
Research Paper
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 10, No. 3, 2022, pp. 799-815
DOI:10.22034/CMDE.2021.45950.1927

Two explicit and implicit finite difference schemes for time fractional Riesz space diffusion
equation

Zeynab Abdollahy1, Yaghoub Mahmoudi1,∗, Ali Salimi Shamloo2, and Mahdi Baghmisheh1

1Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

2Department of Mathematics, Shabestar Branch, Islamic Azad University, Shabestar, Iran.

Abstract

In this study, one explicit and one implicit finite difference scheme is introduced for the numerical solution of

time-fractional Riesz space diffusion equation. The time derivative is approximated by the standard Grünwald
Letnikov formula of order one, while the Riesz space derivative is discretized by Fourier transform-based algorithm

of order four. The stability and convergence of the proposed methods are studied. It is proved that the implicit

scheme is unconditionally stable, while the explicit scheme is stable conditionally. Some examples are solved to
illustrate the efficiency and accuracy of the proposed methods. Numerical results confirm that the accuracy of

present schemes is of order one.

Keywords. Fractional derivatives, Fractional diffusion equation, Riesz fractional derivative, Finite differences.

2010 Mathematics Subject Classification. 34A08, 44A10.

1. Introduction

During the last decades, the theory of fractional differential equations has been introduced and developed to
solve enormous problems in all branches of science and technology such as physics, mathematics, biology, economics,
engineering, and other fields [7, 14, 16]. The analytical solution can not be obtained for most fractional differential
equations. So it is important to develop numerical algorithms for solving these equations. Du to the importance
of fractional differential equations, fractional finite difference methods were introduced firstly in [12] and latter was
developed by others [6, 8, 15].

In this study, we consider the following diffusion equation of fractional type involving Riesz space derivative

CDβ
0,tu (x, t) = η

∂αu (x, t)

∂ |x|α + g (x, t) ,

0 < β ≤ 1, 1 <α < 2, a ≤ x ≤ b, 0 ≤ t ≤ T,
(1.1)

subject to the initial and boundary conditions{
u (x, 0) = φ (x) , a ≤ x ≤ b,
u (a, t) = u (b, t) = 0, 0 ≤ t ≤ T, (1.2)

where η > 0 is a constant coefficient, g(x, t) and φ(x) are sufficiently smooth functions, and ∂α

∂|x|α represents the Riesz

fractional derivative (1 < α < 2), which was defined in [19] as follows

∂α

∂ |x|αu (x, t) = cα
(
RLDα

a,x + RLDα
x,b

)
u(x, t),
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where cα = − 1

2cos(απ2 )
. RLa Dα

xu(x, t) and RL
x Dα

b u(x, t) denote the right and left Riemann-Liouville fractional derivatives

of order α for u(x, t) respectively.
The analytical solution of Riesz space, time-fractional differential equation (1.1), was studied by Zhang and Liu

[20]. Chen et al. [1] used the Laplace and Fourier transform methods to obtain a solution for the space Riesz fractional
reaction dispersion equation. Later authors in [17] introduced two implicit and explicit methods for the Riesz time
Caputo fractional equation. They also proposed a novel numerical scheme for the Riesz-space fractional advection-
dispersion equation in [18]. Din et al. [4] developed a fourth-order numerical algorithm for Riesz fractional derivative
and applied it for Riesz space diffusion equation with fractional derivative. A novel meshless space-time backward
substitution method was introduced by authors in [11]. Lin et al. [10] used a semi-analytical method for solving a
class of time-fractional partial differential equations with variable coefficients. A homogenization function method was
studied by [9] for the inverse source problem of the nonlinear time-fractional wave equation.

Most of the available methods have a lot of computational complexity. In this study, we introduce a simple method
to solve the time-fractional Riesz space diffusion equation (1.1). We apply the first-order standard Grünwald Letnikov
formula for Caputo fractional derivative to discretize (1.1) along the time axis. Then, the fourth-order numerical
algorithm based on Fourier transform method [4] is used for approximating the Riesz derivative on each time step.
We introduce two finite difference schemes to the numerical solution of time-fractional Riesz space diffusion equation
(1.1) and (1.2). We provide the stability analysis and convergence of the proposed methods. We show that the
order of convergence is O(τ), while τ is the uniform time step size. Due to the high accuracy of the Riesz derivative
approximation, it is not necessary to select a very small spatial step length, and this saves computational costs.

The rest of the paper is organized as follows: Some basic definitions of fractional calculus are presented in section
2. In section 3 the numerical algorithms for equation (1.1) and (1.2) are introduced. The stability and convergence of
the proposed methods are given in section 4. Section 5 is devoted to numerical illustrations. Finally, the conclusion
is provided in section 6.

2. Basic definitions

Some necessary definitions of fractional calculus are introduced in this section. Since the Riemann-Liouville and
the Caputo derivatives are often used, as well as the Riesz fractional derivative is defined based on left and right
Riemann-Liouville and Caputo derivatives, we focus on these definitions of fractional calculus. Furthermore in the
modeling of most physical problems, the initial conditions are given in integer order derivatives and the integer-order
derivatives coincide with Caputo initial conditions definition; therefore the Caputo derivative is often used in numerical
algorithms.

