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Abstract

In the current study, we consider the generalized Pochhammer-Chree equation with a term of order n. Based on the

(1/G
′
)-expansion method and with the aid of symbolic computation, we construct some distinct exact solutions

for this nonlinear model. Various exact solutions are produced to the studied equation including singular solutions
and periodic wave solutions. In addition, 2D, 3D, and contour plots are graphed for all obtaining solutions via

choosing the suitable values for the involved parameters. All gained solutions verify the governing equation.
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1. Introduction

Many scientists around the world are interested in studying nonlinear partial differential equations (NPDEs).
NPDEs have been used in the modeling of complex nonlinear aspects that define some of our real-life problems in
distinct nonlinear sciences, including modeling of relationships between atmospheric and oceanic impacts, optical fiber,
hydrodynamics, fluid mechanics, medical imaging, and plasma physics. Because of their importance in our everyday
lives, it is important to investigate the behavior of these models. Different numerical and computational methods have
been used to study the NPDEs like the simplified Hirota’s method [15, 16, 20], homotopy method [28], 1/G′-expansion
method [1],sinh-Gordon function method [31] the sine-Gordon method [2, 13], sub-equation analytical method [7], the
Bernoulli approximation method [23], the ansatz-based methods in a novel way [24], and the symbolic computation
method [5, 8–10, 29].

The Pochhammer-Chree equation represents the propagation of longitudinal deformation waves in the elastic rod
was introduced in 1986 by Clarkson et al. as follows [6]

φtt − φttxx −
1

n
(φn)xx = 0, (1.1)

where φ (x, t) stands for the longitudinal displacement at time t, of a material point originally lying at the point x.
Clarkson et al. [6] considered n = 3 or 5 which reflected two probable constitutive options for the material. Bogolubsky
[4] acquired the solution of the soliton-type of Eq. (1.1) by taking n = 2, 3, 5. Zhang et al. [33] investigated Eq. (1.1)
by using n = 5. Triki et al. [26] have been used n = 6 to investigate the exact solutions of Eq. (1.1). Mohebbi [21]
used the discrete Fourier transform to study the Pochhammer–Chree equation.

This paper aims to use the (1/G′)-expansion method to obtain different exact solutions to the generalized Pochhammer-
Chree equation of order n, which is given by [14, 22].

φtt − φttxx −
(
αφ+ βφn+1 + γφ2n+1

)
xx

= 0, n ≥ 1, (1.2)
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where α, β, and γ are constants, Eq. (1.2) is a nonlinear model of longitudinal wave propagation of elastic rods.
Many authors have been investigated Eq. (1.2) by using different methods by giving some specific values of n, α, β

and γ, such as in [22] Parand and Rad used the Exp-function method, some hyperbolic and periodic singular solutions
were obtained. In [14], El-Ganaini used the first integral method and constructed some complex exponential function
solutions, complex traveling solitary wave solutions, complex periodic wave solutions, and complex rational function
solutions. In [27], Wazwaz used the tanh-coth and sine-cosine to obtain some exact solutions including bell-shaped
solitons, kink-shaped solitons, and periodic solutions. The extended-tanh method utilized to investigate Eq. (1.2)
and some traveling wave solutions, including kink-shaped solitons, bell-shaped solitons, periodic solutions, rational
solutions, and singular solitons were obtained [17]. Some traveling wave solutions of distinct structures, namely bell-

shaped solitons, kink-shaped solitons, and periodic solutions offered in [34] by using the extended
(
G
′
/G
)

-expansion

method. The bifurcation theory of planar dynamical systems was used in [18], as a result, numbers of solitary waves

and kink waves solutions were given. The
(
G
′
/G
)

-expansion method was applied on the mentioned equation when

n = 1, and some hyperbolic traveling wave solutions, and kink wave solutions were derived [19]. The Adomian
decomposition method to study the suggested equation was used in [25].

