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Abstract

Among the various causes of heroin addiction, the use of prescription opioids is one of the main reasons. In

this article, we introduce and analyze a two-strain epidemic model with the superinfection for modeling the
effect of prescribed opioids abuse on heroin addiction. Our model contains the impact of relapse of individuals

under treatment/rehabilitation to drug abuse in each strain. We extract the basic reproductive ratio, the invasion

numbers and study the occurrence of backward bifurcation in strain dominance equilibria, i.e., boundary equilibria.
Also, we explore both the local and global stability of DFE and boundary equilibria under suitable conditions.

Furthermore, we study the existence of the coexistence equilibrium point. We prove that when R0 < 1, the

coexistence equilibrium point can exist, i.e., backward bifurcation occurs in coexistence equilibria. Finally, we
use numerical simulation to describe the obtained analytical results.
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1. Introduction

The issue of opioid drug addiction is one of the complex problems of human societies, which has become a social
problem in most countries today. Predicting and analyzing addiction and quantifying the factors involved in it is
very useful for decision-makers in societies. So experts in various disciplines, including mathematics and statistics,
have been modeled the addiction and studied some of the factors involved in epidemic or control of it. According to
[3, 42], “dynamic modeling complements indicators and direct data analysis in drug epidemiology at the macro level.
Instead of the usual inductive or empirical method of data collection and interpretation, it can be used to enhance
the understanding of drug processes by simulating experiments that are difficult or impossible to perform in real life.
Dynamic drug models can help in understanding a phenomenon via scenario analysis, thereby providing a tool to
simulate experiments that are not possible in real life due to practical or ethical reasons”.
There are three general approaches modeling the dynamics of the spread of drug use. Authors of [14] believe “anyone
could be a ‘prey’ to illicit drugs.” They applied the predator-prey paradigm for the modeling of illicit drug consumption,
see also [3, 5, 11]. On the other hand, drugs have been considered as an epidemic problem like an infectious disease
because most drug initiations start through contact with users, not through contact with drug sellers, see [23]. Also,
modeling with the optimal control method has been performed see the monograph [17].
Among illicit drugs, heroin is one of the world’s most dangerous opioids, which is highly addictive. In the United
States, in the time interval of 2002 to 2014, the number of heroin users increased from about 404,000 to 914,000, and
the number of addicted cases increased from about 214,000 to 586,000, see [9].
White and Comiskey assumed that the spread of heroin addiction has a mechanism like the spread of infectious
diseases, and introduced the first compartmental model with ordinary differential equations for heroin use in [41].
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Compartmental models are powerful tools for the study and analysis of infectious diseases. Such models, which are
generally expressed by ordinary differential equations, were first introduced by Kermack and McKendrick. These
models have been used in modeling many diseases such as AIDS, tuberculosis, and influenza see [1, 12, 24, 28, 38, 43].
The mathematical epidemiology of drugs has been studied by several authors after White and Comiskey’s work.
Mulone and Straughan revisit their work, [32]. Nyabadza and Hove-Muskava in [36] modified the White and Comiskey
model and studied the dynamics of methamphetamine. For the study of the epidemiology of crystal and the effect of
rehabilitation and relapse, see [34, 37]. In [29, 30] the authors have studied the effect of information transmission and
education on the drug dynamic.
On the other hand, infectious diseases with several strains are of great importance in mathematical epidemiology.
Therefore this type of epidemic model, such as influenza, HIV, malaria,..., has been attracted considerable attention
see [7, 15, 19, 28].
Several mechanisms can cause stable coexistence of multiple strains, one of them is superinfection. In some cases,
individuals who have been previously infected by one strain of a pathogen agent can be infected with another strain
of the pathogen at a later time. Such event is called superinfection, see [28]. Superinfection was first introduced in [6].
Studies of heroin addicts have revealed three main pathways to heroin addiction, one of them is prescription opioid
abuse, see [22, 33].
Prescribed drugs are commonly used to reduce pain. These substances also cause great peace and feeling in people
in a short period of time. This makes them more dependent on these substances, and by increasing their use, people
tend to use more effective substances such as heroin. Hydrocodone, oxycodone, oxymorphone, morphine, codeine,
and fentanyl are examples of prescribed opioids. Prescription drugs are usually safe if given in a short period of time
and with a doctor’s prescription. But some people abuse the prescribed drugs, this abuse for example involves the
excessive use of these substances or the use of substances prescribed to other people. Easier access to heroin in some
places and its greater effectiveness will lead to a tendency for people with prescription drug abuse to be a heroin user.
Studies show that about 4 to 6 percent of people who use prescription drugs turn to heroin, and about 80 percent of
people who take heroin have a history of prescription drugs, see [20, 33].
We modify in this manuscript the White and Comiskey’s model and propose a two-strain epidemic model with
superinfection about the impact of prescription opioid abuse on heroin addiction. We consider the effect of relapse of
individuals under treatment/rehabilitation infected with each strain. We study the effect of the parameters contained
in the model, especially the transition rate of individuals with prescription opioid abuse to heroin-addicted individuals
and relapse rate, on the dynamic of the model. This study reveals the impact of changes in these parameters on the
drug addiction outbreak.
Naturally, in epidemic models, the infection can be controlled by having R0 < 1 if the initial values of all compartments
of the model are in the basin of attraction of the disease-free equilibrium point. Simultaneously, in some epidemic
models in the range R0 < 1, the endemic equilibrium points may also exist, which shows that R0 < 1 is not enough for
eliminating the disease. In such models, it is said that backward bifurcation occurs, see [28]. We study the occurrence
of backward bifurcation in each strain and in general i.e. in the coexistence equilibrium point in our model.
We organize the paper as follows. In section 2, we present the model and study the positivity of the solutions, the
basic reproduction number, and the local and global stability of DFE. In section 3, we study the strain dominance
equilibria and compute the invasion numbers. We prove that under suitable condition, strain dominance equilibrium
points can exist, i.e., backward bifurcation occurs in that strain. Also, we study the local and global stability of them.
In section 4, we prove the occurrence of backward bifurcation in strain dominance equilibriums, with the aid of center
manifold theory and theorem obtained in [10]. In section 5, we study the existence of coexistence equilibria. We prove
that when R0 < 1, the coexistence equilibrium point can exist, i.e., backward bifurcation occurs in the coexistence
equilibria. Furthermore, we obtain sufficient conditions for the global asymptotic stability by the geometric method
introduced by Li and Muldowney in [26]. Finally, in section 6, we use numerical simulation to describe the obtained
analytical results.
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Figure 1. The flowchart of the model