Definition 2.1. The left and right α order Riemann-Liouville integrals (α > 0) of a function f (x), on the interval
(a, b) are defined as follows [16]:

aJ
α
x f (t) = 1

Γ(α)

t

∫
a

f(s)

(t−s)1−α ds,

tJ
α
b f (t) = 1

Γ(α)

b

∫
t

f(s)

(s−t)1−α ds,

where Γ (z) =
∞
∫
0

e−ttz−1dt , z ∈ C is the Gamma function.

Definition 2.2. The left and right Riemann-Liouville derivatives of order α > 0 for a function f (x), defined on the
interval (a, b) are given as follows [16]:

RLDα
a,tf (t) = 1

Γ(m−α)
dm

dtm

t

∫
a

(t− s)m−α−1
f (s) ds,

RLDα
t,bf (t) = (−1)m

Γ(m−α)
dm

dtm

b

∫
t

(s− t)m−α−1
f (s) ds,
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where m− 1 < α ≤ m.

Definition 2.3. The left and right Caputo derivatives of order α, are defined as follows[16]:
CDα

a,tf (t) = 1
Γ(m−α)

t

∫
a

(t− s)m−α−1 dm

dsm f (s) ds, m− 1 < α ≤ m ,

CDα
t,bf (t) = (−1)m

Γ(m−α)

b

∫
t

(s− t)m−α−1 dm

dsm f (s) ds, m− 1 < α ≤ m.

From the Caputo derivative definitions we have{
CDα

a,tc = 0,
CDα

t,bc = 0,
(c is a constant) (2.1)

CDα
a,t(t− a)β =


0 β ∈ N0 and β < α

Γ(β+1)
Γ(β+1−α) (t− a)β−α β ∈ N0 and β ≥ α

or β /∈ N0

(2.2)

CDα
t,b(t− b)β =


0, β ∈ N0 and β < α

(−1)β Γ(β+1)
Γ(β+1−α) (b− t)β−α β ∈ N0 and β ≥ α

or β /∈ N0

(2.3)

There are relations between Riemann-Liouville derivatives and Caputo derivatives as follows

CDα
a,tf (t) = RLDα

a,tf (t)−
m−1∑
k=0

f (k) (a)

Γ (1 + k − α)
(t− a)

k−α
, (2.4)

CDα
t,bf (x) = RLDα

t,bf (t)−
m−1∑
k=0

f (k) (b)

Γ (1 + k − α)
(b− t)k−α . (2.5)

It is clear that if f (k) (a) = 0, k = 0, 1, ..,m − 1 then the left Riemann-Liouville derivative and the left Caputo
derivative are equivalent, likewise the right Riemann-Liouville derivative and the right Caputo derivative are equivalent
when f (k) (b) = 0, k = 0, 1, ..,m − 1. For comprehensive properties of fractional derivatives and integrals, one can
refer to the literature [13, 16].

Lemma 2.4. [16] If m− 1 < α < m, m ∈ N , then

CDα
a,tJ

α
a,tf (t) = f (t) ; (2.6)

Jαa,t
CDα

a,tf (t) = f (t)−
m−1∑
k=0

f (k) (a+)

k!
(t− a)k, t > 0. (2.7)

3. Method of Solution

Consider the fractional diffusion equation (1.1) and (1.2) with Riesz space derivative and Caputo fractional time
derivative.

Firstly, we set the points xi = a + ih, i = 0, 1, . . . ,M , and tn = nτ, n = 0, 1, . . . , N , where h = (b − a)/M and
τ = T/N , are the uniform spatial and temporal step lengths respectively, and M and N are integers. We use the
notation uni for u(xi, tn).
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3.1. Time discretization. If u(x, t) is suitably smooth function with respect to t, the Grünwald-Letnikov and Rie-

mann Liouville’s fractional derivatives are equivalent. Denoting w
(β)
k = (−1)k

(
β
k

)
, one gets

[
RLDβ

a,tu(x, t)
]

(x,t)=(xi,tn)
' 1

τβ

n∑
k=0

w
(β)
n−ku

k
i . (3.1)

The formula (3.1) is convergent of order one for any β > 0 (see [16]), and is referred to as the standard Grünwald
Letnikov formula. Formula (3.1) can be modified for approximating the Caputo fractional derivative as follows[

CDβ
a,tu(x, t)

]
(x,t)=(xi,tn)

' 1

τβ

n∑
k=0

w
(β)
n−k

(
uki − u0

i

)
, 0 < β < 1 (3.2)

which is still convergent of order one [16].

