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Abstract

Within the current paper, we design a sliding-based control law to stabilize a set of systems that are nonlinear,

fractional order involve delay, perturbation, and uncertainty. A control law-based sliding mode is considered in

such a way that the variables of the closed loop system reach the sliding surface in a limited time and stay on it
for later times. Then, using the Razomokhin stability theorem, the stability of the systems is proved and in the

end, a calculation is found to search for useful methods.
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1. Introduction

Fractional calculus features a history of 300 long times. A complete framework for fractional calculus was first
presented by the Norwegian researcher Abel [36]. Fractional calculus work in control has been designed from Ostalop’s
work, which was driven to the plan of a controller called CRONE in 1991. In general, there are different modes for
closed-loop control frameworks [6]. The system has Integer order and controller has Integer order, the system has
Integer order and the controller has fractional order, the system has fractional order and controller has Integer, the
system has fractional order and controller has fractional order. Different numerical strategies were utilized to unravel
non-fractional optimal control and control issues [29–32]. A few strategies such as the Adomian decomposition method
(ADM), and variational iteration method (VIM) have been utilized for the numerical arrangement of fractional issues
[14, 34, 37, 43]. Stability could be an essential issue within the theory about the control system. In 1996, when Matigon
introduced the stability of linear systems with fractional order, issues within the field of stability and stabilization of
fractional systems have been of extraordinary intrigue to researchers [28]. If the system incorporates delay, planning
the criteria that can guarantee system stability could be a challenging assignment [3, 41]. Regarding the stability of
a delay system, we are interested in its asymptotic stability, however, other definitions have been proposed for the
stability of such systems, including the stability of Mittag-Leffler and the stability called finite time stability (FTS)
[2, 15, 23, 24, 27].

The Lyapunov-Kraskovsky second-order strategy is an efficient approach for assessing the stability criteria of systems
that are nonlinear. The role of this approach in nonlinear systems is irrefutable but this approach isn’t exceptionally
efficient for delay fractional systems. In this strategy got to assess a functional called Lyapunov-Krasovsky and its
derivative, which is exceptionally difficult to calculate for delay fractional systems [42]. Numerous efforts have been
made to illuminate this issue and have been proceeded so distant. For a few of these things, they have been shown to
be inaccurate or inadequate [18, 33, 45]. Lee Chen in a piece distributed in 2019 [7] gives a linear matrix inequality
(LMI) for a delay fractional system. Utilizing an LMI a number of factors called choice factors, the negative definite
of a certain matrix can be decided. In spite of the fact that an LMI incorporates an uncommon frame, it’s pertinent in
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numerous disparities of matrices and imperatives in control issues. Given the importance and challenge of the issue,
inquire about proceeds.

So distant, no efficient and straightforward relationship has been found for the stability of delayed fractional systems,
so theorems related to the stability criteria of delayed systems such as Razomykhin and Lyapunov-Kraskovsky theorems
have been developed for certain classes of these cases [5]. In [16], a bilinear matrix inequality (BMI)-based approach
the stability of delayed nonlinear fractional systems is outlined based on the state controller. Nearly all control
issues confronted with unsettling influence and instability [20]. There are various strong controllers that are safe to
indeterminacy in parameters and irritations [18]. A sliding mode controller (SMC) could be a capable and broadly
utilized instrument among strong controllers to kill the efficiency of turbulence and instability in control hypothesis
[12]. Within the realm of fractional systems, SMC has been utilized. We utilize, an integral type SMC including a
fractional term for a deferred delayed fractional order system. Various methods such as back stepping-sliding mode,
terminal sliding demonstrate and the adaptive sliding show has been created for fractional systems.

Within the current paper, a methodology based on, a new type of integral switching surface of the fractional-order
is used to achieve sliding mode dynamics. The plan of the switching surface can warranty the asymptotic stability
and desired performance [25]. In the first order SMC, the incidence of chattering is the main trouble. In order to fix
this problem, a higher-order SMC is presented, which is an efficient one to dominate, the occurrence of chattering and
switching control signals. Novel results on nonlinear fractional-order time-varying delayed systems with second-order
sliding mode control are presented. SMC law is designed to create delay-independent stability on the sliding surface
in finite time and it is used to reduce norm bounded uncertainties variation and bounded external disturbances to
analyze the robust stability of the considered nonlinear fractional order delayed systems.

