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Abstract

In this research, a linear combination of moving least square (MLS) and local radial basis functions (LRBFs)

is considered within the framework of the meshless method to solve the two-dimensional hyperbolic telegraph
equation. Besides, the differential quadrature method (DQM) is employed to discretize temporal derivatives.

Furthermore, a control parameter is introduced and optimized to achieve minimum errors via an experimental

approach. Illustrative examples are provided to demonstrate the applicability and efficiency of the method. The
results prove the superiority of this method over using MLS and LRBF individually.
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1. Introduction

Meshless (mesh-free) methods, as numerical techniques are used to analyze a wide range of industrial and engi-
neering applications. In these methods, only scattered nodes are required to approximate unknown functions [6]. The
moving least square (MLS) method and radial basis functions (RBFs) are originally proposed to make scattered data
approximation. In MLS, a minimization scheme is utilized to optimize the level of accuracy. This imposes particular
limitations including complex calculations and Delta Kronecker-free features. Moreover, MLS employs a special pro-
cedure to consider internal and external nodes, which might lead to complicated conditions [10]. In order to overcome
difficulties of approximating functions by MLS near edge-points, Salkauskas [17] proposed a small support domain for
weight functions using a thin plate and other RBFs. In addition to the aforementioned disadvantage, the algebraic
set of equations for obtaining MLS approximation may not be solved. One of the ways of eliminating this problem
was suggested as using orthogonal polynomials [11, 25, 26].

Besides, RBF is an interpolation method used for scattered data approximation. While a great number of investi-
gations have been developed to approximate the solution of partial differential equations, including FDM [22], FEM
[27], BEM [1], and FVM [14], researchers’ attention has recently drawn to RBF. Ronald Hardy first introduced RBF
methods in 1968 [7]. Then, Richard Franke [18], Charles Micchelli [13], and Edward Kansa respectively in 1979,
1986, and 2000 extended the RBF’s theory. Various advantages of the RBF method have been reported frequently in
previous studies. However, it has been mentioned in [24] that increasing the number of collocation points leads to an
ill-conditioned set of equations.

In 2015, Baiyu Wang [24] proposed a new method in which a linear combination of local MLS and LRBF shape
functions was employed to approximate functions using the same support domain. In this method, temporal derivatives
were discretized by the finite difference method (FDM). The effectiveness of this scheme was examined by providing
examples of one and two-dimensional heat transfer equations.
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On the other hand, there are numerous methods to approximate a certain function with respect to time including
FDM. An alternative way is DQM, first proposed and successfully employed in [21]. This method had been frequently
applied to spatial derivatives of differential equations before. However, in [21], DQM was step-by-step applied over a
time span. Later, this method was used in [15] to solve the dynamic equation of particle delivery through a carbon
Nano-tube.

Furthermore, the telegraph equation has been repeatedly studied in previous works. In [8], the polynomial differ-
ential quadrature method was used to solve the two-dimensional hyperbolic telegraph equation under Dirichlet and
Neumann boundary conditions. Dehghan and Shokri introduced an additional meshless method for solving this equa-
tion using radial basis functions of thin plate splines at collocation points [2]. In [3], the advantages of local weak and
strong forms of the meshless method were combined. In this method, the local Petrov–Galerkin weak form was applied
only to the nodes on the Neumann boundaries while a meshless collocation method based on the strong form of the
equation was applied to the interior nodes and those located on the Dirichlet boundaries. Moreover, Dehghan and
Shokri proposed a new numerical method to solve the one-dimensional hyperbolic telegraph equation using collocation
points and approximating the solution using thin-plate splines radial basis function [4]. All these attempts resulted in
the acceptable accuracy of the solutions.

In the current work, a linear combination of LRBFs and MLS shape functions is employed to overcome the drawbacks
of either individually using RBF or MLS. Then, step-by-step DQM is applied to temporal derivatives to achieve more
accuracy in comparison with FDM. This method is specifically utilized to solve two-dimensional telegraph equation
as a second-order hyperbolic partial differential equation [4] and [16]:

∂2u

∂t2
+ 2α(x, y)

∂u

∂t
+ β2(x, y)u = A(x, y)

∂2u

∂x2
+B(x, y)

∂2u

∂y2
+ f(x, y, t) (1.1)

Where, α(x, y), β(x, y), A(x, y) , and B(x, y) are known coefficients that are positive throughout the domain.
Eq. (1.1) represents two dimensional telegraph equation provided that α and β are positive constants (α ≥ β > 0)
and, A = B = 1.
This paper includes five sections introduced as follows. In section 2, preliminaries of MLS, RBF and their local
approximation techniques as well as time discrete scheme utilizing DQM are provided. Section 3 describes solution
procedure. In section 4, some test examples are solved to demonstrate the efficiency of the method. Finally, section 5
includes conclusion.