3.2. Spatial discretization. The authors in [4], constructed a new computational scheme for the Riesz fractional
derivative of order α (1 < α < 2), by using the Fourier transpose method as follows[

∂α

∂ |x|αu(x, t)

]
(xi,tn)

' α

24hα

m−1∑
k=−M+m+1

s
(α)
k unm−(k+1)

+
α

24hα

m−1∑
k=−M+m+1

s
(α)
k unm−(k−1)

−
(

1 +
α

12

) 1

hα

m−1∑
k=−M+m+1

s
(α)
k unm−k,

(3.3)

the scheme (3.3) is of order four, where

s
(α)
k =

(−1)kΓ(α+ 1)

Γ(α2 − k + 1)Γ(α2 + k + 1)
, k ∈ Z. (3.4)

3.3. Numerical Methods. In this part, we develop one explicit and one implicit scheme for numerical solution of
time fractional space Riesz diffusion equation (1.1) and (1.2).

Scheme 1: We discretize (1.1) as follows[
CDβ

0,tu(x, t)
]

(xi,tn)
= η

[
∂αu (x, t)

∂ |x|α
]

(xi,tn−1)

+ g(xi, tn−1). (3.5)

Substituting (3.2) and (3.3) in (3.5) yields

1

τβ

n∑
k=0

w
(β)
n−k(uki − u0

i ) = η

{
α

24hα

m−1∑
k=−M+m+1

s
(α)
k un−1

m−(k+1)

+
α

24hα

m−1∑
k=−M+m+1

s
(α)
k un−1

m−(k−1)

−
(

1 +
α

12

) 1

hα

m−1∑
k=−M+m+1

s
(α)
k un−1

m−k

}
+gn−1

i +O(τ + h4),

(3.6)
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where gn−1
i = g(xi, tn−1). After some simplifications and neglecting the truncation error, we obtain

Uni = βUn−1
i − 2τβ−1

{
−µ1

m−1∑
k=−M+m+1

s
(α)
k Un−1

m−(k+1)

−µ1

m−1∑
k=−M+m+1

s
(α)
k Un−1

m−(k−1) + µ2

m−1∑
k=−M+m+1

s
(α)
k Un−1

m−k

}

−
n−2∑
k=0

w
(β)
n−kU

k
i +

n∑
k=0

w
(β)
n−kU

0
i + τβgn−1

i ,

(3.7)

where µ1 = ατη
48hα , µ2 = τη

2hα

(
1 + α

12

)
and Uni is the approximation value for uni . Denoting

Uk = (Uk1 , U
k
2 , . . . , U

k
M−1)T ,

Fk = (gk1 , g
k
2 , . . . , g

k
M−1)T ,

the system (3.7) can be rewritten as the following matrix representation
U1 = AU0 + τβF0,

Un = BUn−1 −
n−2∑
k=1

w
(β)
n−kU

k +

n∑
k=1

w
(β)
n−kU

0 + τβFn−1, n > 1,
(3.8)

where A = (I− 2τβ−1H), B = (β I− 2τβ−1H), H = µ2G− µ1G
+ − µ1G

−, I is the identity matrix and

G =



s
(α)
0 s

(α)
−1 s

(α)
−2 . . . s

(α)
4−M s

(α)
3−M s

(α)
2−M

s
(α)
1 s

(α)
0 s

(α)
−1 s

(α)
−2 . . . s

(α)
4−M s

(α)
3−M

s
(α)
2 s

(α)
1 s

(α)
0 s

(α)
−1 s

(α)
−2 . . . s

(α)
4−M

...
. . .

. . .
. . .

. . .
. . .

...

s
(α)
M−4 . . . s

(α)
2 s

(α)
1 s

(α)
0 s

(α)
−1 s

(α)
−2

s
(α)
M−3 s

(α)
M−4 . . . s

(α)
2 s

(α)
1 s

(α)
0 s

(α)
−1

s
(α)
M−2 s

(α)
M−3 s

(α)
M−4 . . . s

(α)
2 s

(α)
1 s

(α)
0


,

G+ =



0 s
(α)
0 s

(α)
−1 . . . s

(α)
5−M s

(α)
4−M s

(α)
3−M

0 s
(α)
1 s

(α)
0 s

(α)
−1 . . . s

(α)
5−M s

(α)
4−M

0 s
(α)
2 s

(α)
1 s

(α)
0 s

(α)
−1 . . . s

(α)
5−M

...
. . .

. . .
. . .

. . .
. . .

...

0 . . . s
(α)
3 s

(α)
2 s

(α)
1 s

(α)
0 s

(α)
−1

0 s
(α)
M−3 . . . s

(α)
3 s

(α)
2 s

(α)
1 s

(α)
0

0 s
(α)
M−2 s

(α)
M−3 . . . s

(α)
3 s

(α)
2 s

(α)
1


,

G− =



s
(α)
−1 s

(α)
−2 s

(α)
−3 . . . s

(α)
3−M s

(α)
2−M 0

s
(α)
0 s

(α)
−1 s

(α)
−2 s

(α)
−3 . . . s

(α)
3−M 0

s
(α)
1 s

(α)
0 s

(α)
−1 s

(α)
−2 s

(α)
−3 . . . 0

...
. . .