In recent years, there are various results are derived for nonlinear fractional order systems, for instance, the Output
feedback finite-time dissipative control in [17], observer-based control results were developed in [35], mixed H∞ and
passive control results presented in [19], and references therein. The problem of Finite-time H∞ control for neural
networks has been reported in [40]. The problem of delay dependent and order dependent H∞ control with delays has
been reported in [38]. Among these control methods, SMC has been well-definite as an impressive tool to prospect the
transient response and also attain the robust performance of the systems. The main advantage of the SMC technique
is its simplicity and inherent robustness towards the matched uncertainty. The SMC comprises discontinuous control
input that drives the controlled system onto a specified sliding surface. Once the system is on the sliding surface, it
becomes immune to matched uncertainties [11].

In [1], a fractional sliding mode is outlined for the fractional system with a delay in input. In [9], the terminal sliding
mode controller with fractional order is utilized to control a specific category of control systems. For delayed fractional
systems, this inquiry is progressing. In [4] by including a few limitations, a delay-independent sliding mode is displayed
for the fractional system. Also, results on the second and higher-order SMC approach for uncertain nonlinear systems
were developed in [21, 39]. In [13], an observer-based disturbance rejection control is designed for handling external
disturbances. In [10], sliding mode observer for nonlinear fractional order systems and their advantages have been
studied and finite-time SMC for higher-order systems was reported in [8]. From all considering existing researches,
there has been little attention paid to the problem of second-order SMC design for delayed nonlinear fractional order.

Within the current article, fundamental preliminaries from fractional calculus are given in section 2. The issue
beneath is considered and its characteristics are expressed in section 3. In section 4, we plan a suitable SMC conspire
and after that, a sufficient condition to guarantee that system is stable over any relegated certain-time interim subject
to time-delay and mismatched external disturbance influence and uncertainty. In section 5, some illustrations for
various modes have been given to appear the sensibility of our hypothesis. At long last, we conclude our work with
conclusions in section 6.

2. Preliminaries

In this section, two fundamental theorem and lemma are given.

Lemma 2.1. Fractional time derivative of order α (0 < α < 1) of function v(y, t) = yT y can be calculated as:

Dα
t v(t) = (Dα

t y)
T
y + yT (Dα

t y) + 2Ψ, (2.1)
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where

Ψ =

∞∑
k=1

Γ(1 + α)
(
Dα−k
t y

) (
Dk
t y
)T

Γ(1 + k)Γ(1− k + α)
. (2.2)

Γ(.) is the gamma function and Ψ is bounded as follow:

∃δ > 0, |Ψ| ≤ δ‖y(t)‖.

Proof. See proof in [44]. �

Theorem 2.2. (Razumikhin stability for fractional order systems with delay) [26]
For the delay fractional system as follows:

C
0 D

α
t y(t) = f (t, yθ) , (2.3)

where y(t) ∈ Rn, yθ(t) = y(t + θ), −τ ≤ θ ≤ 0. Suppose that v1, v2, v3 : R+ → R+ are scalar, continuous and
nondecreasing functions, and v1(0) = v2(0) = v3(0) = 0, v2(, ) is strictly increasing, if there exists a continuous
function V : R+ × Rn → R+ such that:
(i) v1(‖y‖) ≤ V (t, y) ≤ v2(‖y‖), ∀t ≥ 0, y ∈ Rn,
(ii) Dα

t V (t, y(t)) ≤ −v3(‖y‖), 0 < α < 1 provided V (t+ s, y(t+ s)) ≤ qV (t, y(t)), for q > 1, −τ ≤ s ≤ 0, and t ≥
0, then system (2.3) is uniformly stable. Additionally, v3(s) > 0 for s > 0 and there exists a continuous nondecreasing
function t̃(s) : R+ → R+ that t̃(s) > s for s > 0, such that the condition ( ii) is substituted by:

Dα
t V (t, y(t)) ≤ −v3(‖y‖), 0 < α < 1,

whenever V (t+ s, y(t+ s)) ≤ t̃V (t, y(t)), s ≤ −τ ≤ 0. Then, system (2.3) is uniformly asymptotically stable.