2. Model formulation and basic properties

In our model, the total population of the community is divided into the following groups, susceptible individuals
S, individuals infected with strain one, i.e., individuals who abuse prescription opioids I1, individuals infected with
strain two, i.e., individuals addicted to heroin I2, and individuals under treatment/rehabilitation R. The number
of individuals in this compartments is denoted by S, I1, I2, andR respectively. The numbers β1, β2 show the rate of
infection in strains one and two, respectively. Since we consider the superinfection, the infection rate β2 is enhanced
by δ2, and the transition rate from prescription opioid abuse to heroin addiction becomes δ2β2. On the other hand,
heroin-addicted individuals may tend to misuse prescription opioids. We consider the transition rate from heroin
addiction to prescription opioid misuse by δ1β1. A fraction αi, i = 1, 2, of individuals infected by each strain recover
from the infection, i.e., come under rehabilitation/treatment programs and go to the compartment R. Furthermore,
individuals under rehabilitation/treatment relapse into the infection in each strain due to contact with infected indi-
viduals respectively at rates γ1, γ2. In figure 1. the model’s flowchart is depicted, and we have the following ODE
system,

Ṡ = Λ− β1
SI1
N
− β2

SI2
N
− µS

İ1 = β1
SI1
N
− δ2 β2

I1I2
N

+ δ1 β1
I1 I2
N
− (µ+ α1) I1 + γ1

RI1
N

,

İ2 = β2
SI2
N

+ δ2 β2
I1I2
N
− δ1 β1

I1I2
N
− (µ+ α2) I2 + γ2

RI2
N

,

Ṙ = α1 I1 + α2 I2 − µR− γ1
RI1
N
− γ2

RI2
N

.

(2.1)

At first, we prove that the solutions are nonnegative.

Lemma 2.1. If the initial conditions are nonnegative, i.e., S(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0 and R(0) ≥ 0, then all
components of the solution of the system are nonnegative for all t ≥ 0.

Proof. All components of the solution (S(t), I1(t), I2(t), R(t)) of the system are continuously differentiable. Fur-
thermore, if all compartments have nonnegative initial conditions and that if any of the compartments are zero at
time t = ti ≥ 0, then the derivatives are nonnegative. For example if S(t1) = 0, I1(t1) ≥ 0, I2(t1) ≥ 0 and R(t1) ≥ 0,
we get

dS(t1)

dt
= Λ ≥ 0
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that implies S(t+1 ) ≥ 0, and hence, S(t) is nonnegative for all time t ≥ 0. Next, assume that I1(t2) = 0, S(t2) ≥ 0,
I2(t2) ≥ 0, R(t2) ≥ 0, we have

dI1(t2)

dt
= 0

that implies I1(t+2 ) ≥ 0, and hence, I1(t) is nonnegative for all time t ≥ 0. Now, assume that R(t3) = 0, S(t3) ≥ 0,
I1(t3) ≥ 0, I2(t3) ≥ 0, we have

dR(t3)

dt
= α1I1(t3) + α2I2(t3) ≥ 0

that implies R(t+3 ) ≥ 0, and hence, R(t) is nonnegative for all time t ≥ 0. The same reason is true for I2, and as
mentioned in [35] it can be concluded that all compartments are nonnegative at all time t ≥ 0.

Boundedness is one of the basic properties of the solutions that we prove in the following lemma.

Lemma 2.2. For any set of nonnegative initial values, the total population N(t) = S(t) + I1(t) + I2(t) + R(t) is
bounded from above.

Proof. We have Ṅ = Λ− µN , and integration yields,

N(t) = N(0)e−µt +
Λ

µ
(1− e−µt) ≤ max(N(0),

Λ

µ
) = M.

