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Abstract

The two most common ways to prevent spreading drug addiction are counseling and imprisonment. In this
paper, we propose and study a model for the spread of drug addiction incorporating the effect of consultation

and incarceration of addicted individuals. We extract the basic reproductive ratio and study the occurrence of
backward bifurcation. Also, we study the local and global stability of drug-free and endemic equilibria under
suitable conditions. Finally, we use numerical simulations to illustrate the obtained analytical results.
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1. Introduction

The issue of opioid drug addiction is one of the complex problems of human societies, which has become a social
problem in most countries today. Predicting and analyzing addiction and quantifying the factors involved in it, is very
useful for decision-makers in societies, so experts in various disciplines, including mathematics and statistics, have
been modeled the addiction and studied some of the factors involved in epidemic or control of it.

According to [4, 34], ”dynamic modeling complements indicators and direct data analysis in drug epidemiology at
the macro the level. Instead of the usual inductive or empirical method of data collection and interpretation, it can
be used to enhance the understanding of drug processes by simulating experiments that are difficult or impossible to
perform in real life. Dynamic drug models can help in understanding a phenomenon via scenario analysis, thereby
providing a tool to simulate experiments that are not possible in real life due to practical or ethical reasons”.

There are three general approaches modeling the dynamics of the spread of drug use. Authors of [15] believe:
”anyone could be a ‘prey’ to illicit drugs”. They applied the predator-prey paradigm for the modeling of illicit drug
consumption, see also [4, 7, 12]. On the other hand, drugs have been considered as an epidemic problem like an
infectious disease, because most drug initiations start through contact with users, not through contact with drug
sellers, see [20]. Also modeling with the optimal control method has been performed, see the monograph [17].

Among illicit drugs, heroin is one of the world’s most dangerous opioids which is highly addictive. In the United
States in the time interval of 2002 to 2014, the number of heroin users increased from about 404,000 to 914,000 and
the number of addicted cases increased from about 214,000 to 586,000, see [13].

White and Comiskey assumed that the spread of heroin addiction has a mechanism like the spread of infectious
diseases and introduced the first compartmental model with ordinary differential equations for the heroin use, see
[35]. Compartmental models are powerful tools for the study and analysis of infectious diseases. Such models which
are generally expressed by ordinary differential equations were first introduced by Kermack and McKendrick. These
models have been used in modeling many diseases such as AIDS, tuberculosis, and influenza, see [24]. After White
and Comiskey’s work, Mulone and Straughan revisit their work, [27]. Nyabadza and Hove-Muskava, in [31], modified
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the White and Comiskey model and studied the dynamics of methamphetamine. For the study of the epidemiology
of crystal and the effect of rehabilitation, relapse and information, see [1, 25, 26, 29, 32].

Despite increasing evidence that addiction is a treatable disease of the brain, most individuals do not receive
treatment. Mostly, treating illnesses are more costly than preventing them. For example treatment of heroin users
and a variety of drugs is a costly procedure and is a major burden on the health system of any country. Treating
drug-involved offenders provides a unique opportunity to decrease substance abuse and reduce associated criminal
behavior.

In this manuscript, we modify White-Comiskey’s model and propose a compartmental model which incorporates
the effect of consultation and incarceration of addicted individuals.

In section 2, we present the model and compute the basic reproduction number and study the boundedness and
positivity of solutions. In section 3, we prove the existence of endemic equilibria and show that the system may have
up to two endemic equilibrium points when R0 ≤ 1 and up to three endemic equilibrium points when R0 > 1. In
section 4, we show that backward bifurcation occurs leading to bistability. In section 5, we study the global stability of
equilibrium points by using Lyapunov functions and the geometric stability method. Finally in section 6, we present
numerical simulations to illustrate the analytical results.

2. Model formulation and basic properties
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Figure 1. The flowchart of the model

In our model, the community is divided into five compartments: S susceptible individuals, i.e., the individuals
at risk of drug use, U drug users which are not in treatment, incarceration or consultation/rehabilitation, T drug
users under treatment, Q1 incarcerated drug users and Q2 drug users under consultation. The number of these
compartments is S(t), U(t), T (t), Q1(t), and Q2(t) respectively. We use N(t) for the total population, i.e., N(t) =
S(t) + U(t) +Q1(t) +Q2(t) + T (t).

Table 1: Parameters of the model
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Symbol Description

Λ The rate of recruitment of susceptible individuals.

µ The rate of Natural death.

β1 The rate of drug use.

β2 The treatment rate.

β3 The relapse rate.

p1 The rate of return of prisoners to the susceptibles.

p2 The rate at which individuals under consultation/rehabilitation back to susceptibles.

p3 The rate of imprisonment of drug users.

p4 The rate at which drug users turn to counsel.

p5 The rate at which prisoners are referred to treatment.

p6 The rate at which individuals under consultation are referred to treatment.

Based on the flow diagram of the model depicted in the above figure, we obtain the following ODE system:

dS
dt = Λ− β1SU

N − µS + p1Q1 + p2Q2
dU
dt = β1SU

N + β3UT
N − (µ+ β2 + p3 + p4)U

dT
dt = −β3UT

N + β2U + p5Q1 + p6Q2 − µT
dQ1

dt = p3U − (µ+ p1 + p5)Q1
dQ2

dt = p4U − (µ+ p2 + p6)Q2

(2.1)

At first, we study the nonnegativity and boundedness of the solutions.