3. Problem statement

Consider a nonlinear fractional system with delay of the form:

C
t0D

α
t x(t) = Ax(t) +Aτx(t− τ) +Bu(t) +Gd(t) + f (t, x(t), x(t− τ)) , t ≥ t0,

x(t) = Φ(t), t0 − τ ≤ t ≤ t0.
(3.1)

where 0 < α < 1, and x(t) ∈ Rn, u(t) ∈ Rm, are the state and control vectors respectively and A,Aτ , B,G are constant
matrices with appropriate dimensions. d(t) coordinated disturbance influence that’s adequately smooth and bounded.
Too, it is accepted that the upper bound of d(t) is known and |d(t)| ≤ dmax; the vector f is a nonlinear and bounded
function ‖f(.)‖ ≤ M, that M is a known positive consistent; Φ(t) ∈ C ([t0 − τ, t0] ,Rn), is the persistent beginning
initial function; τ > 0 is the consistent time-delay of the system. In this paper, according to the sliding surface strategy,
the control law is planned to fix the time-delay system (3.1) within the confront of external disturbance influence.
Another, we consider the trace of uncertainty on the system (3.1). Uncertainty in a genuine system can come from
many sources (3.1). Uncertainty in a genuine system can come from many sources. There are a few strategies to
consider uncertainty in a nonlinear system. One of these strategies accepts it as a norm-bound and time-varying
irritation [21, 22]. That is, we consider the terms including uncertainty in the following form:

f (t , x(t), x(t− τ)) = ∆Ax(t) + ∆Aτx(t− τ), (3.2)

where

∆A = E1F1(t)H1, ∆Aτ = E2F2(t)H2, (3.3)

also, Ei, Hi(i = 1, 2) are known real constant matrices of appropriate dimensions, and Fi(i = 1, 2) are unknown real
time-varying matrices satisfying:

Fi(t)F
T
i (t) ≤ In, i = 1, 2, t ≥ t0. (3.4)
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where In is identity matrix. Therefore, the system studied in this paper, consisting of disturbance and uncertainty, is
as bellow:

C
0 D

α
t x(t) = (A+ ∆A)x(t) + (Aτ + ∆Aτ )x(t− τ) +Bu(t) +Gd(t), t ≥ 0. (3.5)

Assumption 3.1. Rank and dimension of matrix B are equal.
Assumption 3.2. Controllability conditions are established for pair (A,B).

4. Main Results

Here our aim is to design sliding mode controller such that the trajectories of the SMC system are driven onto
the predefined sliding surface in a finite instant and the closed loop system is asymptotically stable subject to all
admissible parameter uncertainties and mismatched external disturbance. To do this, we will design the following
integral type sliding surface for system (3.5):

Λ(t) = NI1−αx(t)−
∫ t

t0

N [(A+ ∆A+BK)x(ξ) + ∆Aτx(ξ − τ)] dξ, (4.1)

and for system (3.1) we also define the sliding surface as follows:

Λ(t) = NI1−αx(t)−
∫ t

t0

N(A+BK)x(ξ)dξ. (4.2)

In both cases m-dimensional vector Λ(t) ∈ Rm is the sliding surface, K ∈ Rm×n is controller gain matrix to be
determined later and N ∈ Rm×n is a steady matrix, must be such that the NB ∈ Rm×m is invertible. Integral I is
the Riemann-Liouville fractional integral. In the following, we calculate the necessary parameters to design the sliding
surface. Then, we use Theorem 2.2 to discover an adequate condition to guarantee that systems (3.1) and (3.5) are
asymptotically stable over any allotted limited-time interval subject to nonentities time-delay and bungled external
disturbance and uncertainty.

A. SMC Designing
In this section, we plan a reasonable SMC conspire to guarantee the directions of the SMC systems (3.1) and (3.5)
reach the sliding surface inside a limited time.

