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Abstract

This paper generated the novel approach called the Clique polynomial method (CPM) using the clique polynomials
raised in graph theory. Nonlinear initial value problems are converted into nonlinear algebraic equations by

discretion with suitable grid points in the current approach. We solved highly nonlinear initial value problems
using the Homotopy analysis method (HAM) and Clique polynomial method (CPM). Obtained results reveal that
the present technique is better than HAM that is discussed through tables and simulations. Convergence analysis

is reflected in terms of theorems.
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1. Introduction

Many real-life situations are modelled into non-linear ordinary differential equations (ODEs) in scientific engineering
and their applications. Characterization of these equations is done by their exact solutions, but we cannot anticipate
the precise solution for all modelled equations with nonlinear terms. Also, we won’t find the general scheme that
works on the above said equations and regularly each type of equation has to be considered a separate problem. Then
we take a look at fascinating semi-analytical and numerical methods. Here we are studying the nonlinear equations
through HAM and CPM (newly generated method). Numerical techniques can learn these equations. Also, we can
validate the proposed numerical techniques through the analytic solution of non-linear ODEs. Consequently, many
mathematicians are working on numerical techniques to solve such non-linear ODEs. One such equation is of the form:

dnθ(t)

dtn
= f

(
t, θ,

dθ(t)

dt
, · · · , d

n−1θ(t)

dtn−1

)
(1.1)

with the following physical conditions,

dk−1θ(a)

dtk−1
= bk, k = 1, 2, · · · , n. (1.2)

Where, f
(
t, θ, dθ(t)dt , · · · ,

dn−1θ(t)
dtn−1

)
is the non-linear term. a and bk are any real constants. Many mathematicians

contributed numerous techniques as follows: HAM on different problems [1-5,7,9,12-17], Hermite wavelets method
[19], wavelet series collocation method [18], a new approach for KG-equation [10,11]. This study generated a new
CPM technique through clique polynomials of the complete graph and solved (1.1) by HAM and CPM. HAM is a
semi-analytical method, it is the most acceptable method to solve linear and nonlinear ODEs. We have solved some
of the linear and nonlinear ordinary differential equations using HAM in the present study. The obtained results are
compared with the CPM. The proposed technique is simple, no modifications are required in the given problems, and
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numerical implementation is straightforward. Our literature survey has not found any research article on nonlinear
ODEs through a complete graph of clique polynomials. This impetus us to propose the clique polynomials method
for the higher-order ODEs and the current technique’s proficiency through tables and graph simulation.

2. Preliminaries of Clique polynomials and some results

Let G be a graph that is free from multi edges and loops. Clique polynomials and related work of graph is introduced
by Hoede et al. [6,8]. Clique polynomial of a graph G, denoted by h(G; t), is characterized by,

h(G; t) =

n∑
k=0

ak t
k,

where ak represents the total distinct k-cliques in graph of size k, with a0 = 1. For example, Here we considered a
complete graph with four vertices as follows:

Figure 1. Complete Graph with 4 vertices (K4)

By the definition of clique polynomial of G concerning Figure.1 we get,

h(K4; t) = a0 + a1 t+ a2 t
2 + a3 t

3 + a4 t
4.

a1 indicates the total number of distinct 1-cliques in K4 of size 1, therefore, a1 = 4. a2 = 6 indicates the total number
of distinct 2-cliques in K4. a3 = 4 indicates the total number of distinct 3-cliques in K4. a4 = 1 indicates the total
number of distinct 4-cliques in K4. Hence the required clique polynomial for K4 is,

h(K4; t) = (1 + t)4.

In general, the clique polynomial of a complete graph Kn with n vertices is given by,

h(Kn; t) = (1 + t)n.

Theorem 2.1. Let h(Kn; t) be the clique polynomials of the n − 1 regular Graph. Then h(Kn; t) are continuous
uniformly on [0, 1].