. . .
. . .

. . .
. . .

...

s
(α)
M−5 . . . s

(α)
1 s

(α)
0 s

(α)
−1 s

(α)
−2 0

s
(α)
M−4 s

(α)
M−5 . . . s

(α)
1 s

(α)
0 s

(α)
−1 0

s
(α)
M−3 s

(α)
M−4 s

(α)
M−5 . . . s

(α)
1 s

(α)
0 0


.
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Scheme 2 : We discretize (1.1) as follows[
CDβ

0,tu(x, t)
]

(xi,tn)
= η

[
∂αu (x, t)

∂ |x|α
]

(xi,tn)

+ g(xi, tn). (3.9)

Substituting (3.2) and (3.3) in (3.9) yields

1

τβ

n∑
k=0

w
(β)
n−k(uki − u0

i ) = η

{
α

24hα

m−1∑
k=−M+m+1

s
(α)
k unm−(k+1)

+
α

24hα

m−1∑
k=−M+m+1

s
(α)
k unm−(k−1)

−
(

1 +
α

12

) 1

hα

m−1∑
k=−M+m+1

s
(α)
k unm−k

}
+gni +O(τ + h4).

(3.10)

After some simplifications and neglecting the truncation error, we get

Uni + 2τβ−1

{
−µ1

m−1∑
k=−M+m+1

s
(α)
k Unm−(k+1) − µ1

m−1∑
k=−M+m+1

s
(α)
k Unm−(k−1) + µ2

m−1∑
k=−M+m+1

s
(α)
k Unm−k

}

= −
n−1∑
k=0

w
(β)
n−kU

k
i +

n∑
k=0

w
(β)
n−kU

0
i + τβgni . (3.11)

The system (3.11) can be rewritten as follows
CU1 = U0 + τβF1,

CUn = −
n−1∑
k=1

w
(β)
n−kU

k +

n∑
k=1

w
(β)
n−k U0 + τβFn, n > 1,

(3.12)

where C = (I + 2τβ−1H) and H was defined in scheme 1.

4. Stability Analysis and Convergence Study

In this section, we perform the stability analysis and convergence study of the difference schemes (3.8) and (3.12).
We need the following theorems and lemmas.

Lemma 4.1. (Grünwall Lemma) Let c ≥ 0 and {φj}j≥1 and {vj}j≥1 be nonnegative sequences. If

φj ≤ c+

j−1∑
i=1

φivi, j ≥ 1,

then

φj ≤ c
j−1∏
i=1

(1 + vi) ≤ c exp

(
j−1∑
i=1

vi

)
.

Proof. We refer the proof to [5].
�
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Lemma 4.2. Let wβk = (−1)k
(
β
k

)
and 0 < β < 1 then

wβ0 = 1, wβ1 = −β, wβk < 0, k ≥ 1,

∞∑
k=0

wβk = 0, −
n∑
k=1

wβk < 1, n ∈ N.

Proof. We refer the proof to [2].
�

Theorem 4.3. The matrix H (defined in schemes (3.8) and (3.12)) is positive definite and

0 < λH ≤ maxx∈[0,2π]

{ ητ

12hα

[
6 + α sin2

(x
2

)] ∣∣∣2 sin2
(x

2

)∣∣∣α}
= ητ

12hα (6 + α)2α,
(4.1)

where λH denotes the eigenvalue of H.

Proof. We refer the detailed proof to [4].
�

Theorem 4.4. Let H be a positive definite matrix. Then for any parameter δ ≥ 0, the following statements hold.

‖(I + δH)−1‖∞ ≤ 1,
‖(I + δH)−1(I− δH)‖∞ ≤ 1.

(4.2)

Proof. We refer the detailed proof to [4].
�

Theorem 4.5. Let r = ητβ/hα and B = (βI− 2τβ−1H). Then ρ(B) < 1 if

r <
6(1 + β)

(6 + α)2α
. (4.3)

Proof. We provide the conditions that ρ(B) ≤ 1, where B is the iteration matrix of the difference scheme (3.8). Note
that ρ(B) is the spectral radius of matrix B. By the definition of B and (4.1) we have

λB = β − 2τβ−1λH.

Since 0 < λH ≤ ητ
12hα (6 + α)2α then

β − 1

6
r(6 + α)2α ≤ λB < β.

Now |λB| < 1 provides that r < 6(1+β)
(6+α)2α , and this completes the proof.

�

Theorem 4.6. Let the step lengths h and τ are chosen such that r = ητβ/hα < 6(1+β)
(6+α)2α , then the difference scheme

(3.8) is stable.