Theorem 4.1. Consider by system (3.5) involving time-varying perturbation. The following control law ensures the
convergence of the state variables to the sliding surface inside a limited time.

u(t) = Kx(t)− (NB)−1NAτx(t− τ)− (NB)−1µΛ(t)− (NB)−1ρ sign(Λ(t)), (4.3)

with µ > 0 and ρ > dmax ‖NG‖ are designed parameters where dmax is the upper bound of the external disturbance.
The function sign[.] : Rm → Rm is defined as sign(Λ(t)) =

[
sign (Λi(t)]m×1 with

sign(Λi(t)) =


1, Λi(t) > 0,

0, Λi(t) = 0, i = 1, · · · ,m,
−1, Λi(t) < 0.

(4.4)

Proof. After derivative from (4.1), we have

Λ̇(t) = NDαx(t)−N [(A+ ∆A+BK)x(t) + ∆Aτx(t− τ)] . (4.5)

Using (3.5), one has:

Λ̇(t) = N [(A+ ∆A)x(t) + (Aτ + ∆Aτ )x(t− τ) +Bu(t) +Gd(t)]−N [(A+ ∆A+BK)x(t) + ∆Aτx(t− τ)]
(4.6)

= NAτx(t− τ) +NBu(t) +NGd(t)−NBKx(t).
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From(4.3) and above relation, it is straightforward to see that

Λ̇(t) = −µΛ(t)− ρsign(Λ(t)) +NGd(t). (4.7)

Consider a non-negative quadratic function as bellow:

V (Λ(t)) = 0.5Λ2(t). (4.8)

Considering (4.7), |d(t)| ≤ dmax, and differentiation of (4.8) we have:

V̇ (Λ(t)) = Λ(t)Λ̇(t)

= Λ(t) [−µΛ(t)− ρsign(Λ(t)) +NGd(t)]

= −µΛ2(t)− ρ | Λ(t) | +NGd(t)Λ(t)

≤ −µΛ2(t)− ρ | Λ(t) | +dmax‖NG‖ | Λ(t) |
≤ −ρ | Λ(t) | +dmax‖NG‖ | Λ(t) |
≤ − (ρ− dmax‖NG‖)︸ ︷︷ ︸

z

| Λ(t) |

≤ −z | Λ(t) | .

Because 0 < ρ− dmax‖NG‖ we have z > 0 and

V̇ (Λ(t)) = Λ(t)Λ̇(t) ≤ −z | Λ(t) |< 0. (4.9)

Hence the reaching law is satisfied. Using (4.9) and considering the two cases in which the positive or negative sign
Λ(t0) is considered, it can be shown that the system variables reach the sliding surface at a finite time. In fact, by

integrating (4.9), the time to reach the sliding level is calculated in this way t0 < T ? ≤
(
|Λ(t0)|
β

)
+ t0. This completes

the proof.
�

Theorem 4.2. Consider by system (3.1) with sliding surface in (4.2). The following control law ensures the conver-
gence of the state variables to the sliding surface inside a limited time.

u(t) = Kx(t)− (NB)−1NAτx(t− τ)− (NB)−1µΛ(t)− (NB)−1ρ sign(Λ(t)), (4.10)

where in µ > 0 and ρ > M‖N‖+ dmax‖NG‖ are design parameters.

Proof. We go through a process like proving the Theorem 4.1

V̇ (Λ(t)) ≤ −µΛ2(t)− ρ|Λ(t)|+ dmax‖NG‖Λ(t)|+ ‖Nf‖|Λ(t). (4.11)

Because µ > 0 and ‖f(.)‖ ≤M so:

V̇ (Λ(t)) ≤ −ρ|Λ(t)|+ dmax‖NG‖|Λ(t)|+M‖N‖|Λ(t)|
= − (ρ− dmax‖NG‖ −M‖N‖) |Λ(t)|
≤ −z|Λ(t)|,

where z = (ρ− dmax‖NG‖ −M‖N‖). According to the conditions of Theorem 4.2, we have ρ > dmax‖NG‖+M‖N‖
so z = (ρ− dmax‖NG‖ −M‖N‖) > 0, hence, V̇ (Λ(t)) < 0.
This ensures the reaching of the state variables to the desired surface (4.2) for µ > 0 and ρ > M‖N‖ + dmax‖NG‖.
This completes the proof. �

B. Asymptotically Stable
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In this area, a computational method for finding the matrix K is introduced using the stability criteria in Theorem
2.2.