This proves the boundedness of the solutions of the system.

As in the White-Comiskey model, we consider the total population of the community to be constant, i.e., N(t) = N0.
Let

s =
S

N0
, i1 =

I1
N0

, i2 =
I2
N0

, r =
R

N0
. (2.2)

Therefore (2.1), is converted to:
i̇1 = β1(i1 − i21 − i1i2 − ri1) + (δ1 β1 − δ2 β2)i1 i2 − (µ+ α1)i1 + γ1 r i1

i̇2 = β2(i2 − i22 − i1i2 − ri2) + (δ2 β2 − δ1 β1)i1 i2 − (µ+ α2)i2 + γ2 r i2

ṙ = α1 i1 + α2 i2 − µ r − γ1 r i1 − γ2 r i2.

(2.3)

We study this system in the following region,

Ω = {(i1, i2, r); i1 ≥ 0, i2 ≥ 0, r ≥ 0, i1 + i2 + r ≤ 1}

which is positive invariant with respect to (2.3).
A nonlinear differential equation model with constant coefficients typically has time-independent solutions, that is,
solutions that are constant in time. Such solutions are called equilibrium points. Equilibrium points play an important
role in the long-term behavior of the solutions. They are easy to find from the differential equation even if we don’t know
the explicit solution, since their derivative with respect to time is zero. In the mathematical epidemiology literature,
the equilibrium in which the disease is not present in the population, and the entire population is susceptible, is referred
to as the disease-free equilibrium, see [28]. In (2.3), the disease-free equilibrium point is the point E0 = (0, 0, 0).
A classical way for computation of the basic reproduction number of a model, which is a key quantity in mathematical
epidemiology, is the linearization theorem which uses Jacobian matrix of the system in disease-free equilibrium point,
see [28]. The Jacobian matrix of (2.3) has the following form:

J =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


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in which

a11 = β1(1− 2i1 − i2 − r) + (δ1β1 − δ2β2)i2 − (µ+ α1) + γ1r,

a12 = −β1i1 + (δ1β1 − δ2β2)i1, a13 = −β1i1 + γ1i1,

a21 = −β2i2 + (δ2β2 − δ1β1)i2, a23 = −β2i2 + γ2i2,

a22 = β2(1− i1 − 2i2 − r) + (δ2β2 − δ1β1)i1 − (µ+ α2) + γ2r,

a31 = α1 − γ1r, a32 = α2 − γ2r, a33 = −µ− γ1i1 − γ2i2.

And

J0 = J(E0) =

 β1 − (µ+ α1) 0 0
0 β2 − (µ+ α2) 0
α1 α2 −µ


which has the eigenvalues

β1 − (µ+ α1), β2 − (µ+ α2), −µ. (2.4)

We define the basic reproduction of the model by R0 = max{R1, R2} in which, R1 = β1

µ+α1
, R2 = β2

µ+α2
. The

linearization theorem implies the following result.

Theorem 2.1. The DFE point E0 is local asymptotic stable if R0 < 1 and unstable if R0 > 1.

To determine whether the infection can invade the population, we prove the global asymptotic stability of the DFE
point. Backward bifurcation occurs in this model, which is proved in next sections. Hence DFE can not be globally
asymptotically stable, across region R0 < 1, unless under certain conditions. In the following proposition we extract
sufficcient conditions for this problem.

Proposition 2.1. The DFE point E0 is global asymptotic stable provided, R0 < 1, βi < µ+ m−2
m−1αi, γi <

m
m−1βi, for

i = 1, 2 and m ≥ 2.

Proof. Consider the following function V : Ω→ R+.

V (i1, i2, r) = mi1 +mi2 + r.

The function V is positive definite with respect to E0. And the derivative of V on the trajectories of (2.3) with respect
to t is,

dV

dt
= mi′1 +mi′2 + r′

≤ β1i1

(
1− 1

R1

)
+ ((m− 1)(β1 − µ)− (m− 2)α1)i1 + ((m− 1)γ1 −mβ1)ri1

+ β2i2

(
1− 1

R2

)
+ ((m− 1)(β2 − µ)− (m− 2)α2)i2 + ((m− 1)γ2 −mβ2)ri2 − µr.

Since R1 < 1 , R2 < 1 and βi < µ + m−2
m−1αi, γi <

m
m−1βi, the dV

dt is negative, and Lyapunov theorem implies global
stability of E0. �

3. Boundary equilibrium points and their stabilities

An equilibrium point with the presence of strain one and the absence of strain two is called a strain one dominance
equilibrium point, see [28]. Such equilibrium point E1 = (̂i1, 0, r̂) is the solution of the following equations with



CMDE Vol. 10, No. 3, 2022, pp. 656-673 661

positive components:{
β1(1− î1 − r̂) + γ1 r̂ = µ+ α1

α1 î1 − µ r̂ − γ1 r̂ î1 = 0.
(3.1)

Therefore î1 is a positive solution of the following equation:

F1(̂i1) = Aî21 +Bî1 + C = 0 (3.2)

in which

A = γ1 β1, C = −β1µ

(
1− 1

R1

)
,

B = β1(µ+ α1)− α1γ1 − γ1β1

(
1− 1

R1

)
.