Theorem 2.2. Let clique polynomials h(Kn; t) of the n − 1 regular graph defined on [0, 1] are integrable continuous
functions. Then integral of these polynomials is continuous on [0, 1] and bounded variation on [0, 1].
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Let C = {hn(t) = h(Kn; t) | h(Kn; t) be the clique polynomials for Kn, n ∈ N and h(K0; t) = 1}. C is Banach
space on closed subset A of R with norm given by,

‖hn‖ = Sup
∀ t∈A

|hn(t)|, ∀hn ∈ C(A).

Hence the Banach space is mathematically denoted as C(A).

Remark 2.3. Clique polynomials are continuous functions in [a, b]. Therefore, clique polynomials are members of
C([a, b]).

Theorem 2.4. Let hn be the sequence of continuous functions in C([a, b]) and converge to the function h in C([a, b])
uniformly on t in [a, b]. Then h is a continuous function in C([a, b]).

Proof. By data hn(t) uniformly converges to h(t). Take ε > 0 be an arbitrary real number then,

‖hn(t)− h(t)‖ < ε

3
, ∀ t ∈ [a, b].

Since each hm(t) is continuous in C([a, b]) in t ∈ [a, b], then there exists δ > 0, such that ‖hn(t0)− hn(t)‖ < ε
3 ,

whenever ‖t0 − t‖ < δ ,∀t0 , t ∈ [a, b]. By Minkowski Inequality, we have

‖h(t0)− h(t)‖ = ‖h(t0)− hm(t0) + hm(t0) + hm(t)− hm(t)− h(t)‖
≤ ‖h(t0)− hm(t0)‖+ ‖hm(t)− h(t)‖+ ‖hm(t0)− hm(t)‖

<
ε

3
+
ε

3
+
ε

3
= ε, where ‖t0 − t‖ < δ, with t0 , t ∈ [a, b].

Hence h is continuous in C([a, b]). �

Theorem 2.5. Let the sequence of functions hn, ∀n ∈ N converges in C([a, b]) uniformly in t ∈ [a, b]. Then there is
a function h continuous in C([a, b]).

Proof. Riesz-Fischer theorem says that “If a sequence of functions fk, k ∈ N in L2(R) converges in itself in L2(R),
then there is a function f ∈ L2(R) such that

‖fk − f‖ −→ 0 as k −→∞ (2.1)

the function f is unique within the set whose measure is zero”. Next, it is possible to choose a subsequence {hni
(t)},

i = 1, 2, 3, · · · such that,∥∥hni+1
(t)− hni

(t)
∥∥ < 1

2i
,∀ t ∈ [a, b]. (2.2)

But from (2.1),

h(t) = lim
i−→∞

hni = hni + (hni+1 − hni) + (hni+2 − hni+1) + · · · (2.3)

From (2.2) and (2.3),consider

‖h− hni
‖ ≤

∥∥hni+1
− hni

∥∥+
∥∥hni+2

− hni+1

∥∥+ · · ·

<
1

2i
+

1

2i+1
+ · · · = 1

2i−1
, i = 1, 2, 3, · · · .

This implies that subsequence {hni} converges to h in C([a, b]) uniformly on t in [a, b]. By theorem (2.4), the function
h is continuous in C([a, b]) in t on [a, b]. Hence proof is completed �
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3. Methods

3.1. Clique Polynomial Method. Consider the nonlinear higher-order ordinary differential equation is of the form:

dnθ(t)

dtn
= f

(
t, θ,

dθ(t)

dt
, · · · , d

n−1θ(t)

dtn−1

)
(3.1)

with the following conditions,

dk−1θ(a)

dtk−1
= bk, k = 1, 2, · · · , n. (3.2)

Here, a and bk are any arbitrary constants. Assume higher-order derivative by Clique polynomials is as follows:

dnθ(t)

dtn
=

k∑
i=1

ai h(Ki; t), (3.3)

integrate (3.3) with variable t and limit from a to t.

dn−1θ(t)

dtn−1
=
dn−1θ(a)

dtn−1
+

∫ t

a

k∑
i=1

ai h(Ki; t) dt (3.4)

dn−1θ(t)

dtn−1
= bn +

∫ t

a

k∑
i=1

ai h(Ki; t) dt. (3.5)

Continuing this procedure up to (n− 1) times we get,

dn−2θ(t)
dtn−2 = bn−1 + t bn +

∫ t
a

∫ t
a

k∑
i=1

ai h(Ki; t) dt dt

...