Theorem 4.3. Consider the system (3.5). Matrix K ensure that systems (3.5) is asymptotically stable subject to
time-delay and disturbance and uncertainty,if all of A+BK eigenvalues have a strictly negative real part and there is
a unique solution for the Lyapanov equation:

−Q = (A+BK)TP + P (A+BK), Q > 0, (4.12)

such that

λmin(Q)r ≥ 2rqσ‖P‖
∥∥Aτ −B(NB)−1NAτ

∥∥+ 2 (‖G‖dmax +M + δ) ‖P‖, (4.13)

where dmax is the upper bound of the external disturbance term and M is the upper bound of norm-bounded uncertainty
function in (3.2). ‖x(t)‖ is bounded in the set {x ∈ Rn | ‖x‖ ≤ r} for a large positive number r, q is a positive number

more than one, and δ is a positive constant and σ =
√

λmax(P )
λmin(P ) .

Proof. By substituting (4.3) into (3.5) the state variables reach the sliding surface at the finite time according to
Theorem 4.1, so we have Λ(t) = 0 on the sliding surface for t ≥ T ?, and the closed loop system in the sliding mode is
as bellow:

C
0 D

α
t x(t) = (A+BK + ∆A)x(t) + (Aτ −B(NB)−1NAτ + ∆Aτ )x(t− τ) +Gd(t), t ≥ T ?. (4.14)

Since Re (λi(A+BK)) < 0, i = 1, 2 . . . , n, thus A + BK is a Hurwitz matrix also Q > 0, so the matrix equation
(4.12) has a unique solution P . Now, we can consider following Lyapunov function:

V (t) = xTPx. (4.15)

It is easy to verify that V (t) = xTPx is bounded by ω1(x) = λmin(P )‖x‖2 and ω2(x) = λmax(P )‖x‖2 . So, the first
condition of Theorem 2.2 are satisfied. Considering Eq. (4.14) and Lemma 2.1, the time derivative of Eq. (4.15) is
obtained as:

DαV (t) = [Aeqx(t) +Aeqτx(t− τ) +Gd+ f ]
T
Px+ xTP [Aeqx(t) +Aeqτx(t− τ) +Gd+ f ] + 2PΨ.

where f is f (t , x(t) , x(t− τ)) = ∆Ax(t) + ∆Aτx(t− τ) , Aeq = A+BK and Aeqτ = Aτ −B(NB)−1NAτ , also
we know that

∆A = E1F1(t)H1, ∆Aτ = E2F2(t)H2.

and ‖f(.)‖ ≤M. Considering Eq. (4.14), the derivative of (4.15) is obtained as:

DαV (t) = xT
[
ATeqP + PAeq

]
x+

[
2xTPAeqτx(t− τ)

]
+
[
2xTPGd+ 2xTPf(x)

]
+ 2PΨ.

As −Q = ATeqP + PAeq , Q > 0, and |d(t)| ≤ dmax and according to Lemma 2.6 we have

DαV (t) ≤ −λmin(Q)‖x‖2 + 2‖P‖ ‖Aeqτ‖ ‖x‖‖x(t− τ)‖+ 2(‖Gd‖+ ‖f‖)‖P‖‖x‖+ 2δ‖x‖‖P‖
≤ −λmin(Q)‖x‖2 + 2‖P‖ ‖Aeqτ‖ ‖x‖‖x(t− τ)‖+ 2(‖Gd‖+ ‖f‖+ δ)‖P‖‖x‖
≤ −λmin(Q)‖x‖2 + 2‖P‖ ‖Aeqτ‖ ‖x‖‖x(t− τ)‖+ 2 (‖G‖dmax +M + δ) ‖P‖‖x‖.