F1(̂i1) is a convex parabola with a minimum point −B2A and minimum value −∆
2A , in which ∆ = B2 − 4AC. Now by

applying the geometric properties of parabolas, we have:

Theorem 3.1. One of the following cases occur in (2.3):

Case 1. The system has a unique strain one-dominance equilibrium point E1 = (̂i1, 0, r̂), provided C < 0. In this case,
R1 > 1.
Case 2. The system has a unique strain one-dominance equilibrium E1 = (̂i1, 0, r̂), provided, B < 0, C = 0. In this
case, R1 = 1.
Case 3. The system has two strain one-dominance equilibrium, provided B < 0, C > 0 and ∆ > 0. In this case

4γ1β
2
1µ

4γ1β2
1µ+B2

< R1 < 1.

Case 4. The system has a unique strain one-dominance equilibrium, provided B < 0, C > 0, and ∆ = 0. In this case

4γ1β
2
1µ

4γ1β2
1µ+B2

= R1 < 1.

In the next theorem, we prove the local stability of E1.

Theorem 3.2. Let

R̂2
1 =

β2(1− î1 − r̂) + δ2β2î1 + γ2r̂

δ1β1î1 + (µ+ α2)
.

When, R̂2
1 < 1 and β1î1(µ+ γ1î1)− µ(γ1 − β1)r̂ > 0, the equilibrium point E1 = (̂i1, 0, r̂) is local asymptotic stable.

Proof. We compute the Jacobian matrix of the system at E1 as follows:

J1 = J(E1) =

 b11 b12 b13

0 b22 0
b31 b32 b33


where,

b11 = β1(1− 2î1 − r̂)− (µ+ α1) + γ1r̂,

b12 = −β1î1 + (δ1β1 − δ2β2)î1, b13 = −β1î1 + γ1î1,

b22 = β2(1− î1 − r̂) + (δ2 β2 − δ1 β1)î1 − (µ+ α2) + γ2r̂,

b31 = α1 − γ1r̂, b32 = α2 − γ2r̂, b33 = −µ− γ1î1.

An eigenvalue of the matrix J1 is

λ11 = β2(1− î1 − r̂) + (δ2 β2 − δ1 β1)î1 − (µ+ α2) + γ2r̂. (3.3)
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Furthermore, the eigenvalues of the submatrix:

J11 =

[
b11 b13

b31 b33

]
have negative real parts if Tr(J11) < 0 and Det(J11) > 0. By using (3.1) we can easily see that

b11 = −β1î1, b13 = (γ1 − β1)î1, b31 = µ
r̂

î1
, b33 = −µ− γ1î1

and

Det(J11) = β1î1(µ+ γ1î1)− µ(γ1 − β1)r̂.

Furthermore Tr(J11) = b11 + b33 < 0. Now For the stability of E1, the sign of eigenvalue λ11 must be negative, that
is,

R̂2
1 =

β2(1− î1 − r̂) + δ2β2î1 + γ2r̂

δ1β1î1 + (µ+ α2)
< 1.

�

Lemma 3.1. Let R̂2
1 < 1 and γ1 ≤ β1, then the equilibrium point E1 = (̂i1, 0, r̂) is locally asymptotically stable.

As it is mentioned in [28], the quantity R̂2
1 is called, the invasion reproduction number or invasion number of strain

two at the equilibrium of strain one. Mathematically, the invasion number gives a threshold for the stability of a
dominance equilibrium. The strain two cannot grow when strain one is at equilibrium if and only if R̂2

1 < 1. In this
case, we say that strain two cannot invade the equilibrium of strain one. Epidemiologically, the invasion number of
strain two at the equilibrium of strain one gives the number of secondary infections one individual infected with strain
two will produce in a population in which strain one is at equilibrium during its lifetime as infectious.
In theorem 3.1 and section 4 we show the occurrence of backward bifurcation in strain one dominance equilibrium
points. In fact, strain one dominance equilibrium points and DFE can exist simultaneously. Therefore, equilibrium
point E1 can be global asymptotic stable only under certain conditions. In the following theorem we extract sufficcient
conditions for this problem.

Theorem 3.3. The equilibrium point E1 = (̂i1, 0, r̂) is global asymptotic stable if,

β1 = β2, γ1 = γ2, α1 = α2, γ1 < β1, R̂
2
1 < 1. (3.4)

Proof. We use the following function on R3
+, as a Lyapunov function:

V = K1

(
i1 − î1 − î1Ln(

i1

î1
)

)
+K2 i2 +K3 (r − r̂)2. (3.5)

Where K1,K2 and K3 are positive constants to be chosen later. The function V is positive definite with respect to
E1. We compute the derivative of V with respect to t.

dV

dt
= K1 (i1 − î1)

i′1
i1

+K2 i
′
2 + 2K3 (r − r̂) r′

= −K1 β1(i1 − î1)2 −K2β2i
2
2 − 2K3µ(r − r̂)2 − 2K3(γ1i1 + γ2i2)(r − r̂)2

− (K1β1 +K2β2)i2(i1 − î1) + [K1(γ1 − β1) + 2K3(α1 − γ1r̂)](i1 − î1)(r − r̂)

+K2i2

(
(β2(1− î1 − r̂) + δ2β2î1 + γ2r̂)− (µ+ α2 + δ1β1î1)

)
+ [K2(γ2 − β2) + 2K3(α2 − γ2r̂)]i2(r − r̂).

