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Abstract

..

In the paper, an oscillatory system with liquid dampers is considered, when the mass of the head is large enough.
By means of expedient transformations, the equation of motion with fractional derivatives is reduced to an

equation of fractional order containing a small parameter. The corresponding nonlocal boundary value problem
is solved and the zero and first approximations of solutions of the relative small parameter are constructed. The
results are illustrated on the concrete example, where the solution differs from the analytical solution by 10−2

order.
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1. Introduction

In oil production [13, 21], one of the main methods is the procedure with a sucker rod pumping unit [15], where
the plunger is inside the Newtonian fluid [4]. This allows, in contrast to the well-known motion [15], to describe linear
ordinary differential equations of the second order with fractional derivatives in subordinate numbers [1, 4, 6, 14, 16, 19].
Since the construction of solutions for this case of the corresponding problem with nonseparated boundary conditions
is rather difficult [14, 17, 20], it makes sense to introduce a small parameter (by means of a rather heavy mass head)
and construct an asymptotic solution in the first approximation.

2. Problem statement

Let consider the following boundary value problem [2, 3, 12]

y′′(x) +

2q−1∑
k=0

εakD
k
q y(x) = εf(x), 0 < x0 < x < l, (2.1)

2q−1∑
k=0

[
αjkD

k
q y(x)|x=x0

+ βjkD
k
q y(x)|x=l

]
= γj , j = 1, 2q, (2.2)

where by means of the corresponding transformations [9, 10] is reduced to the following boundary value problem of
the matrix form [7, 8, 11, 18]

D
1
q Z(x, ε) = A(ε)Z(x, ε) +B(x, ε), (2.3)
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αz(x0, ε) + βz(l, ε) = γ, (2.4)

z(x, ε) = (z0(x, ε), z1(x, ε), z2(x, ε), ... , z2q−1(x, ε) )
T , (2.5)

A(ε) = A0 + εA1, (2.6)

B(x, ε) = εl2qf(x), (2.7)

α = (αjk)j=1,2q;k=0,2q−1, β = (βjk)j=1,2q;k=0,2q−1, (2.8)

γ = (γ1, γ2, ..., γ2q)
T , (2.9)

A0 =


0 1 0 0 ... 0 0
0 0 1 0 ... 0 0
. . . . . . .
0 0 0 0 ... 0 1
0 0 0 0 ... 0 0

 ,

A1 = −


0 0 0 0 ... 0 0
0 0 0 0 ... 0 0
. . . . . . .
0 0 0 0 ... 0 0
a0 a1 a2 a3 ... a2q−2 a2q−1

 , (2.10)

l2q = (0 0 0...0 1)T . (2.11)

It is easy to see that from (2.10)

A2q
0 = 0, Ak

1 = (−1)k−1ak−1
2q−1A1 = (−1)kak−1

2q−1


0 0 0 0 ... 0 0
0 0 0 0 ... 0 0
. . . . . . .
0 0 0 0 ... 0 0
a0 a1 a2 a3 ... a2q−2 a2q−1

 . (2.12)

Then the vector solution of system (2.3) can be represented in the form:

z(x, ε) =

∞∑
k=0

εkz(k)(x). (2.13)

Substituting (2.13) into (2.3) and (2.4), we arrive at the following problems for a system

D
1
q z(0)(x) = A0z

(0)(x), (2.14)

D
1
q z(1)(x) = A0z

(1)(x) + (A1z
(0)(x) + l2qf(x)),

· · ·
(2.15)

D
1
q z(s)(x) = A0z

(s)(x) +A1z
(s−1)(x), s ≥ 2 (2.16)
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with the corresponding boundary conditions:

αz(0)(x0) + βz(0)(l) = γ, (2.17)

αz(1)(x0) + βz(1)(l) = 0, (2.18)

αz(s)(x0) + βz(s)(l) = 0, s ≥ 2. (2.19)

Taking into account that for the equation

D
1
q y(t) = ay(t), t > 0,

the solutions are obtained from the shifted Mittag-Leffler series [5, 20] in the form

y(t) =
∞∑
k=0

ak
t−1+ k+1

q

(−1 + k+1
q )!

,

i.e.

D
1
q y(t) =

∞∑
k=0

ak
t−1+ k

q

(−1 + k
q )!

=
t−1

(−1)!
+ a

t−1+ 1
q

(−1 + 1
q )!

+ a2
t−1+ 2

q

(−1 + 2
q )!