Now, according to the Theorem 2.2, we consider the second condition of Razumikhin stability theorem. To do this, we
consider t̃(s) = q2s , q > 1, the function t̃ satisfies the condition of the Razumikhin theorem. Now if the assumption
V (t+θ, x(t+θ)) ≤ t̃V (t , x(t)) holds, then we have to find a scalar and positive function v3. From V (t+θ, x(t+θ)) ≤
t̃V (t , x(t)), we have xT (t+ θ)Px(t+ θ) ≤ q2xT (x)Px(t) hence λmin(P )‖x(t+ θ)‖2 ≤ q2λmax(P )‖x‖2 then

‖x(t+ θ)‖2 ≤ q2λmax(P )

λmin(P )
‖x‖2.
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Figure 1. Trajectories of the open-loop system with α = 0.85 for Example 5.1.

In the above relation, we consider θ = −τ then ‖x(t − τ)‖2 ≤ q2 λmax(P )
λmin(P ) ‖x‖

2 hence ‖x(t − τ)‖ ≤ qσ‖x‖ where

in σ =
√

λmax(P )
λmin(P ) . To establish the second condition of the Theorem 2.2, it suffices to put v3(‖x‖) = ζ‖x‖, where

ζ = λmin(Q)r − 2rσ‖P‖ ‖Aeqτ‖ q − 2 (‖G‖dmax +M + δ) ‖P‖. According to, inequality (4.13), one has ζ > 0 ,
therefore

DαV (t) ≤ −v3(‖x‖)
So, if condition (4.13) is satisfied, according to the second condition of Theorem 2.2 , the closed-loop system (4.14) is
stable. This completes the proof. �

Remark 4.4. According to the Assumption 2.2, the pair (A, B) is controllable, so we choose the matrix K in such a
way that n eigenvalues of the matrix A+BK have a strictly negative real part. If the relation (4.12) is not established,
by repeating this process, we will examine another collection of eigenvalues. Using a transformation, inequality (4.12)
can be written more easily. To do this, using the transformation x(t) = Y z̃(t) system (4.14) can be rewritten as follows

Dαz̃(t) = Y −1AeqY z̃(t) + Y −1AeqτY z̃(t− τ) + Y −1Gd(t)Y + Y −1f(z̃(t)).

Now, by considering P equal to the identity matrix, we will have 1 = σ =
√

λmax(P )
λmin(P ) , and therefore we can reach the

following relation:

λmin(Q)r ≥ 2r
∥∥Y −1AeqτY

∥∥ q + 2
(
||Y −1GT ||dmax + M̃ + δ

)
,

where A?eq = Y −1AeqY x̃(t), M̃ = M‖Y −1‖‖Y ‖ and Q = −((A?eq)
T +A?eq). The above relation can be used instead of

inequality (4.12).

Corollary 4.5. For system (3.1), stability on the sliding surface is determined if K is chosen in such a way that the
conditions of Theorem 4.3 for the matrices A,B,Q are satisfied and

‖f(.)‖ ≤M.

5. Numerical Results

In this area, we provide three cases to demonstrate the effectiveness of our methods. Numerical simulation is created
utilizing Ninteger toolbox in Matlab software.
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(a)

(b) (c)

Figure 2. (a) Time responses of states of the closed-loop system with α = 0.85 and τ = 1 for
Example 5.1. (b) Time responses of states of the closed-loop system of the system with α = 0.85 and
τ = 3 for Example 5.1. (c)Time responses of states of the closed-loop system with α = 0.85 and τ = 5
for Example 5.1.

Example 5.1. Considering system (3.5) with α = 0.85 and system matrices:

A =

[
−4 5.5
8.5 −10

]
, Aτ =

[
0.1 0
−0.1 0.2

]
, B =

(
1
1

)
.

The nonlinear function ∆A = E1F1(t)H1, ∆Aτ = E2F2(t)H2, satisfies condition (3.3) with

E1 =

[
1

2.5

]
, H1 =

[
1, 0

]
, F1 = F2 = sin(t), E2 =

[
0

2.3

]
, H2 = [0, 1].