Let

K1 =
1

β1 − γ1
,K2 =

1

β2 − γ2
,K3 =

1

2(α1 − γ1r̂)
=

1

2(α2 − γ2r̂)
.
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Since γ1 < β1, γ2 < β2, and γ1r̂ < α1, constants K1,K2, and K3 are positive. Since γ1 = γ2, β1 = β2 then, K1 = K2.
The following inequality has been obtained from dV/dt and by using the inequalities a2 +b2 ≥ 2ab and a2 +b2 ≥ −2ab,

dV

dt
≤ K2i2

(µ+ α2) + δ1β1î1

(
R̂2

1 − 1
)
− 2K3(γ1i1 + γ2i2)(r − r̂)2 − 2K3µ(r − r̂)2.

From (3.4) we have dV
dt < 0. Therefore, E1 is globally asymptotic stable. �

The study of the existence of the strain two-dominance equilibrium point, computation of its invasion number, and
the proof of local and global asymptotic stability can be done similarly.

4. Backward bifurcation

Naturally, in epidemic models, the infection can be controlled by having R0 < 1 if the initial size of all compart-
ments of the model is in the basin of attraction of the DFE P0. Simultaneously, in some epidemic models in the range
R0 < 1 the endemic equilibrium points may also exists, which shows that R0 < 1 is not enough for eliminating the
disease. In such models, it is said that backward bifurcation occurs, see [28]. This phenomenon can also occur in the
case of strain one-dominance equilibrium points. We call it the occurrence of backward bifurcation in the strain one.
Similarly, one can define the occurrence of backward bifurcation in strain two.
In theorem 3.1, we prove that when Ri < 1 under suitable conditions, strain i-dominance equilibrium exists, i.e., the
backward bifurcation occurs in strain i. A standard method for studying the occurrence of backward bifurcation is
to use the Castillo-Chavez and Song theorem, which was obtained using the center manifold theory. The following
results is obtained by directly applying theorem 4.1 of [10]. We consider two cases:

Case 1. R1 = 1 and R2 < 1.
In theorem 4.1 of [10], it is needed that Jacobian of the DFE point has 0 as an eigenvalue of first order, i.e., a
simple eigen value. Since R1 = 1, we can compute β1 as β1 = β∗1 = µ + α1. Now the eigenvalues of J(E0, β

∗
1) are

0, −µ, β2

(
1− 1

R2

)
. Corresponding right and left eigenvalues are w =

(
1, 0, α1

µ

)
and v = (1, 0, 0). We consider

x1 = i1, x2 = i2, x3 = r and compute the quantities a and b in theorem 3.2. of [10], in the following forms,

a =

3∑
k,i,j=1

vk wiwj
∂2fk
∂xi ∂xj

= 2β∗1 −
2α1

µ
(γ1 − β∗1) =

2(−α1γ1 + (µ+ α1)2)

µ
,

b =

3∑
k,i=1

vkwi
∂2fk
∂xi ∂ϕ

(E0, β
∗
1) =

3∑
i=1

wi
∂2f1

∂xi ∂ϕ
(0, 0) = 1.

Therefore a > 0 if,

α1γ1 < (µ+ α1)2 (4.1)

which shows the occurrence of backward bifurcation in strain one.
Figure 2 shows bifurcation diagram, i.e. the diagram of î1 in term of R1.
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Figure 2. The occurrence of backward bifurcation in strain one in a set of parameters including
µ = 0.1, β1 = 0.01, γ1 = 0.1, α1 = 0.2, satisfying (4.1). In this case R1 = 1

30 .

Case 2. R2 = 1 and R1 < 1.
In theorem 4.1 of [10], it is needed that Jacobian of the DFE point has 0 as an eigenvalue of first order, i.e., a simple
eigen value. From R2 = 1, we conclude that β2 = β∗2 = µ + α2, and the Jacobian matrix J(E0, β

∗
2), has eigenvalues

0, −µ, β1

(
1− 1

R1

)
. The right and left eigenvectors of J(E0, β

∗
2) associated with λ1 = 0 are w =

(
0, 1, α2

µ

)
and

v = (0, 1, 0). Hence

a =

3∑
k,i,j=1

vk wiwj
∂2fk
∂xi ∂xj

= 2β∗2 −
2α2

µ
(γ2 − β∗2) =

2(−α2γ2 + (µ+ α2)2)

µ
,

b =

3∑
k,i=1

vkwi
∂2f1

∂xi ∂ϕ
(E0, β

∗
2) =

3∑
i=1

wi
∂2f1

∂xi ∂ϕ
(0, 0) = 1.

Now a > 0 if α2γ2 < (µ+ α2)2 which shows the occurrence of backward bifurcation in strain two.