+ ... = δ(t) + ay(t).

3. Construction of the zero approximation

Then the matrix solution to system (2.14) from the nilpotency condition of the matrices A0 from (2.10) will have
the form

Z0(x) =

∞∑
k=0

Ak
0

t−1+ k+1
q

(−1 + k+1
q )!

=

2q−1∑
k=0

Ak
0

t−1+ k+1
q

(−1 + k+1
q )!

, (3.1)

and the general solution of the vector system (2.14) in the form:

z(0)(x) = Z(0)(x)C, (3.2)

where the vector column C will be

C = (C0, C1, ..., C2q−1)
T , (3.3)

Cj are arbitrary constant real numbers.
Substituting (3.2) into the boundary condition (2.17), we obtain:

[αZ(0)(x0) + βZ(0)(l)]C = γ. (3.4)

If

det[αZ(0)(x0) + βZ(0)(l)] ̸= 0, (3.5)

then from (3.4) we get

C = [αZ(0)(x0) + βZ(0)(l)]−1γ. (3.6)

Thus, we obtain solutions to the boundary value problem (2.14), (2.17) in the following form:

z(0)(x) = Z(0)(x)[αZ(0)(x0) + βZ(0)(l)]−1γ. (3.7)



1126 F. A. ALIEV, N. A. ALIEV, N. S. HAJIYEVA, N. A. SAFAROVA, AND R. F. ALIYEVA

4. First approximation

Now let’s return to the vector system (2.15). It is easy to see that the homogeneous vector system corresponding
to (2.15) has the form:

D
1
q z(1)(x) = A0z

(1)(x), (4.1)

the general solution (4.1) is represented in the form

z(1)(x) = Z(0)(x)C, (4.2)

where the column vector C is given in the form (3.3).
To calculate one of the particular solutions of the inhomogeneous vector system (2.15), firstly we calculate the

right-hand side of this system:

A1z
(0)(x) + l2qf(x) = (0 0 ...0 f(x)+

A1,2qZ
(0)(x)[αZ(0)(x0) + βZ(0)(l)]−1γ)T ,

(4.3)

where

A1,2q = −(a0 a1 a2...a2q−2 a2q−1) (4.4)

vector of rows (the last row of the matrix A1).
Thus, all equations of the vector system (2.15), except the last one, are homogeneous, and the last equation has

the form:

D
1
q z̃

(1)
2q−1(x) = f(x) +A1,2qZ

(0)(x)[αZ(0)(x0) + βZ(0)(l)]−1γ, (4.5)

the solution which is obtained easily by integrating order 1
q , i.e.

z̃
(1)
2q−1(x) = I

1
q

{
f(x) +A1,2qZ

(0)(x)[αZ(0)(x0) + βZ(0)(l)]−1γ
}
, (4.6)

where z̃- is one of the particular solutions of the inhomogeneous equation (4.5). Then the general solution (2.15) is
presented in the form

z(1)(x) = Z(0)(x)C +


0
0
...
0

I
1
q
{
f(x) +A1,2qZ

(0)(x)[αZ(0)(x0) + βZ(0)(l)]−1γ
}

 . (4.7)

Substituting z1(·) from (4.7) to the boundary condition (2.18), we have

[αZ(0)(x0) + βZ(0)(l)]C = −β


0
0
...
0

Ã(l)

− α


0
0
...
0

Ã(x0)

 , (4.8)

where

Ã(x) = I
1
q

{
f(x) +A1,2qZ

(0)(x)[αZ(0)(x0) + βZ(0)(l)]−1γ
}
. (4.9)

Let the following restrictions hold

det[αZ(0)(x0) + βZ(0)(l)] ̸= 0, (4.10)
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then from (2.3) we find

C = −[αZ(0)(x0) + βZ(0)(l)]−1


β


0
0
...
0

Ã(l)

+ α


0
0
...
0

Ã(x0)




. (4.11)

The solution to the boundary value problem (2.15), (2.18) has the form:

z(1)(x) = −Z(0)(x)[αZ(0)(x0) + βZ(0)(l)]−1 ×


β


0
0
...
0

Ã(l)

+ α


0
0
...
0

Ã(x0)




+


0
0
...
0

Ã(x)

 . (4.12)