2. Spatial and temporal discrete schemes

In this section, an overview of RBF, MLS and step-by-step DQM are provided. Then, the solution procedure of
the two dimensional telegraph equation is presented in section 3.

2.1. A brief review of RBF and LRBF. Radial basis function (RBF) method is an efficient and a truly mesh-free
technique for interpolation of multidimensional scattered data for solving partial differential equations (PDEs). The
RBF approximation of a function u(x), may be written as:

u(˚˚xxx) '
N∑
j=1

λjϕ(˚˚xxx, ˚˚xjxjxj) + ψ(˚˚xxx) for ˚˚xxx ∈ Ω ⊂ Rd (2.1)

where N is the number of data points throughout the domain, ˚˚xxx = (x1, x2, ..., xd), d stands for the dimension of
the problem, λj are coefficients to be determined, ϕ is the RBF and ψ(˚˚xxx) is called balancing polynomial. In this

article, multi-quadric form of RBF is chosen as: ϕ(x, xj) = ϕ(rj) =
√
c2 + r2

j where rj = ‖x − xj‖ is the Euclidean

norm and c is constant and is selected in this paper as: . c = 3.6. Eq. (2.1) may be written without the balancing
polynomial ψ(x) , if ϕ is unconditionally positive definite (e.g., Gaussian or inverse multi-quadrics) [2]. More details
are provided in [2]. In this paper, ψ(˚˚xxx) = 0.
In order to determine unknown coefficients λj , N collocation points are needed: ˚˚xixixi(i = 1, 2, 3, ..., N) to form a
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linear set of N equations as follows.

u(˚˚xixixi) = ui =

N∑
j=1

λjϕ(˚˚xixixi,˚˚xjxjxj) , i = 1, 2, 3, ..., N (2.2)

Where, ui is the value of u(˚˚xxx) at the point ˚˚xixixi. By solving Eq. (2.2) for λj , the RBF interpolation function
u(˚˚xxx) is attained which can be written for a two dimensional space as:

u(x, y) '
N∑
j=1

λj

√
c2 + (x− xj)2 + (y − yj)2 i = 1, 2, 3, ..., N (2.3)

For large number of collocation points, the algebraic set of equations always becomes ill-conditioned. Moreover,
accuracy of the solution sensitively depends upon selecting the free parameter c [24]. In order to resolve these issues,
for approximating the function at a certain point ˚˚xxx, only a few nodes neighboring the point are employed. The
domain which contains all these nodes is called the influence domain of the point ˚˚xxx. Influence domains can be
chosen in an arbitrary shapes including circle, rectangle, etc.
The local RBF (LRBF) method utilizes only the nodal points in the influence domain of a point at the general
coordinate ˚˚xxx in each computing step, to have a better-conditioned linear system [4, 9, 19, 20, 23]. In LRBF, the
procedure is the same as RBF except for that instead of using all N points through the domain, only n points of the
influence domain of the point ˚˚xxx is used. Hence, the interpolation LRBF un(˚˚xxx) is obtained as:

uL(x, y) '
n∑
j=1

λLj

√
c2 + (x− xj)2 + (y − yj)2 (2.4)

Where, ˚˚xjxjxj = (xj , yj)(i = 1, 2, 3, ..., n) is j-th point in the influence domain of the point ˚˚xxx = (x, y) . In addition,
the superscript, L, represents the local RBF interpolation.
Since solving Eq. (2.2) results in finding λj in terms of ui(for i = 1, 2, 3, ..., N), λLj in Eq. (2.4) can be similarly
obtained in terms of ui(for i = 1, 2, 3, ..., n). Thus, Eq. (2.4) can be rearranged and collected with respect to uj and
be rewritten in terms of the nodal values uj = u(xj , yj) as:

uL(x, y) =

n∑
j=1

ujϕ
L
j (rj) (2.5)

Where, rj =
√

(x− xj)2 + (y − yj)2 and ϕLj (rj) is the coefficient of uj in Eq. (2.4) and called LRBF shape function
corresponding to the point ˚˚xjxjxj = (xj , yj).
RBF method has been proved to be a promising tool for solving differential equations. It has been successfully combined
with other methods, e.g. boundary knot method [5]. The following subsections demonstrate how this method can be
combined with moving least square meshless method.