θ(t) = b1 + t b2 + t2 b3 + · · ·+ tn−1

(n−1)!bn +
∫ t
a
· · ·
∫ t
a

k∑
i=1

ai h(Ki; t) dt · · · dt

(3.6)

Fit (3.6), (3.5), (3.3) in (3.1)and discrete the obtained equation by given grid points,

ti =
2i− 1

2n
, i = 1, 2, · · · , n. (3.7)

This procedure yields a system containing n-algebraic equations. Solving this system with a suitable solver provides
Clique polynomials with unknown coefficient values. Fit these values in θ(t), that gives clique polynomial numerical
solutions.

3.2. Homotopy Analysis Method. HAM is a semi-analytical technique to solve differential equations (ODE’s,
PDE’s and differential equations having fractional orders). Unlike Perturbation methods that depend on small or
large parameters, HAM is independent of these parameters. We have great liberty to opt for the auxiliary function,
linear operator, and control convergence parameter. Usually, this method solves the differential equations having high
nonlinearity (without large or small parameters). Explanations of HAM and convergence can be seen in the following
references [15-17].

4. Applications

Example 4.1. Consider the first-order non-linear problem;

θθ′ − t = 0, θ(0) = 1. (4.1)
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The exact solution is θ =
√
t2 + 1. HAM and CPM are applied to equation (4.1), the obtained results are expressed

in tables and graphs. Here, the absolute error (AE) of CPM is better than the absolute error of HAM. Figure 3
and Table 1 represent the geometrical and numerical analysis of example 4.1, respectively. Figure 4 reflects the error
analysis through graphs.

To solve the equation (4.1) by HAM, assume that,

θ0(t) = 1, L =
d

dt
with the property that L[c1] = 0 and H(t) = 1 (4.2)

we construct a zero-order deformation equation as,

(1− q)L[Φ(t; q)− θ0(t)] = q hH(t)N [Φ(t; q)] (4.3)

with the following condition,

Φ(0; q) = 1. (4.4)

Here, Φ(t; q) is the solution. Differentiating m times (4.3) and (4.4) concerning the embedding parameter q and then
dividing by m! finally set q = 0, we get mth-order deformation equation,

L[θm(t)− χmθm−1(t)] = hH(t)
−→
Rm(θm−1) (4.5)

with the following condition,

θm(0) = 0. (4.6)

Here,

χm =

{
0 when m ≤ 1,

1 otherwise,

and

−→
Rm(θm−1) =

m−1∑
j=1

θj θ
′

m−1−j − t(1− χm). (4.7)

Using (4.2) and (4.7) in (4.5), we get,

θm(t) = χmθm−1(t) + h

t∫
0

(m−1∑
j=1

θj θ
′

m−1−j − t(1− χm)
)
dt+ c1, m ≥ 1. (4.8)

The integral constant c1 is determined by condition (4.6). Thus, we successively obtain,

θ1(t) = −ht
2

2

θ2(t) = −ht
2

2
− h2t2

2

θ3(t) = −ht
2

2
− h2t2

2
+ h
(1

2
(−h− h2)t2 +

h2t4

8

)
...

The mth-order approximation can be expressed as,

θ(t) ≈
m∑
j=0

θj(t). (4.9)

From Figure 2, we obtained a value of h = −1. Thus, the solution series for (4.1) is,

θ(t) = 1 +
t2

2
− t4

8
+
t6

16
− 5t8

128
+

7t10

256
− 21t12

1024
+

33t14

2048
− 429t16

32768
+ · · · (4.10)



CMDE Vol. 10, No. 3, 2022, pp. 774-788 779

order=2

order=4

order=6

order=8

-4 -3 -2 -1 0 1 2

-4

-2

0

2

4

h

''
(0
)

Figure 2. Graph of θ′′(0) verses h
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Figure 3. Graphical representation of Exact, HAM, and CPM solution, for example 4.1.