5. The coexistence equilibrium point and global stability

An equilibrium point (i∗1, i
∗
2, r
∗) in which i∗1 6= 0, i∗2 6= 0, i.e., both strains are present, is called a coexistence

equilibrium. In this section, we study the existence and stability of such equilibriums. Such a point is a solution to
the following system:

β1(1− i∗1 − i∗2 − r∗) + (δ1 β1 − δ2 β2) i∗2 − (µ+ α1) + γ1 r
∗ = 0

β2(1− i∗2 − i∗1 − r∗) + (δ2 β2 − δ1 β1)i∗1 − (µ+ α2) + γ2 r
∗ = 0

α1 i
∗
1 + α2 i

∗
2 − µ r∗ − γ1 i

∗
1 r
∗ − γ2 i

∗
2 r
∗ = 0.

(5.1)

By solving i∗1 and i∗2 in term of r∗ and other coefficients, we have,

i∗1 =
β1β2(1− 1

R1
)

δ2 + β2δ − β1δ
+
β2(δ − β1)(1− 1

R2
)

δ2 + β2δ − β1δ
+

(γ1 − β1)β2 + (δ − β1)(γ2 − β2)

δ2 + β2δ − β1δ
r∗,

and

i∗2 =
β1β2(1− 1

R2
)

δ2 + β2δ − β1δ
−
β1(δ + β2)(1− 1

R1
)

δ2 + β2δ − β1δ
+

(γ2 − β2)β1 + (δ + β2)(β1 − γ1)

δ2 + β2δ − β1δ
r∗.



CMDE Vol. 10, No. 3, 2022, pp. 656-673 665

Where δ = δ1β1 − δ2β2. Now we substitute i∗1 and i∗2 in the third equation of the system (5.1) which yields,

F (r∗) = A1 r
∗2 +A2r

∗ +A3 = 0 (5.2)

where

A1 =
γ1β2(β1 − γ1) + γ1(δ − β1)(β2 − γ2) + γ2β1(β2 − γ2) + γ2(δ + β2)(γ1 − β1)

δ2 + β2δ − δ β1
,

A2 =
α1β2(γ1 − β1) + α1(δ − β1)(γ2 − β2)

δ2 + β2δ − δ β1
+
α2β1(γ2 − β2) + α2(δ + β2)(β1 − γ1)

δ2 + β2δ − δ β1

+
−γ1β1β2(1− 1

R1
)− γ1β2(δ − β1)(1− 1

R2
)

δ2 + β2δ − δ β1
+
−γ2β1β2(1− 1

R2
) + γ2β1(δ + β2)(1− 1

R1
)

δ2 + β2δ − δ β1
,

A3 =
α1β1β2(1− 1

R1
) + α1β2(δ − β1)(1− 1

R2
)

δ2 + β2δ − δ β1
+
α2β1β2(1− 1

R2
)− α2β1(δ + β2)(1− 1

R1
)

δ2 + β2δ − δ β1
.

F (r∗) is a parabola with an extremum point −B2A and an extremum value −∆
2A , in which ∆ = A2

2 − 4A1A3. Now in the
following list, we present the cases in which F (r∗) = 0 has positive solutions.
Case 1. When A1A3 < 0, (5.2) has a positive solution, which is unique.
Case 2. When A1 < 0 and A3 < 0, then if ∆ > 0 and A2 > 0, it has two positive real roots. And if ∆ = 0 and A2 > 0,
(5.2) has a positive solution, which is unique.
Case 3. When A1 < 0, A3 = 0, and A2 > 0, it has a positive solution, which is unique.
Case 4. When A1 > 0, A3 > 0, if A2 < 0 and ∆ > 0, it has two positive roots, and when A2 < 0 and ∆ = 0, it has a
positive solution, which is unique.
Case 5. When A1 > 0, A3 = 0, A2 < 0, and ∆ = 0, the equation (5.2) has a unique positive root.
Now we have the following result.

Lemma 5.1. The coexistence equilibrium point exists if:
1. δ2 + β2δ − δ β1 6= 0.
2. F (r∗) = 0, has positive real roots.
3. After substituting the positive r∗, in i∗1 and i∗2, they have positive values.

Proposition 5.1. If we choose an r∗ > 0 from the above list and consider the following inequalities:
1. δ < 0, −β2 < δ < β1 − β2, β1 < γ1, γ2 < β2, and R2 < 1.
2. β1

β1+(δ−β1)(1− 1
R2

)
< R1 < 1.

3. β1(δ+β2)

β1(δ+β2)+β1β1( 1
R2
−1)+((β2−γ2)β1+(δ+β2)(γ1−β1))r∗

< R1 < 1.

Then (2.3) has a coexistence equilibrium point.

Remark 5.1. The above proposition shows the occurrence of backward bifurcation in the coexistence equilibria.