2.2. Moving Least Square Approximation. Let u(˚˚xxx) be a multivariate function defined in d dimensional
domain Ω. Assuming that the influence domain of ˚˚xxx ∈ Ω contains a set of n local nodes, the approximation of
u(˚˚xxx) at a certain point ˚˚xxx is represented as uh(˚˚xxx)

uh(˚˚xxx) =

m∑
j=1

pj(˚˚xxx)aj(˚˚xxx) ≡ ˚˚PPPT (˚˚xxx)˚˚aaa(˚˚xxx) (2.6)

Where pj(˚˚xxx) is a polynomial in terms of ˚˚xxx and the j-th component of polynomial vector ˚˚PPP (˚˚xxx) such that
˚˚PPPT (˚˚xxx) = {p1(˚˚xxx), p2(˚˚xxx), p3(˚˚xxx), ..., pm(˚˚xxx)} . In addition, ˚˚aaa(˚˚xxx) is unknown coefficient vector,
arbitrarily function of ˚˚xxx , given by: ˚˚aaaT (˚˚xxx) = {a1(˚˚xxx), a2(˚˚xxx), a3(˚˚xxx), ..., am(˚˚xxx)} to be determined
later. For a 1D space, ˚˚PPP (˚˚xxx) can be displayed as:

˚˚PPPT (˚˚xxx) = {1, x, x2, ..., xm} (2.7)
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And for a 2D space,

˚˚PPPT (˚˚xxx) = ˚˚PPPT (x, y) = {1, x, y, xy, x2, y2..., xk, yk}. (2.8)

Where, k < m in a way that the vector ˚˚PPPT (x, y) contains m components.
To calculate ˚˚aaa(˚˚xxx) , a functional of weighted residual, J , at the nodes located in the influence domain of ˚˚xxx
is constructed and then minimized as follows.

J =

n∑
i=1

Ŵ (‖˚˚xxx−˚˚xxxi‖)[˚˚PPPT (xi)˚˚aaa(x)− ui]2 (2.9)

Where, Ŵ (‖˚˚xxx−˚˚xxxi‖) is the weight function. The minimization process necessitates:

∂J

∂aj(˚˚xxx)
= 0 j = 1, 2, 3, ...,m (2.10)

which results in a linear set of equations. Solving this set leads to finding aj(˚˚xxx)(j = 1, 2, 3, ...,m) in terms of
ui(i = 1, 2, 3, ..., n). Hence, Eq. (2.6) can be rewritten and collected with respect to uj resulting in the following MLS
approximation [24]:

uh(x, y) = ΦΦΦT (xxx)UUU =

n∑
j=1

ujϕ
M
j (˚˚xxx) (2.11)

Where, UUU is the vector of nodal values of the function u(xxx),UUUT = {u1, u2, u3, ..., un} and ϕMj (xxx) is the coefficient of
uj in Eq. (2.6) and is called the j-th element of MLS shape function vector ΦΦΦ which can be expressed as [24]:

ΦTΦTΦT = {ϕM1 (xxx), ϕM2 (xxx), ϕM3 , ... , ϕMn (xxx)} = PPPT (xxx)AAA−1(xxx)B(xxx) (2.12)

In Eq. (2.12), AAA(xxx) is called the MLS moment matrix given by [3]:

AAA(xxx) = PPPT (xxx)WWW (xxx)PPP (xxx)

BBB(xxx) = PPPT (xxx)WWW (xxx) (2.13)

Where, WWW (xxx) is the diagonal matrix of the vector {Ŵ (||xxx− xxx1‖, Ŵ (||xxx− xxx2‖, Ŵ (||xxx− xxx3‖, ..., Ŵ (‖xxx− xxxn‖)}T
The weighted function Ŵ has been proposed in various types including cubic and quartic spline as well as exponential
weight functions. In general, Ŵ shows two specific behavior. First is that it devotes larger weighting to the points
farther to the point xxx, at which the function is approximated. Second is that it causes the points smoothly enter and
leave the support domain when xxx moves [12]. These properties may give proper guidelines for designing and choosing

weighted function. In this paper, the weighted function Ŵ is assumed to be:

Ŵ (xxx− xxxi) ≡ Ŵ (d) =

{
1− 6d

2
+ 8d

3 − 3d
4
, d ≤ 1

0 d > 1

d =
‖xxx− xxxi‖2

dw
=

√
(x− xi)2 + (y − yi)2

dw
(2.14)

Where, dw is the radius of support domain. For solving a specific problem, dw must be chosen in a way that the
number of points in support domain of a certain point, xxx, equals to the number of unknown coefficients λj . Otherwise,
the resulting set of algebraic equations.