Table 1. Comparison between HAM and CPM, absolute errors (AE) with Exact Solution, for ex-
ample 4.1.

x Exact Solution AE by HAM (65th approximation) AE by CPM at n=20
0 1 0 0

0.1 1.004988 0 3.1623× 10−21

0.2 1.019804 0 3.5777× 10−20

0.3 1.0440307 4.440892× 10−16 1.4789× 10−19

0.4 1.077033 2.220446× 10−16 4.0477× 10−19

0.5 1.118034 0 8.8388× 10−19

0.6 1.166190 2.220446× 10−16 1.6731× 10−18

0.7 1.220656 2.886579× 10−14 2.8697× 10−18

0.8 1.280625 2.294531× 10−10 4.5795× 10−18

0.9 1.345362 6.271076× 10−7 6.9159× 10−18

1.0 1.414214 0.0007354 1.0065× 10−17

Example 4.2. Consider the first-order problem of the form;

θ′ + θθ′ − t = 0, θ(0) = 1.
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Figure 4. Error analysis for the HAM and CPM, for example 4.1.

Table 2. Comparison between HAM and CPM absolute errors (AE) with Exact Solution, for example 4.2.

x Exact Solution AE by HAM (25th approximation) AE by CPM at n=20
0 1 0 0

0.1 1.002498 2.220446× 10−16 4.2320× 10−18

0.2 1.009975 0 4.2000× 10−18

0.3 1.022375 0 4.1461× 10−18

0.4 1.039608 0 4.0694× 10−18

0.5 1.061553 0 3.9686× 10−17

0.6 1.088061 0 3.8419× 10−17

0.7 1.118962 1.998401× 10−15 3.6865× 10−17

0.8 1.154066 6.949996× 10−14 3.4986× 10−16

0.9 1.193171 1.825651× 10−12 3.2726× 10−16

1.0 1.236068 3.367262× 10−11 4.5300× 10−15

The exact solution is θ = −1 +
√
t2 + 4. From Figure 6, we can observe that the absolute error (AE) of CPM is

better when compared with the AE of HAM. Figure 5 shows the graphical representation of the CPM, HAM, and
exact solution. To solve example 4.2 by HAM, let us consider the following initial guess, linear operator and auxiliary
function: θ0(t) = 1, L = d

dt with the property that L[c1] = 0 and H(t) = 1.
The approximations are:

θ1(t) = −ht
2

2
,

θ2(t) = −ht
2

2
− h2t2,

θ3(t) = −ht
2

2
− 2h2t2 − 2h3t2 +

h3t4

8
,

...

By taking h = − 1
2 . Thus, the solution series for example 4.2 is,

θ(t) = 1 +
t2

4
− t4

64
+

t6

512
− 5t8

16384
+

7t10

131072
− 21t12

2097152
+

33t14

16777216
− 429t16

1073741824
+ · · ·

Example 4.3. Consider the first-order non-linear initial value problem of the form;

θ′ = θ2, θ(0) = 1.
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Figure 5. Graphical representation of Exact, HAM, and CPM solution, for example 4.2.
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Figure 6. Error analysis for the HAM and CPM, for example 4.2.

The exact solution is θ = 1
1−t . A numerical comparison of these two different methods is drawn in Table 3. Figures

7 and 8 represents the graphical comparison and absolute errors of these two methods, respectively. To solve example
4.3 by HAM, let us consider the following initial guess, linear operator and auxiliary function: θ0(t) = 1, L = d

dt with
the property that L[c1] = 0 and H(t) = 1.

The approximations of the solution,

θ1(t) = −ht,
θ2(t) = −ht− h2t+ h2t2,

θ3(t) = −ht− 2h2t− h3t+ 2h2t2 + 2h3t2 − h3t3,

...

By taking h = −1. Thus, the solution series for example 4.3 is,

θ(t) = 1 + t+ t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 + t10 + t11 + t12 + t13 + · · ·
From Table 3, it is clear that the absolute error in CPM is reasonable compared to the absolute error in HAM.

Example 4.4. Consider the first-order non-linear initial value problem of the form;

θ′ = −θ + θ2, θ(0) = 4.