Pair (A,B) is controllable. Time reaction of the system without state feedback controller appeared in Figure 1 so
system is unstable for u = 0. In this case, we choose τ = 1, 3 and 5 with x(0) = [2,−1]T , at that point the controller
gain matrix gotten as K = [9.2500,−3.2500]. The matrix N is chosen N = [1, 0]. By (4.1), the sliding surface function
can be computed by movable parameters, ρ = 8 and µ = 2. According to the conditions of Theorem 4.1 we have
ρ > dmax‖NG‖ and µ > 0. By applying control law in Theorem 4.1, we watch that the condition of Theorem 4.1
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(a)

(b) (c)

Figure 3. (a) Feedback control law with α = 0.85 and τ = 1 for Example 5.1. (b) Trajectories of
the closed-loop system of the system with α = 0.4 and τ = 1 for Example 5.1. (c) Feedback control
law with α = 0.4 and τ = 1 for Example 5.1.

is satisfied and we show the simulation results of state x(t) in Figures 2 where we present the trajectories of the
closed-loop states with controller law (4.3). Figure 3(a) appears the reaction comes about of the feedback control
law. Therefore, we show that system is stable. Also, Figures 3(b) and 3(c) present the trajectories of the closed-loop
states and feedback control law for α = 0.4. These figures show the efficiency of our method for selecting controller
gain matrix K to guaranteed robustness against external disturbances and norm bounded uncertainty. It can also be
concluded that the designed sliding mode controller, independent of delay, was able to stabilize the system.

Example 5.2. Let us consider system (3.5) with α = 0.6 and the following system characteristics:

A =

 5 9 0
1 −1 0
0 −14.28 0

 , Aτ =

 0.1 0 0
0.1 0 0
0.2 0 0.1

 , B =

 1
2.5
2

 , G =

 0.2
0.3
0.8

 ,
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(a) (b)

Figure 4. (a) Time responses of states of the open-loop system with α = 0.6 and τ = 1 for Example
5.2. (b) Trajectories of the closed-loop system of the system with α = 0.6 and τ = 1 for Example 5.2.

(a) (b)

Figure 5. (a) Trajectories of the closed-loop system with α = 0.6 and τ = 3 for Example 5.2. (b)
Feedback control law with α = 0.6 and τ = 1 for Example 5.2.

d(t) = 0.3 sin
(
te−2.3t

)
, E1 =

 0.5
0.8
0

 , H1 =
[

1, 0, 0
]
, F1 = F2 = sin(t), E2 =

 0
0.6
0.9

 , H2 = [0, 1, 0].

Pair (A,B) is controllable and dmax = 0.3, ||G|| = 0.8775. This system is unstable for u = 0 as shown in Figure 4.
In this example, we choose τ = 1 and 3 with initial condition x(0) = [1, 2,−2]T . The controller gain matrix gotten ass
K = [14.3428 , 4.8925 , 1.7130]. Here, parameter N = [1, 2.5, 2] so ||NG|| = 2.55. By Eq. (4.1), the sliding surface
function can be computed by adjustable parameters µ = 12 and ρ = 3. By applying the control law in Theorem 4.1,
we observe that the conditions of Theorem 4.1, ρ > dmax‖CG‖ and µ > 0, are satisfied. We appear, time responses of
the closed-loop states in Figures 4(b), 5(a). Figure 5(b) appears the feedback comes about of the feedback control law.
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(a) (b)

Figure 6. Trajectories of the closed-loop system of the system with α = 0.4 and τ = 1 for Example
5.2. (b) Feedback control law with α = 0.4 and τ = 1 for Example 5.2.

It is obvious from the figures that the closed-loop system is asymptotically stable. To anticipate the control signals

from chattering, we supplant sign(Λ(t)) with Λ(t)
||Λ(t)||+0.04 . This indicates that the sliding mode controller, independent

of the delay, was able to stabilize the system. Finally, we repeated simulations for a smaller value of fractional order,
alpha=0.4. Figures6(a), 6(b) show the result, stability and fast convergence is achieved.