Lemma 2.1. The variables of the trajectory (S(t), U(t), Q1(t), Q2(t), T (t)) of model are nonnegative for all t ≥ 0,
when the initial values are nonnegative, i.e., S(0) ≥ 0, U(0) ≥ 0, Q1(0) ≥ 0, Q1(0) ≥ 0 and T (0) ≥ 0.

Proof. All solutions of this model are smooth. Furthermore, if all of the components of the system have nonnegative
initial conditions and that if any of the compartments are zero at time t = ti ≥ 0, then the derivatives are nonnegative.
For example if S(t1) = 0, U(t1) ≥ 0, Q1(t1) ≥ 0, Q2(t1) ≥ 0 and T (t1) ≥ 0, we get

dS(t1)

dt
= Λ +Q1(t1) +Q2(t1) ≥ 0,

that implies S(t+1 ) ≥ 0 and hence, S(t) is nonnegative for all times t ≥ 0. Next, assume that T (t2) = 0, S(t2) ≥ 0,
U(t2) ≥ 0,Q1(t2) ≥ 0 and Q2(t2) ≥ 0. Hence we have

dT (t2)

dt
= β2U(t2) + p5Q1(t2) + p6Q2(t2) ≥ 0,

that implies T (t+2 ) ≥ 0 and hence, T (t) is nonnegative for all times t ≥ 0. A similar result can be obtained for the
other components of the solution and as mentioned in [30], it can be concluded that all compartments are nonnegative
at all times t ≥ 0. The boundedness of the solutions is also of interest. We prove it in the following lemma.

Lemma 2.2. The total population N(t) = S(t)+U(t)+Q1(t)+Q2(t)+T (t) is bounded from above, for all nonnegative
initial values.

Proof. The equations of the system yield Ṅ = Λ− µN , and by integration we have,

N(t) = N(0)e−µt +
Λ

µ
(1− e−µt) ≤ max(N(0),

Λ

µ
) = M
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for all t ≥ 0.

As in the White-Comiskey model, we consider the total population of the community, i.e., N , to be constant. Hence
Λ = µS + µU + µT + µQ1 + µQ2. Now we replace Λ in (2.1) and then use the substitutions

s =
S

N
, u =

U

N
, τ =

T

N
, q1 =

Q1

N
and q2 =

Q2

N
= 1− s− u− τ − q1, (2.2)

which yields the following final form of our system:

ds

dt
= µ− β1su− µs+ p1q1 + p2 (1− s− u− τ − q1),

du

dt
= β1su+ β3uτ − (µ+ β2 + p3 + p4)u,

dτ

dt
= −β3uτ + β2u+ p5q1 + p6 (1− s− u− τ − q1)− µτ,

dq1

dt
= p3u− (µ+ p1 + p5)q1.

(2.3)

We study (2.3) in the region,

Ω = {(s, u, τ, q1) ∈ R4
+ : s ≥ 0, u ≥ 0, τ ≥ 0, q1 ≥ 0, s+ u+ τ + q1 ≤ 1}.

This region is positively invariant under (2.3).
This system has a unique drug-free equilibrium P0 = (s∗, u∗, τ∗, q∗1) = (1, 0 , 0, 0) and the Jacobian matrix of P0 has
the following form:

J(P0) =



−µ− p2 −β1 − p2 −p2 p1 − p2

0 β1 − (µ+ β2 + p3 + p4) 0 0

−p6 +β2 − p6 −µ− p6 p5 − p6

0 p3 0 −(µ+ p1 + p5)


.

This matrix has the eigenvalues, λ1 = β1− (µ+β2 + p3 + p4), λ2 = −(µ+ p1 + p5) and the eigenvalues of the following
submatrix:

E =


−µ− p2 −p2

−p6 −µ− p6

 .

Furthermore, since trE < 0 and detE > 0, the real part of eigenvalues are negative. The relation λ1 < 0 can be written
as R0 < 1 in which,

R0 =
β1

µ+ β2 + p3 + p4
.

Theorem 2.3. The drug-free equilibrium P0 is asymptotically stable when R0 < 1 and unstable when R0 > 1.
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3. Endemic equilibrium points

The endemic equilibrium points of (2.3) satisfy the following system,
µ− β1s

∗u∗ − µs∗ + p1q
∗
1 + p2 (1− s∗ − u∗ − τ∗ − q∗1) = 0,

β1s
∗u∗ + β3u

∗τ∗ − (µ+ β2 + p3 + p4)u∗ = 0,
−β3u

∗τ∗ + β2u
∗ + p5q

∗
1 + p6 (1− s∗ − u∗ − τ∗ − q∗1)− µτ∗ = 0,

p3u
∗ − (µ+ p1 + p5)q∗1 = 0.

(3.1)

This yields that u∗ is the positive root of:

F (u∗) = A(u∗)3 +B(u∗)2 + Cu∗ +D = 0, (3.2)

where

A = −(µ+ p2 + p6)(1 +
p3

µ+ p1 + p5
)β1β3,

B = (µ+ p2 + p6)
[
(1− 1

R0
)β1β3 + (

β3

β1
− 1)β1 (

p3

µ+ p1 + p5
(p5 − p6) + β2)

−(1 +
p3

µ+ p1 + p5
)
(
β3(µ+ p2) + β1(µ+ p6)

)]
,

C = (µ+ p2 + p6)
[
(1− 1

R0
)
(
β3(µ+ p2 + β1(µ+ p6)

)
+ (

β3

β1
− 1)

p3

µ+ p1 + p5(
p6(µ− p1) + p2p5

)
− (1 +

p3

µ+ p1 + p5
)µ (µ+ p2 + p6)

]
,

D = (µ+ p2 + p6)2 (1− 1

R0
).