The solution to the boundary value problems (2.16), (2.19) for s ≥ 2 is investigated. Thus the proposed solution
to the boundary value problem (2.1), (2.2) (or (2.3), (2.4)) will be

z(x) = z0(x) + εz(x),

which differs from the exact solution 10−2 order.
Example 1. Let consider the case when in (2.1) (ak = 0), i.e.

y′′(x) = εf(x), (4.13)

with periodic boundary condition

D
k
q y(x)|x=x0

= D
k
q y(x)|x=l , k = 0, 2q − 1. (4.14)

By making an expedient transformation: y(x) = z0(x), D
k
q y(x) = D

k
q z0(x) = D

k−1
q z1(x) = D

k−2
q z2(x) = ... =

D
1
q zk−1(x) = zk(x),

D
2k
q y(x) = D

2k
q z0(x) = D

1
q z2q−1(x) = εf(x), k = 1, 2q − 1.

Consider the following boundary value problem of matrix form

D
1
q z(x) = Az(x) + εf(x), z(x0) = z(l), (4.15)

A =


0 1 0 0 ... 0 0
0 0 1 0 ... 0 0
. . . . . . .
0 0 0 0 ... 0 1
0 0 0 0 ... 0 0

− nilpotent matrix of order 2q,

F (x) = (0 0 ... 0 f(x))T with the length 2q,

z(x) = (z0(x) z1(x) ... z2q−1(x))
T

z(x) =

2q−1∑
k=0

Ak x−1+ k+1
q

(−1 + k+1
q )!

C + εI
1
q
x0F (x), (4.16)
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where

I
1
q
x0F (x) =

x∫
x0

(x− t)
1
q−1

( 1q − 1)!
F (t)dt, (4.17)

2q−1∑
k=0

Ak x
−1+ k+1

q

0

(−1 + k+1
q )!

−

(
2q−1∑
k=0

Ak l−1+ k+1
q

(−1 + k+1
q )!

)C = ε

l∫
x0

(l − t)
1
q−1

( 1q − 1)!
F (t)dt. (4.18)

If

∆ = det

2q−1∑
k=0

Ak x
−1+ k+1

q

0 − l−1+ k+1
q

(−1 + k+1
q )!

̸= 0, (4.19)

then from the system (4.18) we obtain:

C = ε

2q−1∑
k=0

Ak x
−1+ k+1

q

0 − l−1+ k+1
q

(−1 + k+1
q )!

−1 l∫
x0

(l − t)
1
q−1

( 1q − 1)!
F (t)dt, (4.20)

and from (4.16) we have

z(x) = ε

(
2q−1∑
k=0

Ak x−1+ k+1
q

(−1 + k+1
q )!

)
×

2q−1∑
k=0

Ak x
−1+ k+1

q

0 − l−1+ k+1
q

(−1 + k+1
q )!

−1 l∫
x0

(l − t)
1
q−1

( 1q − 1)!
F (t)dt, (4.21)

these are solutions to the boundary value problem (4.15).
Example 2. Let consider the classical boundary value problem:

y′′(x) = εf(x), (4.22)

y(x0) = x(l), y′(x0) = y′(l). (4.23)

The solution to the problem (4.22), (4.23) has the form:

y(x) = c0 +
εx

l − x0

l∫
x0

tf(t)dt+ ε

x∫
x0

(x− t)f(t)dt, (4.24)

D
1
q y(x)|x=x0

= D
1
q y(x)|x=l ,

where 1/q - order derivatives, f(x) can also be periodic.
But in fact from

c0
x
− 1

q

0

(−1
q )!

+
ε

l − x0

l∫
x0

tf(t)dt
x
1− 1

q

0

(1− 1
q )!

+ εD
1
q

x∫
x0

(x− t)f(t)dt|x=x0

we get

c0
l−

1
q

(−1
q )!

+
ε

l − x0

l∫
x0

tf(t)dt
l1−

1
q

(1− 1
q )!

+ εD
1
q

x∫
x0

(x− t)f(t)dt|x=l ,
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i.e. solution to the boundary value problem (4.22)-(4.23) does not satisfy the boundary condition (4.24).

5. Conclusion

The asymptotic solution of the oscillatory system with liquid dampers for a sufficiently large head mass is given.
It is shown that the obtained solution does not satisfy the boundary condition of the similar classical problem.
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[1] R. S. Adıguzel, Ü. Aksoy, E. Karapınar, and İ. M. Erhan, On the solutions of fractional differential equations via
geraghty type hybrid contractions, Appl. Comput. Math., 20(2) (2021), 313–333.