In this work, the radius of the influence domain (h) is selected in a way that the constructed MLS shape functions
are compatible and consistent with the order of polynomials included in the formulation. To ensure that the number
of points for approximating a function at a certain point matches the order of polynomials, h was experimentally
selected as h = 1.5δ, where δ is horizontal (or vertical) distance between two adjacent nodes. This selection leads to
the solvability of the set of equations (2.10).
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2.3. The combined shape function. For avoiding disadvantages of individually using LRBF or MLS, a linear
combination of these two mentioned methods’ shape functions is employed in this research via introducing a control
parameter, v ∈ [0, 1]. This technique was first proposed in [24] and applied on two heat transfer equations successfully.
Thus, the shape function, φj , as well as the approximation of an arbitrary function, u(x, y) , are expressed as:

φj = νϕMj + (1− v)ϕLj

u(x, y) =

n∑
j=1

φj(x, y)uj (2.15)

Since Eq.(2.15) is used to approximate unknown function of the telegraph equation in terms of nodal values, spatial
derivatives of shape functions φj(x, y) are required. The procedure of calculating these derivatives are frequently
reported in previous works including [3].

2.4. Time discrete scheme. For approximating temporal derivatives of 2D telegraph equation, step-by-step DQM is
employed. This method was effectively examined in [21] and [15]. Hence, the procedure of this method is summarized
as follows [15].
First in this method, the time domain ([0, T ]) is divided into b blocks (time spans) each of which is discretized with
Nt nodes according to the following distribution:

τm,l = {m− 1

b
+

1

2b
[1− cos(

(l − 1)π

NT − 1
)]}T,

{
m = 1, 2, 3, ..., b
l = 1, 2, 3, ..., Nt

(2.16)

Where, τm,l indicates the l-th node in m-th block. On the basis of polynomial DQM, temporal derivatives of a certain
function f(x, y, t) at t = τm,l are approximated as:{

ḟ |t=τm,l
∼=
∑Nt

i=1 g
(1)
l,i fm,i

f̈ |t=τm,l
∼=
∑Nt

i=1 g
(2)
l,i fm,i

(2.17)

Where, fm,i is the value of the function f(x, y, t) in m-th block at i-th node or simply at t = τm,i. The constants,

g
(s)
k,i (s = 1, 2), can be obtained from the following recursive formulas:

g
(s)
l,i = n(g

(s−1)
l,l g

(1)
l,i −

g
(s−1)
l,i

τl − τi
),

{
i, l = 1, 2, 3, ..., Nt
i 6= l

(2.18)

g
(s)
l,l = −

Nt∑
j=1,j 6=l

g
(s)
l,j , l = 1, 2, 3, ..., Nt (2.19)

g
(1)
l,i =

M̂(τl)

(τl − τi)M̂(τi)
,

{
i, l = 1, 2, 3, ..., Nt
i 6= l

(2.20)

Where, M̂(τl) =

Nf∏
j=1,j 6=l

(τl − τj) .

g
(1)
k,i and g

(2)
k,i are calculated by Eqs. (2.18)-(2.20). Note that, in each block, initial conditions are final temporal

conditions of the previous block. In other words, for m ≥ 2:{
f |t=τm,1

= f |t=τm−1,Nt

ḟ |τ=τm,1
= ḟ |τ=τm−1,Nt

(2.21)

Which results in:{
fm,1 = fm−1,Nt∑Nt

i=1 g
(1)
l,i fm,i =

∑Nt

i=1 g
(1)
Nt,i

fm−1,i ,m = 2, 3, ..., b
(2.22)
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For m = 1, the initial conditions are the same as the main initial conditions of the problem. Hence, in each block (for
m = 1, 2, 3, ..., b), the main differential equation must be discretized and solved at t = τm,3, τm,4, τm,5, ..., τm,Nt

under
initial conditions Eq. (2.22).