Now, we consider f(u) = Au3 +Bu2 +Cu+D, with f ′(u) = 3Au2 + 2Bu+C and f”(u) = 6Au+ 2B. The negativity
of A implies limu→+∞ f(u) =∞ and limu→−∞ f(u) = +∞. The following cases can occur,

Case I: R0 > 1.
In this case D > 0. Some subcases can occur and we study them:
I0 : ∆ = 4B2 − 12AC < 0.
The negativity of ∆ implies that f ′(u) < 0 for all u, so it has one positive root.
I1 : ∆ > 0, B > 0 and C > 0.

From these relations and by using the second derivative, we see that f(u) has a local minimum at u1 = −2B+
√

∆
6A < 0

and a local maximum at u2 = −2B−
√

∆
6A > 0. Therefore, f(u) has one positive real solution.

I2 : ∆ > 0, B < 0 and C < 0.

From these relations and by using the second derivative, we see that u1 = −2B+
√

∆
6A < 0 is a local minimum and

u2 = −2B−
√

∆
6A < 0 is a local maximum with u1 < u2. Hence f(u) has one positive real solution.

I3 : ∆ > 0, B > 0 and C < 0.

From these relations and by using the second derivative, we see that u1 = −2B+
√

∆
6A > 0 is a local minimum and

u2 = −2B−
√

∆
6A > 0 is a local maximum with u1 < u2. Hence, f(u) has three solutions.

I4 : ∆ > 0, B < 0 and C > 0.

From these relations, we see that f(u) has a local minimum at u1 = −2B+
√

∆
6A < 0 and a local maximum at

u2 = −2B−
√

∆
6A > 0. Hence, it has one positive solution.

I5 : ∆ > 0 and B = 0.

These relations imply C > 0 hence, f(u) has a local minimum at u1 =
√

∆
6A < 0 and a local maximum at u2 = −

√
∆

6A > 0.
Therefore, there is a unique positive solution.
I6 : ∆ > 0 and C = 0.
The relations ∆ > 0 and C = 0 imply B 6= 0. When B > 0, f(u) has a local minimum at u1 = 0 and a local maximum
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at u2 = −2
3
B
A > 0. Hence, f(u) has one positive real root. When B < 0, by a similar argument we see that f(u) has

one positive solution.
I7 : ∆ = 0 and C 6= 0.

The relation ∆ = 0 implies C = B2

3A < 0. When B > 0, u = −B
3A > 0 is a horizontal tangent of f(u), and when B < 0,

u = −B
3A < 0 is a horizontal tangent of f(u). Hence, for sufficiently small ε > 0 we have f ′(−B3A +ε) = −B2

3A +3Aε2 +C =

3Aε2 < 0 and f ′(−B3A − ε) = −B2

3A + 3Aε2 + C = 3Aε2 < 0 . So it has only one solution which is real.
I8 : ∆ = B = 0.

These relations imply C = 0 and u∗ = 3

√
−D
A > 0 is the root of f(u).

I9 : ∆ = C = 0.

These relations imply B = 0 and u∗ = 3

√
−D
A > 0 is the root of f(u).

Case II: R0 < 1. In this case D < 0. Some subcases can occur and we study them:
II0 : ∆ < 0.
The negativity of ∆ implies that f(u) is strictly decreasing without any positive root.
II1 : ∆ > 0, B > 0 and C > 0.

From these relations and by using the second derivative, we see that f(u) has a local minimum at u1 = −2B+
√

∆
6A < 0,

and a local maximum at u2 = −2B−
√

∆
6A > 0. And f(u) has two positive roots, a unique positive root and has no

positive root, when f(u2) > 0, f(u2) = 0 and f(u2) < 0 respectively.
II2 : ∆ > 0, B > 0 and C < 0.

From these relations and by using the second derivative, we see that f(u) has a local minimum at u1 = −2B+
√

∆
6A > 0

and a local maximum at u2 = −2B−
√

∆
6A > 0 with u1 < u2. And f(u) has two positive roots, a unique positive root

and has no positive root, when f(u2) > 0, f(u2) = 0 and f(u2) < 0, respectively.
II3 : ∆ > 0, B < 0 and C > 0.

From these relations and by using the second derivative, we see that f(u) has a local minimum at u1 = −2B+
√

∆
6A < 0

and a local maximum at u2 = −2B−
√

∆
6A > 0. And f(u) has two positive roots, a unique positive root and has no

positive root, when f(u2) > 0, f(u2) = 0 and f(u2) < 0 respectively.
II4 : ∆ > 0, B < 0 and C < 0.

From these relations and by using the second derivative, we see that f(u) has a local minimum at u1 = −2B+
√

∆
6A < 0

and a local maximum at u2 = −2B−
√

∆
6A < 0 with u1 < u2. Hence f(u) has no positive root.

II5 : ∆ > 0 and B = 0.