The exact solution is θ = − 1
exp (t+ln 3

4 )−1
, t < ln 4

3 . We solved this problem by HAM and CPM and discussed the

obtained results in the table and graphs. For HAM solution, assume θ0(t) = 4, L = d
dt with the property that L[c1] = 0
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Figure 7. Graphical representation of Exact, HAM, and CPM solution, for example 4.3

Table 3. Comparison between HAM and CPM absolute errors (AE) with Exact Solution, for example 4.3.

x Exact Solution AE by HAM (65th approximation) AE by CPM n=20
0 1 0 4.4409× 10−16

0.1 1.111111 2.220446× 10−16 6.6613× 10−16

0.2 1.250000 2.220446× 10−16 6.6613× 10−16

0.3 1.428571 2.220446× 10−16 8.8818× 10−16

0.4 1.666667 0 1.3323× 10−15

0.5 2.000000 0 1.7764× 10−15

0.6 2.500000 6.217249× 10−15 3.1086× 10−15

0.7 3.333333 1.992277× 10−10 5.3291× 10−15

0.8 5.000000 2.008673× 10−6 1.0658× 10−14

0.9 10.00000 0.0095500 4.4409× 10−14
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Figure 8. Error analysis for the HAM and CPM, for example 4.3.

and H(t) = 1. The approximations are:

θ1(t) = −12ht,

θ2(t) = −12ht− 12h2t+ 42h2t2,

θ3(t) = −12ht− 24h2t− 12h3t+ 84h2t2 + 84h3t2 − 146h3t3,

...
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Figure 9. Graphical representation of Exact, HAM, and CPM solution for example 4.4
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Figure 10. Error analysis for the HAM and CPM, for example 4.4.

By taking h = −1, thus, HAM solution is,

θ(t) = 4 + 12t+ 42t2 + 146t3 +
1015t4

2
+

17641t5

10
+

367927t6

60
+

8952553t7

420
+

7113053t8

96
+

7788499561t9

30240
+ · · ·

From Table 4, one can observe that the absolute error in CPM is better than the absolute error in HAM.

Example 4.5. Consider the second-order non-linear initial value problem of the form;

θ′′(t) + e−2θ(t) = 0, θ(0) = 0, θ′(0) = 1

The exact solution is θ(t) = log(1 + t). The HAM and CPM are applied to this problem, and the obtained results
are discussed in the table and graphs. Using the transformation u = e2θ, example 4.5 becomes,

uu′′ − u′2 + 2u = 0, u(0) = 1, u′(0) = 2. (4.11)
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Table 4. Comparison between HAM and CPM absolute errors (AE) with Exact Solution, for example 4.4.

x Exact Solution AE by HAM (40th approximation) AE by CPM n=20
0.1 5.84379 1.776357× 10−15 3.4100× 10−18

0.11 6.142829 8.881784× 10−16 1.3640× 10−17

0.12 6.477634 2.664535× 10−15 3.0690× 10−17

0.13 6.855009 3.996803× 10−14 5.4560× 10−17

0.14 7.283605 1.018741× 10−12 8.5250× 10−17

0.15 7.774579 1.842259× 10−11 1.2276× 10−16

0.16 8.342590 2.801315× 10−10 1.6709× 10−16

0.17 9.007276 3.649804× 10−9 2.1824× 10−16

0.18 9.795568670 4.155321× 10−8 2.7621× 10−16

0.19 10.74543191 4.203955× 10−7 3.4100× 10−16

0.20 11.91214582 0.000003836 3.4100× 10−18
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Figure 11. Graphical representation of Exact, HAM, and CPM solution, for example 4.5.

Assume, u0(t) = 2t+ 1, L = d2

dt2 with the property that L[c1 + c2t] = 0 and H(t) = 1. The approximations of (4.11)
are:

u1(t) = −ht2 +
2ht3

3
,

u2(t) = −ht2 − h2t2 +
2ht3

3
+

4h2t3

3
− h2t4

6
+
h2t5

15
,

u3(t) = −ht2 − 2h2t2 − h3t2 +
2ht3

3
+

8h2t3

3
+ 2h3t3 − h2t4

3
− h3t4

2
+

2h2t5

15
+

4h3t5

15

− h3t6

90
+
h3t7

315
,

...