Example 5.3. Considering system (3.1) with α = 0.7 and the following system characteristics

A =

−2.2 0.9 −1.5
1.6 0.45 0.7
−0.3 −0.8 −1

, Aτ =

 0 0 0.1
−0.5 0 0
0.1 0.2 0

, (5.1)

B =

 1
0.8
−1.7

, f (t, x(t), xτ (t)) =

0.6 sin(x1)
0.2 sin(x1)
0.6 sin(x1)

.
Pair (A,B) is controllable. It is clear from Figure 7(a) that the open-loop system is unstable. In this example,

we choose τ = 1, 3 and 5 with initial condition x(0) = [1,−0.5, 0.5]T . The controller gain matrix gotten as K =
[17.7184, 120.7353, 53.5627]. Here, parameter N = [−0.1, 0.1, 0.1]. By Eq. (4.2), the sliding surface function can be
computed by adjustable parameters µ = 2 and ρ = 8. With implementing the control law in Theorem 4.2, we observe
that the conditions of Theorem 4.2, µ > 0 and ρ > M‖N‖ + dmax‖NG‖, are satisfied. Figures 7(b), 7(c), and 8(a)
present the trajectories of the closed-loop states with controller law (4.10). Figure 8(b) shows the simulation results
of the feedback control law and sliding function. In this manner, the system states converged to the desired surface.
Figures 9 show simulation result for α = 0.4. Therefore, we can conclude the efficiency of our method in selecting
the K controller gain matrix to achieve fast convergence and robustness against external selections and parameter
uncertainty.

Example 5.4. In this example, we provide an example based on Chua’s circuit model as in [15, 27], with disturbance
and delay, which is in the form of nonlinear system (3.1) having the following system matrices:

A =

 −am1 a 0
1 −1 1
0 −b 0

 , Aτ =

 −c 0 0
−c 0 0
0 −b 0

 , B =

 1
2.5
2

 , G =

 0.2
0.3
0.8

 ,
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(a)

(b) (c)

Figure 7. (a) Trajectories of the open-loop system with α = 0.7 for Example 5.3. (b) Trajectories
of the closed-loop system of the system with α = 0.7 and τ = 1 for Example 5.3. (c) Trajectories of
the closed-loop system with α = 0.7 and τ = 3 for Example 5.3.

d(t) = 0.3 sin
(
te−2.3t

)
, a = 9, b = 14.28, c = 0.1, b = 14.28, c = 0.1,m1 = 2

7 . Since a considerable number of
hardware and software-based design and implementation approaches can be applied to Chua’s circuits, these circuits
also constitute excellent educative models that have pedagogical value in the study of nonlinear dynamics. In this
example we choose τ = 1, 3 and 5 with initial condition x(0) = [0,−0.63, 0]T . The controller gain matrix gotten
as K = [−0.6252, 0.1199, 1.36063]. Here, parameter N = [1, 2.5, 2]. By (4.10), the sliding surface function can
be computed by adjustable parameters µ = 0.5 and ρ = 3. With implementing the control law in Theorem 4.2,
simulation results, shown in Figures 10, and 11(a). Figure 11(b) shows the feedback law control. It is clear from the
figures that the closed-loop system is asymptotically stable. This proves the efficiency of the proposed method.
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(a) (b)

Figure 8. (a) Trajectories of the closed-loop system of the system with α = 0.7 and τ = 5 for
Example 5.3. (b) Feedback control law and sliding function with α = 0.7 and τ = 1 for Example 5.3.

(a) (b)

Figure 9. (a) Trajectories of the closed-loop system of the system with α = 0.4 and τ = 1 for
Example 5.3. (b) Feedback control law and sliding function with α = 0.4 and τ = 1 for Example 5.3.

6. Conclusions

The stabilization of a class of nonlinear fractional-order time-varying delayed systems has been considered here,
this system works as the Razumikhin approach subjected to nonlinear disturbance and parametric time-varying un-
certainties. Theorems for each case are expressed separately. New and sufficient propositions have been expressed
using relations based on inequalities. The performance of the main results is expressed using several examples in
different dimensions. The studied system has Caputo fractional derivative; so, the studied results can be developed
by considering other types of fractional derivatives. Some issues, such as LMI based SMC with LQR for a non-linear
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(a) (b)

Figure 10. (a) Trajectories of the closed-loop system of the system with τ = 1 for Example 5.4. (b)
Trajectories of the closed-loop system of the system with τ = 3 for Example 5.4.

(a) (b)

Figure 11. (a) Trajectories of the closed-loop system of the system with τ = 5 for Example 5.4. (b)
Feedback control law with τ = 1 for Example 5.4.

fractional-order system, are still open problems. We will use the results obtained in this article to solve such a problem
in a later work.
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