From these relations and by using the second derivative, we see that f(u) has a local minimum at u1 =
√

∆
6A < 0 and

a local maximum at u2 = −
√

∆
6A > 0. So that f(u) has two positive roots, a unique positive root and has no positive

root, when f(u2) > 0, f(u2) = 0 and f(u2) < 0 respectively.
II6 : ∆ > 0 and C = 0.
These relations imply B 6= 0. If B > 0, f(u) has a local minimum at u1 = 0 and a local maximum at u2 = −2

3
B
A > 0.

Hence f(u) has two positive roots, a unique positive root and has no positive root, when f(u2) > 0, f(u2) = 0 and
f(u2) < 0 respectively.
If B < 0 then f(u) has a local minimum at u1 = −2

3
B
A < 0 and a local maximum at u2 = 0.

II7 : ∆ = 0, B 6= 0 and C 6= 0.

The relation ∆ = 0 implies C = B2

3A < 0. Hence, A < 0, C < 0 and D < 0. When B > 0, f(u) admits a tangent line

which is horizontal at u = −B
3A > 0. When B < 0, f(u) admits a tangent line which is horizontal at u = −B

3A < 0. Hence

when ε > 0 is sufficiently small, f ′(−B3A +ε) = −B2

3A +3Aε2+C = 3Aε2 < 0 and f ′(−B3A −ε) = −B2

3A +3Aε2+C = 3Aε2 < 0.
This implies that f(u) does not have any positive solution if B > 0. The case B < 0 is similar.
II8 : ∆ = 0 and B = 0.

The unique root of f(u) is u∗ = 3

√
−D
A < 0.
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II9 : ∆ = 0 and C = 0.

The unique root of f(u) is u∗ = 3

√
−D
A < 0.

Case III: R0 = 1. In this case D = 0 and F (u) = 0 reduces to,

g(u∗) = Au∗2 +Bu∗ + C = 0, (3.3)

This equation does not have real roots when ∆
′

= B2 − 4AC < 0. If ∆
′ ≥ 0 and C ≥ 0, it has one positive solution.

If ∆
′ ≥ 0 C ≤ 0, when B > 0, g has maximum at u∗max = −B

2A , with g(u∗max) = −∆
′

−4A ≥ 0.

4. Backward bifurcation

In most epidemic models, when R0 < 1 and the initial values of the compartments of the model belong to the basin
of attraction of the disease-free equilibrium point P0, the disease dies out. At the same time, in some epidemiological
models in the range R0 < 1, there exist endemic equilibrium points which show that all initial states cannot be
absorbed to P0, i.e., the disease may become endemic. Backward bifurcation is the occurrence of this problem [24].
Now we prove the occurrence of backward bifurcation in the proposed model.

We use the Castillo-Chavez and Song theorem, i.e., the theorem 4.1 in [11].
Let s = x1, u = x2, τ = x3 and q1 = x4, then (2.3) becomes:

dx1

dt
= µ− β1x1x2 − µx1 + p1x4 + p2 (1− x1 − x2 − x3 − x4) = f1,

dx2

dt
= β1x1x2 + β3x2x3 − (µ+ β2 + p3 + p4)x2 = f2,

dx3

dt
= −β3x2x3 + β2x2 + p5x4 + p6 (1− x1 − x2 − x3 − x4)− µx3 = f3,

dx4

dt
= p3x2 − (µ+ p1 + p5)x4 = f4.

(4.1)

If R0 = 1 then β1 = β∗1 = µ+β2+p3+p4 . The Jacobian matrix J(P0, β
∗
1) has three negative eigenvalues and the simple

eigenvalue 0. Let v = (0, 1, 0, 0) be the left eigenvector of A corresponding the zero eigenvalue, computed by vA = 0.
On the other hand, let w = (w1, w2, w3, w4)T be the right eigenvector of A associated with eigenvalue λ4 = 0. We have,

w1 =
−(µ+ p1 + p5)

[
β1(µ+ p6) + p2(µ+ β2)

]
+ p3

[
p1(µ+ p6)− p2(µ+ p5)

]
µ(µ+ p2 + p6)

,

w2 =
µ+ p1 + p5

p3
w4 = µ+ p1 + p5,

w3 =
(µ+ p1 + p5)

[
p2β2 + p6β1 + µ(β2 − p6)

]
+ µp3(p5 − p6) + p3(p1p6 − p2p5)

µ(µ+ p2 + p6)
,

w4 = p3.

By using these vectors, we compute constants a,b as in [11],

a =

n∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(P0, β
∗
1),=

4∑
i,j=1

wiwj
∂2f2

∂xi∂xj
(P0, β

∗
1)

= 2w2

(
w1β1 + w3β3

)
,
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and

b =

n∑
k,i=1

vkwi
∂2fk
∂xi∂φ

(P0, β
∗
1) =

4∑
i=1

wi
∂2f2

∂xi∂β1
(P0, β

∗
1)

= w1x2 + w2x1 = w2 = µ+ p1 + p5.

As b is positive, by the sign of a we can determine the bifurcation of the system around DFE for β1 = β∗1 . We
consider

A1 = p1p3β1(µ+ p6) + (µ+ p1 + p5)β3

[
β2(µ+ p2) + p6β1

]
+ p3 β3(p5µ+ p1p6),

and

A2 = β1

[
(µ+ p1 + p5)

(
β1(µ+ p6) + p2(µ+ β2)

)
+ p2p3(µ+ p5)

]
+ β3

[
µp6

(
(µ+ p1 + p5) + p3

)
+ p2p3p5

]
.

Now A1 > A2 if and only if a > 0, and part (4) in the theorem of Castillo-Chavez and Song imply the following result.