Thus the HAM solution is given by,

u(t) = 1 + 2t− 20
(
− t2 +

2t3

3

)
− 19(0 + t2 − 1.33333t3 + 0.166667t4 − 0.06667t5)− · · ·

From Table 5, it is clear that the absolute errors in CPM are reasonable compared to the absolute errors in HAM
for 0 ≤ t ≤ 1.
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Figure 12. Error analysis for the HAM and CPM, for example 4.5.

Table 5. Comparison between HAM and CPM absolute errors (AE) with Exact Solution, for example 4.5.

x Exact Solution AE by HAM (20th approximation) AE by CPM n=20
0.1 0.095310 8.3266× 10−17 3.4100× 10−19

0.2 0.182322 5.5511× 10−17 2.7280× 10−18

0.3 0.262364 0 9.2070× 10−18

0.4 0.336472 0 2.1824× 10−17

0.5 0.405465 1.1102× 10−16 4.2625× 10−17

0.6 0.470004 5.5511× 10−17 7.3656× 10−17

0.7 0.530628 1.1102× 10−16 1.1696× 10−16

0.8 0.587787 0 1.7459× 10−16

0.9 0.641854 3.3306× 10−16 2.4859× 10−16

1.0 0.693147 4.4408× 10−16 3.4100× 10−16

Example 4.6. Consider the third-order linear initial value problem of the form;

θ′′′(t) + θ = 0, θ(0) = 1, θ′(0) = −1, θ′′(0) = 1.

The exact solution is θ = e−t. On increasing values of n, the accuracy in the solution also increases that can be seen

in Table 6. Figure 14 shows that absolute error by CPM is better than AE by HAM. Let us consider, θ0(t) = 1−t+ t2

2 ,

L = d3

dt3 with the property that L[c1 + c2t+ c3t
2] = 0 and H(t) = 1.

The approximations are:

θ1(t) =
ht3

6
− ht4

24
+
ht5

120
,

θ2(t) =
ht3

6
+
h2t3

6
− ht4

24
− h2t4

24
+
ht5

120
+
h2t5

120
+
h2t6

720
− h2t7

5040
+

h2t8

40320
,

θ3(t) =
ht3

6
+
h2t3

3
+
h3t3

6
− ht4

24
− h2t4

12
− h3t4

24
+
ht5

120
+
h2t5

60
+
h3t5

120

+
h2t6

360
+
h3t6

360
− h2t7

2520
− h3t7

2520
+

h2t8

20160
+

h3t8

20160

+
h3t9

362880
− h3t10

3628800
+

h3t11

39916800
,

...

By taking h = −1, the HAM is given by,

θ(t) = 1− t+
t2

2
− t3

6
+
t4

24
− t5

120
+ · · ·
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Figure 13. Graphical representation of Exact, HAM, and CPM solution, for example 4.6.
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Figure 14. Error analysis for the HAM and CPM, for example 4.6.

Table 6. Comparison between HAM and CPM absolute errors (AE) with Exact Solution, for example 4.6.

x Exact Solution AE by HAM (25th approximation) AE by CPM n=25
0 1 0 0

0.1 0.904837 1.1102× 10−16 0
0.2 0.818731 2.2204× 10−16 0
0.3 0.740818 0 0
0.4 0.670320 1.1102× 10−16 8.7296× 10−29

0.5 0.606531 0 0
0.6 0.548812 0 0
0.7 0.496585 5.5511× 10−17 0
0.8 0.449329 0 0
0.9 0.406569 0 0
1.0 0.367879 0 0

5. Conclusion

This paper developed a new approach for initial value problems through clique polynomials of the complete graph.
In this approach, given ODE is transformed into a system of algebraic equations via discrete grid points. We solved six
examples with different orders using HAM and CPM. The obtained results from both methods are compared through
tables and graphs. This study reveals that CPM yields better results, consumes significantly less time than HAM,
and it is straightforward. Also, we discussed some theorems with proof on clique polynomials.
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