2. Fundamental concepts of the proposed method

In this portion, the main concepts of the proposed method are presented [3, 11, 30, 32].
Consider a NPDE

P (φ, φt, φx, φxx, φtt, φxt, ...) = 0. (2.1)

Step 1. Let us consider the traveling wave transformation as

φ (x, t) = Φ (ξ) , ξ = k(x− ct), (2.2)

where k and c are real constants. After some procedure, Eq. (2.1) reduces to

Q(Φ′,Φ′′,Φ′′′, ...) = 0. (2.3)

Step 2. Let the solution of Eq. (2.3) has the following form

Φ (ξ) =

m∑
i=0

ai

(
1

G′

)i
, (2.4)

where a0, a1, a2, ..., am are constants to be determine later, and m is a balance term, as well as G = G(ξ) satisfy the
following second order linear ordinary differential equation

G
′′

+ λG
′
+ µ = 0, (2.5)

where λ and µ are constants to be determined later. Substituting Eq. (2.4) into Eq. (2.3), we get a set of algebraic
equations by setting the coefficients of

(
1
G′

)
that have likely order equating to zero. We reduce these algebraic equations

to find ai, i ≥ 0 and k, c scalars and after that substituting ai and the general solutions of Eq. (2.4) into Eq. (2.3),
one can get the solutions of Eq. (2.1).

Furthermore, we can take the solution of Eq. (2.5) as follows

G(ξ) = −ξ µ
λ
− e−ξ λc1

λ
+ c2, (2.6)

where, c1 and c2 are constants. If the derivative of the solution function that given by Eq. (2.6) according to the ξ
variable is taken for once and necessary arrangements are made, we get

1

G′
=

1

−µλ + c1e−λξ
. (2.7)
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When we transform the algebraic expression given by Eq. (2.7) to trigonometric function, where c1 = A, it can be
rewritten as follows

1

G′
=

λ

−µ+ λA(Cosh(λξ)− Sinh(λξ))
. (2.8)

3. Mathematical Analysis

In this section, we applied the (1/G
′
)-expansion method to fine some distinct exact solutions to the generalized

Pochhammer-Chree equation.
Consider

φ (x, t) = Φ (ξ) , ξ = k(x− ct), (3.1)

Plugging Eq. (3.1) into Eq. (1.2), and integrating twice, then Eq. (1.2) reduces to

k2
(
c2 − α

)
Φ− k4c2Φ′′ − βk2Φn+1 − γk2Φ2n+1 = 0, (3.2)

where ′ = d
dξ , also the constants of integration are set to zero.

Now we are using the transformation

Φn = H, (3.3)

then

Φ′′ =
1− n
n2

H
1
n−2(H ′)

2
+

1

n
H

1
n−1H ′′. (3.4)

Substituting the transformations Eq. (3.3) and Eq. (3.4) into Eq. (3.2), which gives

n2k2
(
c2 − α

)
H2 − k4c2nHH ′′ − k4c2 (1− n)H ′

2 − βk2n2H3 − γk2n2H4 = 0. (3.5)

Balancing HH ′′ with H4 in Eq. (3.5), yields m = 1. With m = 1, Eq. (2.4) becomes

Φ (ξ) = a0 + a1

(
1

G′

)
, (3.6)

inserting Eq. (3.6) and its derivatives into Eq. (3.5) yields a polynomial in powers of ( 1
G′ ). Collecting the coefficients

of ( 1
G′ ) with the likely order and setting each summation to zero, we get a set of algebraic equations. Solving these

equations, the following solutions can be constructed.
Set 1. When

a0 =
(2+n)(c2−α)

β , a1 =
(2+n)(c2−α)µ

βλ ,

k = n
√
c2−α
cλ , γ = − (1+n)β2

(2+n)2(c2−α) ,
(3.7)

substituting Eq. (3.7) into Eqs. (3.5) and (3.2) consequently, we get a singular solution

φ1 (x, t) =

 C1ent
√
c2−α (2 + n)

(
c2 − α

)
λ

β

(
C1ent

√
c2−αλ− e

nx
√
c2−α
c µ

)


1
n

. (3.8)

Set 2. When

a0 = − i
√
1+n
√
c2−α√
γ , a1 = − i

√
1+n
√
c2−αµ√
γλ ,

k = −n
√
c2−α
cλ , β =

i(2+n)
√
c2−α√γ√

1+n
,

(3.9)

where i =
√
−1. Plugging Eq. (3.9) into with Eqs. (3.5) and (3.2) subsequently, a singular solution can be obtained

φ2 (x, t) =

− i
√

1 + n
√
c2 − α

√
γ

− i
√

1 + n
√
c2 − αµ

√
γλ
(
− µ

λ
+ C1 cosh (B)− C1 sinh (B)

)
 1

n

, (3.10)
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where B =
(
nt
√
c2−α
λ − nx

√
c2−α
cλ

)
λ.