Theorem 4.1. If A2 < A1, then backward bifurcation occurs when R0 = 1. Furthermore, endemic equilibrium has
asymptotic stability when R0 > 1 and close to one.

5. Global Stability of Equilibrium points

In this section, we study the global stability of equilibrium points of the system. To determine whether the
addiction can invade the population, we study the global asymptotic stability of the DFE point P0. We prove the
global asymptotic stability of P0 under certain conditions, which ensures that the addiction dies out for all initial
values of the model components.

Lemma 5.1. If R0 ≤
β1

β1 + β3
, DFE is GAS in Ω.

Proof. We consider the function V : {(s, u, τ, q1) ∈ Ω : s > 0, τ > 0, q1 > 0} → R by V (s, u, τ, q1) = u, as a
Lyaponuv function. Now,

dV

dt
=
du

dt
≤ ((β1(1− 1

R0
) + β3)u.

Therefore,
dV

dt
≤ 0 when R0 ≤

β1

β1 + β3
. Furthermore,

dV

dt
= 0 if and only if u = 0. Hence by Lasalle invariance

principle, P0 is global asymptotic stable with respect to the invariant set Ω. See [21] for the proofs and applications
of the notion of asymptotic stability with respect to invariant sets.

In this part, we use the geometric stability method proved in [22, 23]. See [3, 9, 10, 18] for applications of this
method.
Suppose that the system has a unique endemic equilibrium point. The Jacobian matrix of the system at the point
(s, u, τ, q1) is given by:

J =
∂f

∂x
=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a2 a33 a34

a41 a42 a43 a44

 , (5.1)

a11 = −µ− p2 −−β1u, a12 = −β1s− p2, a13 = −p2, a14 = p1 − p2,

a21 = β1u, a22 = β1s+ β3τ − (µ+ β2 + p3 + p4), a23 = β3u, a24 = 0,

a31 = −p6, a32 = −β3τ + β2 − p6, a33 = −β3u− p6 − µ, a34 = p5 − p6,

a41 = 0, a42 = −p3, a43 = 0, a44 = −(µ+ p1 + p5).
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The second compound matrix, J [2] of J = ∂f
∂x is:

M = J [2] =


M11 M12 0 M14 M15 0
M21 M22 M23 M24 0 M26

M31 0 M33 0 M35 M36

M41 M42 0 M44 M45 0
0 0 M53 0 M55 M56

0 0 M63 M64 M65 M66

 , (5.2)

with the following components,
M11 = −(2µ+ β2 + p2 + p3 + p4) + β1(s− u) + β3τ, M12 = β3u, M14 = p2, M15 = p2 − p1,
M21 = −β3τ − p6 + β2, M22 = −(2µ+ p2 + p6)− (β1 + β3)u, M23 = p5− p6, M24 = −β1s− p2, M26 = p2− p1,
M31 = p3, M33 = −β1u− (2µ+ p1 + p2 + p5), M35 = −β1s− p2, M36 = −p2,
M41 = p6, M42 = β1u, M44 = −β1s+ β3τ − β3u− (2µ+ β2 + p3 + p4 + p6), M45 = p5 − p6,
M53 = β1u, M55 = β1s+ β3τ − (2µ+ β2 + p1 + p3 + p4 + p5), M56 = β3u,
M63 = −p6, M64 = −p3, M65 = −β3τ + β2 − p6, M66 = −β3u− (2µ+ p1 + p5 + p6).
We use the following matrix function,

P =



1

u
0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

0 0 0
1

u
0 0

0 0 0 0
1

u
0

0 0 0 0 0 1


.

Which yields the matrix PfP
−1 = −diag(

u
′

u
, 0, 0,

u
′

u
,
u

′

u
, 0) and,

Q = PfP
−1 + PMP−1 =


A11 A12 0 A14 A15 0
A21 A22 A23 A24 0 A26

A31 0 A33 0 A35 A36

A41 A42 0 A44 A45 0
0 0 A53 0 A55 A56

0 0 A63 A64 A65 A66

 , (5.3)

in which,
A11 = −µ− β1u− p2, A12 = β3, A14 = p2, A15 = p2 − p1,
A21 = −(β3τ+p6−β2)u, A22 = −(2µ+p2 +p6)−(β1 +β3)u, A23 = p5−p6, A24 = −(β1s+p2)u, A26 = p2−p1,
A31 = p3u, A33 = −β1u− (2µ+ p1 + p2 + p5), A35 = −(β1s+ p2)u, M36 = −p2,
A41 = p6, A42 = β1, A44 = −β3u− p6, A45 = p5 − p6,
A53 = β1, A55 = −µ− p1 − p5, A56 = β3,
A63 = −p6, A64 = −p3u, M65 = −β3τ + β2 − p6, A66 = −β3u− (2µ+ p1 + p5 + p6).
We use the norm introduced in [18]. At first, we prove the following lemma.