Proof. Let the vector Uk, (k = 0, 1, . . . , n) in (3.8) has perturbed by Ũ
k
, then the perturbed equation is as follows

Ũ
n

= BŨ
n−1 −

n−2∑
k=1

w
(β)
n−kŨ

k
+

n∑
k=1

w
(β)
n−kŨ

0
, (4.4)

then

‖Ũn‖ ≤ ‖B‖‖Ũn−1‖+

n−2∑
k=1

|w(β)
n−k| ‖Ũ

k‖+

∣∣∣∣∣
n∑
k=1

w
(β)
n−k

∣∣∣∣∣ ‖Ũ0‖. (4.5)
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By Grünwall’s Lemma 4.1 we conclude that

‖Ũn‖ ≤
∣∣∣∣∣
n∑
k=1

w
(β)
n−k

∣∣∣∣∣ ‖Ũ0‖ exp

(
‖B‖+

n−2∑
k=1

|w(β)
n−k|

)
≤ ‖Ũ0‖ exp (‖B‖+ 1) .

(4.6)

We know that for any ε > 0 there exists a matrix norm such that ‖B‖ < ρ(B) + ε. Since ρ(B) < 1 then by the
equivalence of norms, for any norm we conclude that ‖B‖ is a finite value. Also by Lemmas 4.1, 4.2 and Theorem 4.5
the right hand side in (4.6) is finite value and does not tend infinity as n→∞. This proves the stability of the finite
difference scheme (3.8).

�

Theorem 4.7. The difference scheme (3.12) is unconditionally stable.

Proof. The iteration matrix for scheme (3.12) is C−1 where C = (I+2τβ−1H) and it suffices to prove that ρ(C−1) < 1.
By the definition of matrix C and (4.1) we have

λC = 1 + 2τβ−1λH > 1 +
1

6
r(6 + α)2α.

Since λC > 1 then λC−1 < 1. This provides ρ(C−1) < 1, and then ‖C−1‖ is finite.
Now by (3.12)

Un = C−1Un−1 −
n−2∑
k=1

w
(β)
n−kC

−1Uk +

n∑
k=1

w
(β)
n−kC

−1U0 + τβC−1Fn. (4.7)

Let the vector Uk, (k = 0, 1, . . . , n) in (4.7) has perturbed by Ũ
k
, then the perturbed equation is as follows

Ũ
n

= C−1Ũ
n−1 −

n−2∑
k=1

w
(β)
n−kC

−1Ũ
k

+

n∑
k=1

w
(β)
n−kC

−1Ũ
0
, (4.8)

and then

‖Ũn‖ ≤ ‖C−1‖ ‖Ũn−1‖+

n−2∑
k=1

|w(β)
n−k|‖C−1‖ ‖Ũk‖

∣∣∣∣∣
n∑
k=1

w
(β)
n−k

∣∣∣∣∣ ‖C−1‖ ‖Ũ0‖. (4.9)

Now by Grünwall’s lemma we can write

‖Ũn‖ ≤
∣∣∣∣∣
n∑
k=1

w
(β)
n−k

∣∣∣∣∣ ‖C−1‖ ‖Ũ0‖ exp

[
‖C−1‖

(
1 +

n−2∑
k=1

|w(β)
n−k|

)]
≤ ‖C−1‖ ‖Ũ0‖ exp

(
2‖C−1‖

)
.

(4.10)

Lemmas 4.1, 4.2 show that the right hand side in (4.10) is finite and does not tend infinity as n → ∞. So the finite
difference scheme (3.12) is unconditionally stable. �

It is obvious that the local truncation error for both schemes is O(τ +h4). The following theorems give the conver-
gence properties for the difference schemes (3.8) and (3.12).

Theorem 4.8. The explicit finite difference scheme (3.8) for solving the fractional Riesz diffusion equation (1.1) is
convergent if

r <
6(1 + β)

(6 + α)2α
.
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Proof. Let Ukm be approximate value for ukm = u(xm, tk) and enm,k = ukm−Ukm be the error term at the n-th time level,

then with scheme (3.7) and (3.8), it is easy to get the matrix form of error equation as follows

En = BEn−1 −
n−2∑
k=1

w
(β)
n−kE

k +

n∑
k=1

w
(β)
n−kE

0 + c(τ1+β + τβh4), (4.11)

where Ek = [ek1 , e
k
2 , . . . , e

k
M−1]T and c is a constant. Then (4.11) can be rewritten as following form

‖En‖ ≤ ‖B‖ ‖En−1‖+

n−2∑
k=1

|w(β)
n−k|‖Ek‖+

∣∣∣∣∣
n∑
k=1

w
(β)
n−k

∣∣∣∣∣ ‖E0‖+ |c(τ1+β + τβh4)|. (4.12)

Now we use the Grünwall’s lemma and get

‖En‖ ≤ |c(τβ+1 + τβh4)| exp

(
‖B‖+

n−2∑
k=1

|w(β)
n−k|+

∣∣∣∣∣
n∑
k=1

w
(β)
n−k

∣∣∣∣∣
)

≤ |c(τ1+β + τβh4)| exp (‖B‖+ 2) .

(4.13)

It is obvious that the right hand side in (4.13) tends zero as h and τ tend zero. �

Next theorem proves the convergence of scheme (3.12).