Now we study the global asymptotic stability of the coexistence steady state in the case of the uniqueness of such
point by using the geometric method presented in [26].
Let P be the following matrix function as it is needed in the geometric method,

P =

 e3i1+3i2 0 0
0 e3i1+3i2 0
0 0 e3i1+3i2

 .
Now we have the matrix,

PfP
−1 = diag(3i′1 + 3i′2, 3i

′
1 + 3i′2, 3i

′
1 + 3i′2),
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and,

Q = PfP
−1 + PJ [2]P−1 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,
in which,

A11 = β1 − µ+ β2 − µ− α1 − α2 + (β1 − β2 − 3(µ+ α1)− δ)i1
+ (−β1 + β2 − 3(µ+ α2) + δ)i2 + (−β1 − β2 + γ1 + γ2)r − 2β1 i

2
1

− 2(β1 + β2)i1 i2 + (−2β1 + 2γ1)i1r + (−2β2 + 2γ2)i2r − 2β2 i
2
2,

A12 = (β2 + δ)i1i2 + β2i
2
2 + (γ2 − β2)i2 + (−γ2 + β2)i2r,

A13 = −β1i
2
1 + (−β1 + δ)i1i2 + (−γ1 + β1)i1 + (γ1 − β1)i1r,

A21 = α2 − γ2r + γ2i2r + γ1i1r,

A22 = (β1 − 2µ− α1)− 2β1i
2
1 − 3β2i

2
2 + (β1 − 3(µ+ α1)− γ1)i1 + (3γ1 − 2β1)i1r

+ (−β1 − 3(µ+ α2)− γ2 + 3β2 + δ)i2 + (γ1 − β1)r + (4γ2 − 3β2)i2r + (−δ − 2β1 − 3β2)i1i2,

A23 = (δ − β1)i1 + (β1 − γ1)i1r + β1i
2
1 + (β1 − δ)i1i2,

A31 = −α1 + γ1r − γ1i1r − γ2i2r,

A32 = (−δ − β2)i2 + (β2 − γ2)i2r + β2i
2
2 + (β2 + δ)i1i2,

A33 = (β2 − 2µ− α2)− 2β2i
2
2 − 3β1i

2
1 + (−β2 − δ + 3β1 − 3(µ+ α1)− γ1)i1

+ (β2 − 3(µ+ α2)− γ2)i2 + (4γ1 − 3β1)i1r + (γ2 − β2)r + (3γ2 − 2β2)i2r + (δ − 3β1 − 2β2)i1i2.

We use the following norm for z = (z1, z2, z1)T = (i1, i2, r)
T

‖z‖ =

{
max{|z1|+ |z3|, |z2|+ |z3|} if z2 z3 ≥ 0,

max{|z1|+ |z3|, |z2|} if z2 z3 ≤ 0.
(5.3)

Lemma 5.2. There exists a constant τ > 0 for which D+‖z‖ ≤ −τ‖z‖, in which z ∈ R3 is a solution of

dz

dt
= Q(φt(u))z, (5.4)

when

2γ1 < β1, 3γ2 < β2, β2 + β1 < α2, α2 + β1 < α1, γ1 + γ2 < β1. (5.5)

Proof. We present one case from eight. The other cases are similar. We consider δ = δ1β1 − δ2β2 < 0. For δ > 0, the
proof is similar.

Case 1: z1, z2, z3 > 0 and |z1|+ |z3| > |z2|+ |z3|. In this case, ‖z‖ = |z1|+ |z3| and,

D+‖z‖ = D+(|z1|+ |z3|) = D+(z1 + z3) = z′1 + z′3

= (A11 +A31)z1 + (A12 +A32)z2 + (A13 +A33)z3.
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Since β2 > γ2 and δ < 0, therefore the coefficient of z2 is less than 2β2i
2
2 + 2β2i1i2 + (2β2 − 2γ2)i2r − δ i2, and

z2 < z1, hence,

D+‖z‖ ≤ [β1 − µ+ β2 − µ− 2α1 − α2 + (β1 − 3(µ+ α1)− β2 − δ)i1 + (−β1 + β2 − 3(µ+ α2))i2

+ (2γ1 − β1 − β2 + γ2)r + (γ1 − 2β1)i1r − 2β1i1i2 − 2β1i
2
1 − γ2i2r]z1

+ [−4β1i
2
1 + (2δ − 4β1 − 2β2)i1i2 + β2 − 2µ− α2

+ (4β1 − β2 − δ − 3(µ+ α1)− 2γ1)i1(5γ1 − 4β1)i1r + (β2 − γ2 − 3(µ+ α2))i2

+ (γ2 − β2)r + (3γ2 − 2β2)i2r]z3

≤ max{L11, L12} ‖z‖,

where

L11 = β1 − µ+ β2 − µ− 2α1 − α2 + (β1 − µ− α1 − 2(µ+ α1)− β2 − δ)i1
+ (−β1 + β2 − µ− α2 − 2(µ+ α2))i2 + (2γ1 − β1 − β2 + γ2)r + (γ1 − 2β1)i1r − 2β1i1i2 − 2β1i

2
1,

L12 = −4β1i
2
1 + (2δ − 4β1 − 2β2)i1i2 + β2 − 2µ− α2 + (3β1 − 3µ− β2 − δ − 3α1 + β1 − 2γ1)i1

− 2β2i
2
2(5γ1 − 4β1)i1r + (β2 − γ2 − 3(µ+ α2))i2 + (γ2 − β2)r + (3γ2 − 2β2)i2r.