Lemma 5.2. There exists χ > 0, with D+ ‖ z ‖≤ −χ ‖ z ‖ in which z ∈ R6 is the solution of,

dz

dt
= Q(φt(l))z (5.4)

provided that, p2 < p1, p5 + β3 < β2 + p3, p3 + β3 < µ, p3 + β3 + p2 + β1 < µ+ p1 and p1 + p2 + 2β1 < 2µ+ p6.
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Proof. To demonstrate the existence of such χ > 0, we need the sixteen separate cases, see [9]. We demonstrate
two cases with complete details.
Case 1: U1 > U2; z1, z2, z3 > 0 and |z1| > |z2|. In this case, ‖ z ‖= |z1|+ |z3| and

D+ ‖ z ‖= (A11z1 +A12z2 +A14z4 +A15z5) + (A31z1 +A33z3 +A35z5 +A36z6)

We have,

(A11 +A31)z1 +A33z3 +A12z2 ≤ max{A11 +A31 + β3, A33 + β3} ‖ z ‖,
and

[∗] A14z4 = p2z4

[∗∗] A15z5 +A35z5 = [p2 − p1 − (β1s+ p2)u]z5

[∗ ∗ ∗] A36z6 = −p2z6

The following situations occur :
(1): If z4, z5, z6 > 0, we delete [∗∗∗] and by the condition p2−p1 +(−β1s−p2)u < 0, [∗∗] is also deleted. Furthermore,

A14z4 ≤ p2 ‖ z ‖ .

We consider the condition:

max{A11 +A31 + β3, A33 + β3}+ max{p2, p1 − p2 + (β1s+ p2)u} < 0 (5.5)

(2): If z4, z5, z6 < 0, then we delete [∗] and,

A15z5 +A35z5 +A36z6 ≤ p2|z6|+
(
p1 − p2 + (β1s+ p2)u

)
|z5|

≤ max{p2, p1 − p2 + (β1s+ p2)u} ‖ z ‖ .

In this case, we use (5.5).
(3): If z4, z5 > 0 and z6 < 0, then [∗∗] is deleted and,

A14z4 +A36z6 = p2(|z4|+ |z6|) ≤ p2 ‖ z ‖

in this case, we use (5.5).
(4): If z4, z5 < 0 and z6 > 0, then [∗] and [∗ ∗ ∗] are deleted and,

A15z5 +A35z5 ≤ (p1 − p2 + (β1s+ p2)u) ‖ z ‖,

we use (5.5).
(5): If z4, z6 > 0 and z5 < 0, then [∗ ∗ ∗] is deleted,

A14z4 +A15z5 +A35z5 ≤ max{p2, p1 − p2 + (β1s+ p2)u} ‖ z ‖,

and we use (5.5).
(6): If z4, z6 < 0 and z5 > 0, then [∗] and [∗∗] are deleted,

A36z6 ≤ p2 ‖ z ‖

and we use (5.5).
(7): If z5, z6 > 0 and z4 < 0 then [∗], [∗∗] and [∗ ∗ ∗] are deleted due to their negativity.
(8): If z5, z6 < 0 and z4 > 0 hence,

A14z4 +A15z5 +A35z5 +A36z6 ≤ max{p2, p1 − p2 + (β1s+ p2)u} ‖ z ‖

and we use (5.5).
The following conditions are sufficient for this case:{

p2 − p1 − (β1s+ p2)u < 0
max{A11 +A31 + β3, A33 + β3}+ max{p2, p1 − p2 + (β1s+ p2)u} < 0
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Case 2: U1 > U2, z2, z3 > 0 > z1 and |z1| < |z2|. In this case, ‖ z ‖= |z2|+ |z3| and

D+ ‖ z ‖ = z
′

2 + z
′

3

= (A21z1 +A22z2 +A23z3 +A24z4 +A26z6) + (A31z1 +A33z3 +A35z5 +A36z6). (5.6)

We have,

A22|z2|+ (A23 +A33)|z3| ≤ max{A22, A23 +A33}(|z2|+ |z3|)
= max{A22, A23 +A33} ‖ z ‖ .

We suppose the inequality A21+A31 > 0, and then delete the term (A21+A31)z1 because of its negativity. Furthermore
we have the following terms:

[∗] A24z4 = (−β1s− p2)u z4,

[∗∗] A35z5 = (−β1s− p2)u z5,

[∗ ∗ ∗] A26z6 +A36z6 = (p2 − p1 − p2)z6 = −p1z6.

The following situations occur :
(1): If z4, z5, z6 > 0, we delete all terms in [∗], [∗∗] and [∗ ∗ ∗] due to negativity.
(2): If z4, z5, z6 < 0. We have,

A24z4 +A35z5 +A26z6 +A36z6 ≤ (p1 + (2β1s+ 2p2)u) ‖ z ‖ .

Thus

D+ ‖ z ‖≤
(

max{A22, A23 +A33}+ (p1 + (2β1s+ 2p2)u)
)
‖ z ‖ .

Hence, we suppose the following condition:

max{A22, A23 +A33}+ p1 + (2β1s+ 2p2)u < 0. (5.7)

(3): If z4, z5 > 0 and z6 < 0, then [∗] and [∗∗] are deleted and,

A26z6 +A36z6 ≤ p1|z6| ≤ p1 ‖ z ‖,

hence we use (5.7).
(4): If z4, z5 < 0 and z6 > 0, then [∗ ∗ ∗] is deleted and,

A24z4 +A35z5 ≤ (β1s+ p2)u ‖ z ‖,

hence we use (5.7).
(5): If z4, z6 > 0 and z5 < 0, then [∗] and [∗ ∗ ∗] are deleted and,

A35z5 ≤ (β1s+ p2)u ‖ z ‖,

hence we use (5.7).
(6): If z4, z6 < 0 and z5 > 0, then [∗∗] is deleted and,

A24z4 +A26z6 +A36z6 ≤ (p1 + (β1s+ p2)u) ‖ z ‖,

hence we use (5.7).
(7): If z5, z6 < 0 and z4 > 0, then [∗∗] and [∗ ∗ ∗] are deleted and,

A24z4 ≤ (β1s+ p2)u ‖ z ‖,

hence we use (5.7).
(8): If z5, z6 < 0 and z4 > 0, then [∗] is deleted and,

A35z5 +A26z6 +A36z6 ≤ (p1 + (β1s+ p2)u)‖z‖,

hence we use (5.7).
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The following conditions are sufficient for this case:{
A21 +A31 > 0
max{A22, A23 +A33}+ p1 + (2β1s+ 2p2)u < 0

The inequalities of this lemma imply the negativity of the coefficient of ‖ z ‖ in all cases.