Theorem 4.9. The implicit difference scheme (3.12) for solving the fractional Riesz diffusion equation (1.1) is con-
vergent.

Proof. According to the notations of previous theorem and using(3.11) and (3.12), we write the matrix form of error
equation as follows

En = C−1En−1 −
n−2∑
k=1

w
(β)
n−kC

−1Ek +

n∑
k=1

w
(β)
n−kC

−1E0 + c(τ1+β + τβh4). (4.14)

Now (4.14) can be rewritten as following format

‖En‖ ≤ ‖C−1‖ ‖En−1‖+

n−2∑
k=1

|w(β)
n−k|‖C−1‖ ‖Ek‖+

∣∣∣∣∣
n∑
k=1

w
(β)
n−k

∣∣∣∣∣ ‖C−1‖ ‖E0‖+ |c(τ1+β + τβh4)|. (4.15)

So we use the Grünwall’s lemma and get

‖En‖ ≤ |c(τ1+β + τβh4)| exp

(
‖C−1‖+

n−2∑
k=1

|w(β)
n−k|‖C−1‖+

∣∣∣∣∣
n∑
k=1

w
(β)
n−k

∣∣∣∣∣ ‖C−1‖
)

≤ |c(τ1+β + τβh4)| exp
(
3‖ C−1‖

)
.

(4.16)

It is obvious that the right hand side in (4.16) tends zero as h and τ tend zero. �

5. Numerical results

In this section, We present some numerical examples to demonstrate the theoretical analysis. To compare the
results numerically, we use the following error norm

L∞ = max
0≤i≤M

∣∣uNi − UNi ∣∣ , (5.1)

where the exact value uni is approximated by Uni [3]. Also, the computational orders of the method presented in this
paper (C-order) are calculated with the following formula [3]

C-order =
log(E2/E1)

log(h2/h1)
, (5.2)
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in which E1 and E2 are errors correspond to grids with mesh size h1 and h2, respectively.

Example 1: Consider the time fractional Riesz space fractional diffusion equation (1.1) with the initial and boundary
conditions

u(0, t) = u(1, t) = 0, u(x, 0) = 0, 0 ≤ x ≤ 1,

and the inhomogeneous term

g(x, t) =
Γ(2α+ 2)

Γ(2α+ 2− β)
x4(1− x)4 − ηcαt2α+1

{
12

Γ(5− α)

(
x4−α + (1− x)4−α)

− 240

Γ(6− α)
(x5−α + (1− x)5−α) +

2160

Γ(7− α)
(x6−α + (1− x)6−α)

− 10080
Γ(8−α) (x7−α + (1− x)7−α +

20160

Γ(9− α)
(x8−α + (1− x)8−α)

}
.

Under these assumptions, the exact solution is u(x, t) = t2α+1x4(1− x)4.
This example has been solved for β = 1 in [4]. We solved this example with η = 1 for different values of β and α.

Figure 1 represents the changes in absolute error concerning time (left) and N (right), which is obtained by implicit
method (M = 20). Table 1 represents the maximum error at time t = 1 for different values of α and β which was
obtained using the implicit scheme 2. The results confirm the ones obtained in [4] for β = 1.
Table 2 shows the errors for the explicit scheme 1. In this table, the dashed line indicates where scheme 1 was unstable
for the selected τ and h. Table 3 represents the maximum absolute errors and computational convergence orders for
some values of α and β. The computational convergence orders confirm the theoretical convergence order.

Figure 1. The graph of maximum absolute error for Example 1.

Example 2: Consider the time fractional Riesz space fractional diffusion equation (1.1) with the initial and boundary
conditions as follows

u(0, t) = u(1, t) = 0, u(x, 0) = 0, 0 ≤ x ≤ 1,

and the inhomogeneous term

g(x, t) = x2(1− x)2

∞∑
k=0

(−1)k

Γ(2k + 2− β)
t2k+1−β − ηcγ sin t

{
2

Γ(3− β)

(
x2−β + (1− x)2−β)

− 12

Γ(4− β)

(
x3−β + (1− x)3−β) +

24

Γ(5− β)

(
x4−β + (1− x)4−β)}
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Table 1. The maximum absolute errors at t = 1 for Example 1 (Scheme II).

