189 0.748057 0.7850300 0.1666259 0.0052058
15 1.385979 0.828043 0.7850300 0.1666259 0.0052058
20 1.471099 0.897036 0.7850300 0.1666259 0.0052058

Ref. [9] 5 0.682986 0.610149 0.7853976 0.1664731 0.0052083
10 1.362867 1.255591 0.7853984 0.1664732 0.0052083
15 2.036756 1.916829 0.7853976 0.1664733 0.0052083
20 2.701647 2.576377 0.7853977 0.1664736 0.0052083

Ref. [12] 5 0.473145 0.418872 0.7853712 0.1666095 0.0052078
10 0.990390 0.840128 0.7853424 0.1665994 0.0052072
15 1.499677 1.212955 0.7853751 0.1665922 0.0052067
20 2.021476 1.569539 0.7852864 0.1665818 0.0052061

Ref. [2] 5 0.011570 0.006221 0.7854014 0.1666672 0.0052084
10 0.010404 0.005784 0.7854008 0.1666668 0.0052084
15 0.022265 0.014353 0.7854038 0.1666680 0.0052084
20 0.011493 0.007664 0.7854013 0.1666670 0.0052084

Table 2. A comparison of the error norms L2, L∞ and the invariants I1, I2, I3 of Problem I with
some of the previous ones for h = 0.1, ∆t = 0.05, A = 0.25, x0 = 30 on 0 ≤ x ≤ 80 at time tfinal = 20.

Method L2 × 103 L∞ × 103 I1 I2 I3
Present 0.146806 0.089667 0.7850300 0.1666259 0.0052058
Ref. [9] 0.269281 0.256997 0.7853977 0.1664735 0.0052083
Ref. [10] 0.079694 0.046552 0.7853898 0.1667614 0.0052082
Ref. [5] 0.175081 0.176288 0.7853982 0.1666666 0.0052083
Ref. [11] 0.005208 0.005456 0.7853965 0.1666638 0.0052081
Ref. [16] 0.051873 0.032113 0.7853967 0.1666664 0.0052083
Ref. [23] 0.051774 0.032114 0.7853967 0.1666663 0.0052083
Ref. [17] 0.080146 0.046121 0.7853967 0.1666663 0.0052083
Ref. [24] 0.080098 0.046061 0.7853967 0.1666663 0.0052083
Ref. [25]1 0.175277 0.176465 0.7853966 0.1666662 0.0052083
Ref. [25]2 0.175270 0.176459 0.7853966 0.1666662 0.0052083
Ref. [12] 0.290516 0.249892 0.7849545 0.1664765 0.0051995
Ref. [2] 0.001653 0.001194 0.7853979 0.1666671 0.0052084

values of amplitudes A = 0.25, 0.5, 0.75 and 1. From the figure, it is seen that the larger wave with a large amplitude
has traveled a long way because of its faster velocity.

In Table 1, h = 0.1, ∆t = 0.2, A = 0.25, x0 = 30 are taken over the region 0 ≤ x ≤ 80 at times tfinal = 5, 10, 15,
and 20. The newly obtained results are compared with some of those available in the literature. From the table it is
clearly seen that the present results are better or in good agreement with those given in compared references.

In Table 2, h = 0.1, ∆t = 0.05, A = 0.25, x0 = 30 are taken over the region 0 ≤ x ≤ 80 at times tfinal = 20.
The newly obtained results are compared with some of those available in the literature. One can see that the newly
obtained results are in good agreement with those given in references.

In Table 3, a comparison of the error norms L2, L∞ and invariants I1, I2, I3 of Problem I with those in Ref. [9] for
h = ∆t = 0.01, A = 0.25, 0.50, 0.75, 1.0 and x0 = 30 on 0 ≤ x ≤ 80 at time tfinal = 20. From the table one can see
that the present error norms are better than those compared ones.
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Table 3. A comparison of the error norms L2, L∞ and the invariants I1, I2, I3 of Problem I with
Ref. [9] for h = ∆t = 0.01, A = 0.25, 0.50, 0.75, 1.0 and x0 = 30 on 0 ≤ x ≤ 80 at time tfinal = 20.

A L2 × 103 L∞ × 103 I1 I2 I3
0.25 Present 0.0014686 0.0009014 0.7853945 0.1666663 0.0052083

Ref. [9] 0.0026985 0.0026867 0.7853963 0.1666644 0.0052083
Exact 0.7853982 0.1666667 0.0052083

0.50 Present 0.0057187 0.0038677 1.5707889 0.6666650 0.0833329
Ref. [9] 0.0186465 0.0150972 1.5707920 0.6666588 0.0833333
Exact 1.5707963 0.6666667 0.0833333

0.75 Present 0.0229900 0.0149503 2.3561834 1.4999963 0.4218729
Ref. [9] 0.0519345 0.0366739 2.3561860 1.4999790 0.4218745
Exact 2.3561945 1.5000000 0.4218750

0.10 Present 0.1010366 0.0626081 3.1415779 2.6666660 1.3333267
Ref. [9] 0.1494558 0.0987068 3.1415790 2.6666350 1.3333310
Exact 3.1415927 2.6666667 1.3333333