As it is mentioned in [3], when backward bifurcation occurs, for example our system, we need to prove the following
lemma which is an analogous to proposition 5.2. of [3] for our model.

Lemma 5.3. Let ψ be a simple closed curve in Ω, then there exist ξ > 0 and surfaces ϕk minimizing S with respect
to
∑

(ψ,Ω) and for all k = 2, 3, , ... and t ∈ [0, ε], ϕkt ⊆ Ω.

Proof. Let ξ = 1
2min{u : (s, u, τ, q1) ∈ ψ}. Obviously ξ > 0. The inequality

du

dt
≥ −(µ+β2 +p3 +p4)u implies the

existence of ε > 0 for which the trajectories remain in Ω, for t ∈ [0, ε], if u(0) ≥ ξ. Now we prove that there exists {ϕk}
minimizing S in the set

∑
(ψ, Ω̃) in which Ω̃ = {(s, u, τ, q1) ∈ Ω : u ≥ ξ}. For ϕ(l) = (s(l), u(l), τ(l), q1(l)) ∈

∑
(ψ,Ω)

define the surface, ϕ̃(l) = (s̃(l), ũ(l), τ̃(l), q̃1(l)) as follows:
ϕ(l) if u(l) ≥ ξ,

(s, ξ, τ, q1) if u(l) < ξ, s+ ξ + τ + q1 ≤ 1,

A if u(l) < ξ, s+ ξ + τ + q1 > 1,

in which

A = (
s√

3(s+ τ + q1)
(1− ξ), ξ, τ√

3(s+ τ + q1)
(1− ξ), q1√

3(s+ τ + q1)
(1− ξ)).

Now ϕ̃(l) ∈
∑

(ψ, Ω̃). We will prove Sϕ̃ ≤ Sφ.
We denote

∂ϕ̃

∂l1
∧ ∂ϕ̃
∂l2

= (x̃1, x̃2, x̃3, x̃4, x̃5, x̃6)T .

and
∂ϕ

∂l1
∧ ∂ϕ
∂l2

= (x1, x1, x2, x3, x4, x5, x6)T .

We prove,

‖ ∂ϕ̃
∂l1
∧ ∂ϕ̃
∂l2
‖≤‖ ∂ϕ

∂l1
∧ ∂ϕ
∂l2
‖ .

Three cases can occur:

1. If u(l) ≥ ξ, then ϕ̃ = ϕ and therefore, | x̃i |=| xi | (i = 1, 2, ..., 6) , hence,

‖ ∂ϕ̃
∂l1
∧ ∂ϕ̃
∂l2
‖=‖ ∂ϕ

∂l1
∧ ∂ϕ
∂l2
‖ .

2. If u(l) < ξ and s(l) + ξ + τ(l) + q1(l) ≤ 1, then ϕ̃(l) = (s(l), ξ, τ(l), q1(l)). Therefore it follows x̃i = xi (i = 1, 3, 5)

and x̃i = 0 (i = 2, 4, 6). Thus | x̃i |≤| xi | (i = 1, 2, ..., 6), which imply

‖ ∂ϕ̃
∂l1
∧ ∂ϕ̃
∂l2
‖≤‖ ∂ϕ

∂l1
∧ ∂ϕ
∂l2
‖ .
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3. If u(l) < ξ and s(l) + ξ + τ(l) + q1(l) > 1, then

ϕ̃(l) = (
s√

3(s+ τ + q1)
(1− ξ), ξ, τ√

3(s+ τ + q1)
(1− ξ), q1√

3(s+ τ + q1)
(1− ξ)).

In this case, using
∂s̃

∂lj
+
∂τ̃

∂lj
+
∂q̃1

∂lj
= 0 we obtain,

∂ϕ̃

∂l1
= z1(l1)f1 + z2(l1)f2 and

∂ϕ̃

∂l2
= z1(l2)f1 + z2(l2)f2

in which,

f1 =


1
0
0
−1

 , f2 =


0
0
1
−1


and

z1(lj) = (1− ξ)
(τ + q1)

∂s

∂lj
− s( ∂τ

∂lj
+
∂q1

∂lj
)

√
3(s+ τ + q1)2

z2(lj) = (1− ξ)
(s+ q1)

∂τ

∂lj
− τ(

∂s

∂lj
+
∂q1

∂lj
)

√
3(s+ τ + q1)2

for j = 1, 2. Therefore,

∂ϕ̃

∂l1
∧ ∂ϕ̃
∂l2

= (z1(l1)z2(l2)− z2(l1)z1(l2))f1 ∧ f2 =
(1− ξ)2

3(s+ τ + q1)4
K


0
1
−1
0
0
1

 .
in which,

K = q1(s+ τ + q1)x2 − τ(s+ τ + q1)x3 + s(s+ τ + q1)x6.