β α = 1.3 α = 1.5 α = 1.7 α = 1.9

τ = 1
2
, h = 1

4
3.1675× 10−3 4.2379× 10−3 5.5724× 10−3 7.2185× 10−3

0.5 τ = 1
8
, h = 1

8
1.1592× 10−4 1.0996× 10−4 1.0031× 10−4 8.7192× 10−5

τ = 1
32
, h = 1

16
2.8258× 10−5 2.6813× 10−5 2.4602× 10−5 2.1768× 10−5

τ = 1
2
, h = 1

4
3.1445× 10−3 4.1751× 10−3 5.4676× 10−3 7.0723× 10−3

0.7 τ = 1
8
, h = 1

8
1.8156× 10−4 1.7564× 10−4 1.6400× 10−4 1.4708× 10−4

τ = 1
32
, h = 1

16
4.5396× 10−5 4.4072× 10−5 4.1433× 10−5 3.7666× 10−5

τ = 1
2
, h = 1

4
3.1447× 10−3 4.1344× 10−3 5.3804× 10−3 6.9365× 10−3

0.9 τ = 1
8
, h = 1

8
2.6325× 10−4 2.5982× 10−4 2.4804× 10−4 2.2845× 10−4

τ = 1
32
, h = 1

16
6.6810× 10−5 6.6276× 10−5 6.3743× 10−5 5.9392× 10−5

τ = 1
2
, h = 1

4
1.1678× 10−3 1.1403× 10−3 1.0722× 10−3 9.6728× 10−4

1 τ = 1
8
, h = 1

8
3.1083× 10−4 3.0979× 10−4 2.9900× 10−4 2.7866× 10−4

τ = 1
32
, h = 1

16
7.9323× 10−5 7.9492× 10−5 7.7284× 10−5 7.2846× 10−5

Under these assumptions, the exact solution is u(x, t) = x2(1− x)2 sin t.
We solve this example with η = 1. Figure 2 represents the changes in absolute error concerning time (left) and N
(right), which is obtained by implicit method (M = 40). Tables 4 and 5 show the maximum absolute errors for scheme
2 and scheme 1 respectively.

Figure 2. The graph of maximum absolute error for Example 2.
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Table 2. The maximum absolute errors at t = 1 for Example 1 (Scheme I).

β α = 1.3 α = 1.5 α = 1.7 α = 1.9

τ = 1
200

, h = 1
10

1.2778× 10−5 − − −

0.7 τ = 1
400

, h = 1
10

9.5737× 10−6 1.1786× 10−5 − −

τ = 1
800

, h = 1
10

7.9739× 10−6 1.0174× 10−5 − −

τ = 1
200

, h = 1
10

1.2547× 10−5 1.4828× 10−5 − −

0.8 τ = 1
400

, h = 1
10

9.3853× 10−6 1.1603× 10−5 1.4261× 10−5 −

τ = 1
800

, h = 1
10

7.8067× 10−6 9.9934× 10−6 1.2690× 10−5 1.4536× 10−4

τ = 1
200

, h = 1
10

1.2257× 10−5 1.4569× 10−5 1.7182× 10−5 −

0.9 τ = 1
400

, h = 1
10

9.1623× 10−6 1.1378× 10−5 1.4530× 10−5 1.7321× 10−5

τ = 1
800

, h = 1
10

7.6171× 10−6 9.7851× 10−6 1.2457× 10−5 1.5828× 10−5

τ = 1
200

, h = 1
10

1.1905× 10−5 1.4235× 10−5 1.6870× 10−5 2.0015× 10−5

1 τ = 1
400

, h = 1
10

8.9028× 10−6 1.1108× 10−5 1.3747× 10−5 1.7014× 10−5

τ = 1
800

, h = 1
10

7.4040× 10−6 9.5475× 10−6 1.2188× 10−5 1.5518× 10−5

Table 3. The maximum absolute errors and convergence orders for Example 1 (Scheme II).

α = 0.9, β = 1.9 α = 0.7, β = 1.7

N error C-order error C-order

10 1.7973× 10−4 1.2606× 10−4

20 9.3135× 10−5 0.9484 6.4887× 10−5 0.9581

40 4.7505× 10−5 0.9713 3.3027× 10−5 0.9743

80 2.4087× 10−5 0.9798 1.6771× 10−5 0.9777

160 1.2225× 10−5 0.9784 8.5612× 10−6 0.9701

Example 3: Consider the time fractional Riesz-space fractional diffusion equation (1.1) as follows

CDβ
0,tu (x, t) = η

∂αu (x, t)

∂ |x|α ,

with the initial and boundary conditions

u(0, t) = u(π, t) = 0, u(x, 0) = x2(π − x), 0 ≤ x ≤ π.
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Table 4. The maximum absolute errors at t = 1 for Example 2 (Scheme II).