From (5.5) we have, 2β1 < α1, β2 < α2, 2γ1 < β1, 2γ2 < β2, which implies the negativity of L11 and L12.

�

From Lemma 5.2 we obtain the following theorem.

Theorem 5.1. Assuming the relations (5.5), positive semi-trajectories of the system converge to a steady-state, i.e.,
any ω-limit point of the system in Ω◦, is a steady-state.

In the end, we have the following result.

Theorem 5.2. Assuming the relations (5.5), then:
(1) If the system has the unique steady state E0, i.e., DFE, all trajectories converge to E0;
(2) If the system has a unique endemic steady state E1, then all trajectories converge to E1.

6. Numerical simulations

In this section, we will simulate the system using MATLAB software, so that the obtained analytical results can
be seen numerically. We present four cases.

6.1. Case 1. In this case, we choose a set of parameters which show convergence of trajectories to DFE. Furthermore,
we show the sensitivity of infectious individuals in both strains with respect to rates of infection of each strain β1, β2.
In this case, we have R0 < 1.

6.2. Case 2. In this case, we choose a set of parameters for which R0 < 1 and trajectories converge to strain one
dominance equilibrium point, i.e., the occurence of backward bifurcation in strain one. Furthermore we show the
sensitivity of infectious individuals in both strains with respect to rates of infection of each strain β1, β2.

6.3. Case 3. In this case, we choose a set of parameters for which R0 > 1 and trajectories converge to strain one
dominance equilibrium point. Although i2 converge to zero, Figures (c) and (d) shows the occurence of an outbreak
in strain two and the sensitivity of its peak to β1, β2.

6.4. Case 4. In this case, we choose a set of parameters for which R0 > 1, and trajectories converge to coexistence
equilibrium point. Furthermore, we show the sensitivity of infectious individuals in both strains with respect to rates
of infection of each strain β1, β2.
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Figure 3. Set of parameters in (a) and (b): µ = 0.0001, β1 = 0.0019001, β2 = 0.0014001, δ1 = 0.01,
δ2 = 0.02, γ1 = 0.008001, γ2 = 0.003001, α1 = 0.1 and α2 = 0.2. In this case R1 = 0.01898 and
R2 = 0.006997001. (a) and (b) show the convergence of the solutions with various initial conditions.
(c), (d), (e) and (f), show the sensitivity of i1(t) and i2(t) with respect to β1, β2.

7. Conclusion

In this paper, we modified White and Comiskey’s, model. We studied the effect of individuals who abuse pre-
scription opioids on individuals addicted to heroin with the aid of a two-strain epidemic model. Our model contains
superinfection and the effect of relapse of individuals under rehabilitation/treatment to drug abuse in each strain.
We compute the basic reproduction and invasion numbers and study the existence and stability of strain dominance
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Figure 4. Set of parameters in (a): µ = 0.00001, β1 = 0.0019001, β2 = 0.0014001, δ1 = 0.01,
δ2 = 0.02, γ1 = 0.08001, γ2 = 0.03001, α1 = 0.01 and α2 = 0.02. In this case R1 = 0.18981 and
R2 = 0.06997001. (a) and (b) show the convergence of the solutions with various initial conditions.
(c), (d), (e) and (f) show the sensitivity of i1(t) and i2(t) with respect to β1, β2.

and coexistence equilibrium points. We proved that backward bifurcation occurs in each strain, i.e., the existence of
strain dominance equilibriums if the basic reproduction number of the related strain is less than unity, as a result of
the relapse effect. In fact, we showed that if the rate of relapse in strain i is greater than a special value, then the
backward bifurcation occurs in the strain, for i = 1, 2. Backward bifurcation leads to bistability and makes it more
difficult to control the disease, in fact, in order to prevent the outbreak of strain i, the reducing of Ri to Ri < 1, is
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Figure 5. Set of parameters in (a): µ = 0.00001, β1 = 0.03003, β2 = 0.04004, δ1 = 0.01, δ2 = 0.02,
γ1 = 0.1001, γ2 = 0.1001, α1 = 0.01 and α2 = 0.02. In this case R1 = 3 and R2 = 2.00099. (a) and
(b) show the convergence of the solutions with various initial conditions. (c), (d), (e) and (f) show
the sensitivity of i1(t) and i2(t) with respect to β1, β2.

not enough.
Furthermore, we proved that backward bifurcation might occur in general, i.e., when the reproductive ratio R0 is less
than unity, the coexistence equilibrium point may exist.
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Figure 6. Set of parameters in (a): µ = 0.0000001, β1 = 0.03003, β2 = 0.62031, δ1 = 0.001,
δ2 = 0.002, γ1 = 0.1001, γ2 = 0.1001, α1 = 0.0001 and α2 = 0.0002. In this case R1 = 300 and
R2 = 3100. (a) and (b) show the convergence of the solutions with various initial conditions. (c), (d),
(e) and (f) show the sensitivity of i1(t) and i2(t) with respect to β1, β2.
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