This yields,

‖ ∂ϕ̃
∂l1
∧ ∂ϕ̃
∂l2
‖≤| x2 | + | x3 | + | x6 |≤‖

∂ϕ

∂l1
∧ ∂ϕ
∂l2
‖ .

Furthermore ũ(l) = max{u(l), ξ}, hence
1

ũ
≤ 1

u
. Therefore,

Sφ̃ =

∫
B
‖ P̃ . ( ∂φ̃

∂l1
∧ ∂φ̃

∂l2
) ‖ dl ≤

∫
B
‖ P . ( ∂φ

∂l1
∧ ∂φ

∂l2
) ‖ dl = Sφ.

Let δ = inf{Sφ : φ ∈
∑

(ψ,Ω)} and the sequence {φk} minimizes S in the set
∑

(ψ,Ω), then limk→∞ Sφk = δ. Now

consider the sequence {φ̃k} ⊂
∑

(ψ,Ω) as in the above definition, from the boundedness of {Sφ̃k} and Sφ̃k ≤ Sφk, we

have limk→∞ Sφ̃k ≤ δ. Furthermore φ̃k ∈
∑

(ψ,Ω) hence Sφ̃k ≥ δ and limk→∞ Sφ̃k ≥ δ which imply limk→∞ Sφ̃k = δ.
Now,

inf{Sφ̃ : φ̃ ∈
∑

(ψ, Ω̃)} ≤ inf{Sφ : φ ∈
∑

(ψ,Ω)} = δ.

The relation φ̃ ∈
∑

(ψ,Ω) implies that inf{Sφ̃ : φ̃ ∈
∑

(ψ, Ω̃)} ≥ δ, hence inf{Sφ̃ : φ̃ ∈
∑

(ψ, Ω̃)} = δ. At the final,

we can show that limk→∞ Sφ̃k = δ = inf{Sφ̃ : φ̃ ∈
∑

(ψ, Ω̃)}, i.e. {φ̃k} minimizes S with respect to
∑

(ψ, Ω̃).
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From Lemma 5.2 and 5.3, we have the following result.

Theorem 5.4. All ω-limit points of (2.1) in Ω◦ are equilibrium points and therefore each positive semi-trajectory
tends to a steady state.

And finally, we have the following useful result.

Theorem 5.5. Let the conditions in Lemma 5.2 hold,
(1) If the system has the unique steady state P0, i.e., the drug-free equilibrium, all trajectories converge to P0.
(2) If the system has a unique endemic steady state, all trajectories converge to it.

6. Numerical Simulation

In this section, we will simulate the system using MATLAB software, so that the obtained analytical results can
be seen numerically. We present three cases.

Case 1. R0 <
β1

β1+β3
< 1.

We choose µ = 3 × 10−4, β1 = 11 × 10−4,β2 = 3 × 10−4, β3 = 10−5, p1 = 10−6, p2 = 10−3, p3 = 4 × 10−4,
p4 = 2× 10−4, p5 = 10−4 and p6 = 10−4. In this case, R0 ' 0.9166 and β1

β1+β3
' 0.99099. See Figure 2.

(a) (b) (c)

(d) (e)

Figure 2. (a) shows the plot of the solution of the system. (b), (c) and (d) show the sensitivity
of u(t) with respect to β1, β2, and β3 respectively. (e) shows the convergence of u(t), (infectious
compartment) of five solution curves of the system to the DFE. In this case, Lemma (5.1) shows the
global stability of DFE.

Case 2. β1

β1+β3
< R0 < 1.

We choose µ = 2× 10−4, β1 = 10−3,β2 = 10−3, β3 = 5× 10−4, p1 = 5× 10−5, p2 = 5× 10−5, p3 = 10−4, p4 = 10−4,
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p5 = 10−4 and p6 = 10−4. In this case, R0 ' 0.7142 and β1

β1+β3
' 0.6666. See Figure 3.

(a) (b) (c)

(d) (e)

Figure 3. (a) shows the plot of the solution of the system. (b), (c) and (d) show the sensitivity
of u(t) with respect to β1, β2 and β3 respectively. (e) shows the convergence of u(t), (infectious
compartment) of five solution curves of the system to the DFE.

Case 3. R0 > 1 and parameters satisfy the relations in lemma 5.2.
We choose µ = 10−3, β1 = 3 × 10−3,β2 = 10−3, β3 = 3 × 10−4, p1 = 3 × 10−3, p2 = 2 × 10−3, p3 = 2 × 10−4,
p4 = 10−4, p5 = 10−4and p6 = 10−2. In this case R0 ' 1.304347. See Figure 4.

7. Conclusion

In this article, the model of White and Comiskey has been modified. We added two compartments for drug users
under consultation rehabilitation and incarcerated drug users. We studied the steady states of the model, its existence,
and local and global stability. We showed that DFE is locally and globally stable under appropriate conditions. With
the aid of the geometric stability method, we studied the global stability of the endemic steady states. Furthermore,
we proved that backward bifurcation can occur. The occurrence of this bifurcation showed that the reduction of the
basic reproduction number to R0 < 1 is not enough for the control of the epidemic.
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(a) (b) (c)

(d) (e)

Figure 4. (a) shows the plot of the solution of the system. (b), (c) and (d) show the sensitivity
of u(t) with respect to β1, β2, and β3 respectively. (e) shows the convergence of u(t), (infectious
compartment) of five solution curves of the system to the endemic equilibrium.
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