β α = 1.3 α = 1.5 α = 1.7 α = 1.9

τ = 1
2
, h = 1

4
2.8188× 10−3 3.9311× 10−3 5.3064× 10−3 7.1229× 10−3

0.5 τ = 1
8
, h = 1

8
6.7994× 10−4 9.5197× 10−4 1.2931× 10−3 1.7156× 10−3

τ = 1
32
, h = 1

16
1.7144× 10−4 2.4299× 10−4 3.2868× 10−4 4.3969× 10−4

τ = 1
2
, h = 1

4
2.4693× 10−3 3.6431× 10−3 5.0758× 10−3 6.8578× 10−3

0.7 τ = 1
8
, h = 1

8
6.3018× 10−4 9.1022× 10−4 1.2602× 10−3 1.6880× 10−3

τ = 1
32
, h = 1

16
1.6750× 10−4 2.3721× 10−4 3.2429× 10−4 4.3356× 10−4

τ = 1
2
, h = 1

4
1.8192× 10−3 3.1206× 10−3 4.6676× 10−3 6.4758× 10−3

0.9 τ = 1
8
, h = 1

8
5.2829× 10−4 8.3045× 10−4 1.2012× 10−3 1.6468× 10−3

τ = 1
32
, h = 1

16
1.5225× 10−4 2.2571× 10−4 3.1624× 10−4 4.2591× 10−4

τ = 1
2
, h = 1

4
1.3516× 10−3 2.7508× 10−3 4.3837× 10−3 6.2641× 10−4

1 τ = 1
8
, h = 1

8
4.4699× 10−4 7.7078× 10−4 1.1598× 10−3 1.6197× 10−3

τ = 1
32
, h = 1

16
1.3933× 10−4 2.1692× 10−4 3.1062× 10−4 4.2259× 10−4

When β = 1, the analytic solution is obtained in [19] as follows

u(x, t) =

∞∑
n=1

bn sin(nx)e−(n2)α/2ηt, (5.3)

where

bn =
2

π

∫ π

0

u(x, 0) sin(nx)dx = (−1)n+1 8

n3
− 4

n3
.

We plot the exact and approximated solution surfaces in Figure 3 (η = 0.1). Figure 4 represents the exact and
approximate solutions for β = 1 at t = 1. The figure shows that the Numerical solution is in excellent agreement with
the exact one. for β < 1, the exact solution is not known, then we plote the numerical solutions are plotted at t = 0.5
for different values of β and α in Figure 5.

Example 4: Consider the time fractional Riesz-space fractional diffusion equation (1.1)

CDβ
0,tu (x, t) = η

∂αu (x, t)

∂ |x|α ,

with the initial and boundary conditions

u(0, t) = u(π, t) = 0, u(x, 0) = sin(4x), 0 ≤ x ≤ π,
When β = 1, the analytic solution is u(x, t) = sin(4x)e−4αη t (see [19]).
We plot the results in Figures 6 and 7.
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Table 5. The maximum absolute errors at t = 1 for Example 2 (Scheme I).

β α = 1.3 α = 1.5 α = 1.7 α = 1.9

τ = 1
200

, h = 1
10

4.3494× 10−4 − − −

0.7 τ = 1
400

, h = 1
10

4.3406× 10−4 1.9781× 10−3 − −

τ = 1
800

, h = 1
10

4.3362× 10−4 6.1212× 10−4 − −

τ = 1
200

, h = 1
10

4.3714× 10−4 6.1631× 10−4 − −

0.8 τ = 1
400

, h = 1
10

4.3557× 10−4 6.1462× 10−4 8.3632× 10−4 −

τ = 1
800

, h = 1
10

4.3465× 10−4 6.1345× 10−4 8.3555× 10−4 −

τ = 1
200

, h = 1
10

4.3942× 10−4 6.2385× 10−4 8.4137× 10−4 −

0.9 τ = 1
400

, h = 1
10

4.3725× 10−4 6.1101× 10−4 8.3936× 10−4 1.1233× 10−3

τ = 1
800

, h = 1
10

4.3529× 10−4 6.0321× 10−4 8.3628× 10−4 1.1218× 10−3

τ = 1
200

, h = 1
10

4.4445× 10−4 6.2360× 10−4 8.4585× 10−4 1.1348× 10−3

1 τ = 1
400

, h = 1
10

4.4042× 10−4 6.2031× 10−4 8.4327× 10−4 1.1311× 10−3

τ = 1
800

, h = 1
10

4.3440× 10−4 6.1867× 10−4 8.4199× 10−4 1.1292× 10−3

0000

11

11

t
xx

t
0.500.50

22

22

u(x,t)u(x,t)

33

33

44

00

11

xt xt

22
u(x,t)u(x,t)

33

44

Figure 3. The graph for exact solution (left) and approximate solution (M = 20, N = 40) (right) for
Example 3 with α = 1.9, β = 1.
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Figure 4. The graph for exact and approximate solutions (M = 20) for Example 3 with α = 1.7, β = 1.

Figure 5. The graph for approximate solution with β = 0.9 (left) and α = 1.7 (right) at t = 0.5 for Example 3.

6. Conclusion

In this study, one explicit and one implicit finite difference scheme was constructed for the fractional-order diffu-
sion equation with the Riesz space derivative. The stability and convergence study of the numerical methods were
provided. It was proven that the explicit finite difference scheme is conditionally stable while the implicit one is stable
unconditionally, and the order of convergence is equal to one. The numerical illustrations confirmed the theoretical
results.
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00

− 0.5− 0.5

0.40.4

tt xx

00

0.50.5

11

− 0.5− 0.5

tt
xx

00
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Figure 6. The graph for exact solution (left) and approximate solution for (M = 20, N = 40) (right) for
Example 4 with α = 1.7, β = 1, η = 0.1.

Figure 7. The graph for approximate solution with β = 0.7 (left) and α = 1.7 (right) at t = 0.5 for Example
4 (η = 0.1).
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