[2] F. A. Aliev, N. A. Aliev, and N. S. Hajiyeva, Some mathematical problems and their solutions for the oscil-
lating systems with liquid dampers (Survey), 8th International Congress on Fundamental and Applied Sciences
(ICFAS2021), Proceeding Book, (2021), 179–180.

[3] F. A. Aliev, N. A. Aliev, N. S. Hajiyeva, and N. I. Mahmudov, Some mathematical problems and their solutions
for the oscillating systems with liquid dampers: A review, Appl. Comput. Math., 20(3) (2021), 339–365.

[4] F. A. Aliev, N. A. Aliev, M. M. Mutallimov, and A. A. Namazov, Algorithm for solving the identification problem
for determining the fractional-order derivative of an oscillatory system, Appl. Comput. Math., 19(3) (2020),
415–422.

[5] F. A. Aliev, N. A. Aliev, N. A. Safarova, and Y. V. Mamedova, Solution of the problem of analytical construc-
tion of optimal regulators for a fractional order oscillatory system in the general case, Journal of Applied and
Computational Mechanics, 7(2) (2021), 970–976.

[6] F. A. Aliev, N. A. Aliev, N. A. Safarova, and N. I. Velieva, Algorithm for solving the Cauchy problem for
stationary systems of fractional order linear ordinary differential equations, Comput. Methods Differ. Equ., 8(1)
(2020), 212–221.

[7] E. Ashpazzadeh, M. Lakestani, and A. Fatholahzadeh, Spectral methods combined with operational matrices for
fractional optimal control problems: A review, Appl. Comput. Math., 20(2) (2021), 209–235.

[8] S. Balaei, E. Eslami, and A. Borumand Saeid, Invertible square matrices over residuated lattices, TWMS J. Pure
Appl. Math., 11(2) (2020), 173–188.

[9] R. E. Bellman, Introduction to matrix analysis, New York, 1970, 391 p.
[10] B. Bonilla, M. Rivero, and J. J. Trujillor, On systems of linear fractional differential equations with constant

coefficients, Appl. Math. Comput., 187 (2007), 68–78.
[11] S. Khan, S. A. Wani, and M. Riyasat, Study of generalized Legendre-Appell polynomials via fractional operators,

TWMS J. Pure Appl. Math., 11(2) (2020), 144–156.
[12] N. I. Mahmudov, I. T. Huseynov, N. A. Aliev, and F. A. Aliev, Analytical approach to a class of Bagley-Torvik

equations, TWMS J. Pure Appl. Math., 11(2) (2020), 238–258.
[13] A. Kh. Mirzadjanzadeh, I. M. Akhmetov, A. M. Khasaev, and V. I. Gusev, Technology and technique of oil

production, Moscow, Nedra, 1986.
[14] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, and V. Feliu, Fractional-order systems and controls. Funda-

mentals and applications, Springer, London, 2010, 414 p.
[15] M. M. Mutallimov and F. A. Aliev, Methods for solving optimization problems during the operation of oil wells,,

Saarbrucken (Deutscland), LAP LAMBERT, 2012, 164 p.
[16] A. A. Namazov, Computational algorithm for determining the order of fractional derivatives of oscillatory systems,

Proceedings of IAM, 8(2) (2019), 202-210.
[17] Z. Odibat, Fractional power series solutions of fractional differential equations by using generalized taylor series,

Appl. Comput. Math., 19(1) (2020), 47–58.



1130 REFERENCES

[18] A. Ozyapici and T. Karanfiller, New integral operator for solutions of differential equations, TWMS J. Pure Appl.
Math., 11(2) (2020), 131–143.

[19] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives: theory and applications,
Gordon and Breach Science Publishers, 1993, 750 p.

[20] E. Set, A. O. Akdemir, and F. Ozata, Gruss type inequalities for fractional integral operator involving the extended
generalized Mittag-Leffler function, Appl. Comput. Math., 19(3) (2020), 402–414.

[21] V. I. Shurov, Technology and technique of oil production, Moscow, Nedra(in Russian), 1983, 510 p.
[22] T. Tunc, M. Z. Sarikaya, and H. Yaldiz, Fractional Hermite Hadamards type inequality for the co-ordinated convex

functions, 11(1) (2020), 3–29.


	1. Introduction
	2.  Problem statement
	3.  Construction of the zero approximation
	4.  First approximation
	5. Conclusion
	Aknowlegment
	References