Set 3. When

a0 = − (1 + n)β

(2 + n) γ
, a1 = − (1 + n)βµ

(2 + n) γλ
, c =

in
√

1 + nβ√
k2(2 + n)

2
γλ2

, α =
(1 + n)β2

(
−n2 + k2λ2

)
k2(2 + n)

2
γλ2

, (3.11)

putting Eq. (3.11) into Eqs. (3.5) and (3.2), we get

φ3 (x, t) =

− (1 + n)β

(2 + n) γ
− (1 + n)βµ

(2 + n) γλ
(
− µ

λ
+ C1 cosh (M)− C1 sinh (M)

)
 1

n

, (3.12)

where M = λ

(
kx− ikn

√
1+ntβ√

k2(2+n)2γλ2

)
.

Set 4. When

a0 = − (1+n)β
(2+n)γ , a1 = − (1+n)βµ

(2+n)γλ ,

k = in
√
1+nβ√

c2(2+n)2γλ2
, α = c2 + (1+n)β2

(2+n)2γ
,

(3.13)

substituting Eq. (3.13) into Eqs. (3.5) and (3.2), we get the periodic wave solution

φ4 (x, t) =

− C1 (1 + n)βλ

(2 + n) γ

(
C1λ− e

− in
√

1+n(ct−x)βλ√
c2(2+n)2γλ2 µ

)


1
n

. (3.14)

Set 5. When

a0 = in
√
−c2+αa1
ckµ , β = ick(2+n)

√
−c2+αµ

na1
,

γ = − c
2k2(1+n)µ2

n2a21
, λ = in

√
−c2+α
ck ,

(3.15)

putting Eq. (3.15) into Eqs. (3.5) and (3.2) consequently, a periodic wave solution can produced

φ5 (x, t) =

 in
√
−c2 + αa1
ckµ

+
a1

ickµ

n
√
−c2 + α

+ C1 cos (N)− iC1 sin (N)


1
n

, (3.16)

where N = n(−ckt+kx)
√
−c2+α

ck .

4. Conclusion

In this study, the generalized Pochhammer–Chree equation with a term of order n dispersion is investigated by
using the (1/G

′
)-expansion method. It is worth noting that the strong (1/G′)-expansion method can be applied to a

wide range of high order NPDEs. As a result, we have obtained some exact solutions to the studied equation, including
singular and periodic wave solutions. We conclude that our results are new and different in comparison with reported
solutions in Refs. [14, 17–19, 22, 25, 27, 34], which are presented in the introduction section. We believe that our
solutions can be useful in many of research areas, including fluid dynamics and physics. Besides, 2D, 3D, and contour
plots are graphed for all obtaining solutions by choosing the suitable values of the involved parameters and setting
n = 1, n = 2, n = 3, n = 5 and n = 7. This method is a strong method of obtaining traveling wave solutions for full
NPDEs.
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5. Figures

Figure 1. 2D, 3D and contour plots of Eq. (3.8), for µ = 0.3, c = 2, α = 0.5, λ = 3, β =
2.1, C1 = 0.3, and n = 7.

Figure 2. 3D, 2D and contour plots of Eq. (3.10), using µ = 0.3, c = 2, α = 0.5, λ = 3, n =
2, C1 = 0.3, and γ = 2.
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Figure 3. 3D, 2D and contour plots of Eq.(3.12) where µ = 3, λ = 3, β = 5, n = 5, C1 = 3, k =
0.5, and γ = 0.3.

Figure 4. 3D, 2D and contour surfaces of Eq. (3.14) for µ = 0.3, c = 2, λ = 3, β = 2.1, n =
1, C1 = 0.3, and γ = 0.2.

Figure 5. 3D, 2D and contour plots of Eq. (3.16) using µ = 3, c = 0.2, α = 3, n = 3, C1 =
3, k = 2.1, and a1 = 2
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