Table 4. A comparison of Problem II with those from Refs. [9], [12] with h = 0.1, ∆t = 0.2 on
0 ≤ x ≤ 80.

t Present method [9] [12]
I1 I2 I3 I1 I2 I3 I1 I2 I3

0 4.712388 3.333336 1.416669 4.712388 3.329462 1.416669 4.712388 3.332357 1.416670
10 4.710180 3.331961 1.415419 4.712389 3.328927 1.416103 4.712022 3.324678 1.400768
20 4.710180 3.331341 1.414833 4.712387 3.328361 1.415523 4.711697 3.324210 1.401182
30 4.710181 3.329523 1.413184 4.712388 3.327818 1.413882 4.711242 3.346583 1.424847
40 4.710181 3.329690 1.413358 4.712385 3.327112 1.414050 4.711017 3.321250 1.398239
50 4.710180 3.330105 1.413629 4.712388 3.326632 1.414330 4.710804 3.320956 1.398729
55 4.710180 3.329860 1.413359 4.712386 3.326393 1.414062 4.710630 3.323628 1.399068
60 4.710180 3.329600 1.413079 4.712388 3.326228 1.413785
70 4.710180 3.329056 1.412516 4.712388 3.325891 1.413228
80 4.710180 3.328490 1.411954 4.712389 3.325434 1.412671

4.2. Problem II: Interaction of two solitary waves. As a second test problem, Eq. (1.2) together with boundary
conditions U → 0 as x→ ±∞ and the initial condition for all linearization techniques is considered as

U(x, 0) =

2∑
j=1

Aj sech(k[x− xj ])

where k =
√

1/µ. In order that the collision occurs, the solution domain is taken as 0 ≤ x ≤ 80 for values of h = 0.1,
∆t = 0.2, µ = 1, A1 = 1, A2 = 0.5, x1 = 15, x2 = 30. It is seen from Fig. 2 that the larger wave leaves the smaller
one its behind. In addition, there was no elastic collision because the waves after the collision left small tail waves
behind them. Because of this fact, these two solitary waves are not considered as solitons [39]. Moreover, for values
of A1 = 1, A2 = 0.5, ∆t = 0.2, a comparison has been made with those given in Refs. [9] and [12].

In Table 4, a comparison of the invariants I1, I2, I3 of Problem II with Refs. [9] and [12] is made for h = 0.1,
∆t = 0.2 on 0 ≤ x ≤ 80 at various times. It is clearly seen that the invariants are well preserved after the initial time
until the end of run-time.
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Figure 2. The interaction of two solitary waves at times t = 0, 25, 35, 45, 55 and 80.

4.3. Problem III: The Maxwellian initial condition. As the last test problem, the initial Maxwellian pulse is
considered with the initial condition in solitary waves given by

u(x, 0) = e−x
2

(4.1)

with the boundary condition

u(−20, 0) = u(20, 0) = 0, t > 0.

Maxwellian initial condition Eq. (4.1) breaks up into a number of solitary waves depending on values of µ. The
calculations are carried out for values of µ = 0.5, 0.1, 0.05, 0.02, 0.005, 0.0025, h = 0.05, ∆t = 0.01 and t = 12.5.
Figure 3 shows Maxwellian initial condition for those parameters on −20 ≤ x ≤ 20 at time tfinal = 12.5.
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Figure 3. Maxwellian initial condition for h = 0.05, ∆t = 0.01, µ = 0.5, 0.1, 0.05, 0.02, 0.005, 0.0025
on −20 ≤ x ≤ 20 at time tfinal = 12.5.
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Table 5. The invariants I1, I2, I3 of Problem III for various values of µ at time t = 12.5.

I1 I2 I3 I1 I2 I3
µ = 0.5 µ = 0.1

Present 1.77235 1.87971 0.88597 1.77244 1.37783 0.88619
Ref. [5] 1.77245 1.88008 0.88623 1.77249 1.37774 0.88627

µ = 0.05 µ = 0.02
Present 1.77246 1.31444 0.88644 1.77256 1.27424 0.88660
Ref. [5] 1.77254 1.31431 0.88639 1.77275 1.27458 0.88717

µ = 0.005 µ = 0.0025
Present 1.77311 1.23603 0.86783 1.76963 1.19626 0.81240
Ref. [5] 1.77465 1.25032 0.89902 1.77868 1.24930 0.92893

In Table 5, a comparison of the invariants I1, I2, I3 of Problem III with Refs. [5] for various values of µ = 0.5, 0.1,
0.05, 0.02, 0.005, 0.0025 and h = 0.05, ∆t = 0.01 and t = 12.5 is presented.

5. Conclusion

In this paper, numerical solutions of the MEW equation based on the trigonometric cubic B-spline finite element has
been presented. Three test problems are worked out to examine the performance of the algorithms. The performance
and accuracy of the method are shown by calculating the error norms L2 and L∞. For each linearization technique,
the error norms are sufficiently small and the invariants are satisfactorily constant in all computer runs. The computed
results show that the present method is a remarkably successful numerical technique for solving the MEW equation
and is advisable for getting numerical solutions of other types of non-linear equations.
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