3. Solution procedure

In section 2, the spatial and temporal approximation used in this paper were explained. Now, Eq. (1.1) is considered
to be discretized throughout the domain Ω = {(x, y), L0

x < x < L1
x, L

0
y < y < L1

y} surrounded by the boundary ∂Ω
under initial conditions and Dirichlet boundary equations listed as:

∂2u

∂t2
+ 2α(x, y)

∂u

∂t
+ β2(x, y)u = A(x, y)

∂2u

∂x2
+B(x, y)

∂2u

∂y2
+ f(x, y, t)

u(x, y, 0) = g0(x, y), (x, y) ∈ Ω (3.1)

∂u(x, y, t)

∂t
|t=0 = g1(x, y), (x, y) ∈ Ω

u(x, y, t) = h(x, y, t), (x, y) ∈ ∂Ω (3.2)

Before discretizing Eq. (1.1), Eq. (2.15) must be rewritten in a general form. Supposing that N is total number of
scattered points (nodes) through the domain Ω, Eq. (2.15) can be displayed as:

u(xi, yi, t) =

N∑
j=1

ψi,juj(t) (3.3)

In which, (xi, yi) isi− th node in global numbering. Furthermore, ψi,j = φj(xi, yi) if j− th node is in influence domain
of i− th node. Otherwise, ψi,j = 0. Moreover, the spatial derivatives of u(x, y, t) at i− th node ((x, y) = (xi, yi)) are
given as follows.

∂2u(x, y, t)

∂x2
|(x,y)=(xi,yi) =

N∑
j=1

ψxxi,juj(t)

∂2u(x, y, t)

∂y2
|(x,y)=(xi,yi) =

N∑
j=1

ψyyi,juj(t) (3.4)

Now, Eq. (1.1) ati− th point, which is inside the domain Ω, can be written as:

N∑
j=1

ψi,j üj(t) + 2αiψi,j u̇j(t) + β2
i ψi,juj(t)−Aiψxxi,juj(t)−Biψ

yy
i,juj(t)− fi = 0 (3.5)

Where αi, βi, Ai, Bi and fi are respectively α(xi, yi), β(xi, yi)A(xi, yi), B(xi, yi) and f(xi, yi). If i-th node is on the
boundary ∂Ω, the boundary conditions Eq. (3.2) must be set:

ui = hi(t) (3.6)

Eq. (3.5) or (3.6) must be written for i = 1, 2, 3, ..., N and then all equations are collected and expressed in the
following matrix form:

MMMẌXX(t) +CCCẊXX(t) +KKKXXX(t)−FFF = 0 (3.7)

In Eq. (3.7), XXXand FFF are respectively the vectors of unknowns and constants:

XXXT = {u1, u2, u3, ..., uN},
FFFT = {f1, f2, f3, ..., fN}, (3.8)

In Eq. (3.8), if i− th node is on the boundary ∂Ω , the corresponding element of the vector, FFF must be replaced with
hi using Eq. (3.6).
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In addition, MMM,CCC, andKKK are matrices whose components at i − th row are as follows: If i − th node is inside the
domain, then:

Mij = ψi,j

Cij = 2αiψi,j

Kij = β2
i ψi,j −Aiψxxi,j −Biψ

yy
i,j (3.9)

If i− th node is on the boundary ∂Ω :

Mij = 0

Cij = 0

Kij = 1 (3.10)

Now, for solving the linear initial value set of ordinary differential equations (3.7), step-by-step DQM is employed

using Eqs. (2.16) -(2.22). First, the coefficients g
(1)
l,i and g

(2)
l,i are calculated by Eqs. (2.18). Then the time span, [0, T ],

is discretized with b blocks and Nt nodes in each block according to Eq. (2.16). In each block based on Eq. (2.17),
Eq. (3.7) can be approximated at the time τm,l for l = 3, 4, 5, ..., Nt:

MMM

Nt∑
i=1

g
(2)
l,i XXXm,i +CCC

Nt∑
i=1

g
(1)
l,i XXXm,i +KKKXXXm,l −FFF = 0 (3.11)

Afterwards, two initial conditions are added to Eq. (3.11) to form a linear algebraic set of N, Ntequations. Solving
this set leads to the solution of Eq. (3.7) within the m − th block. Repeating this procedure for m = 1, 2, 3, ..., b,
completely covers the time span.

4. Numerical experiments

This section provides numerical examples and results are compared with those reported in previous studies to reveal
the superiority of this method over similar ones. In order to evaluate this method, the following errors are defined
[20]:

L∞ = max
i
|uexacti − unumericali | (4.1)

L2 =

√√√√ N∑
i=1

(uexacti − unumericali )2

RMS =

√√√√ N∑
i=1

1

N2
(uexacti − unumericali )2

ε =

√√√√ N∑
i=1

(uexacti − unumericali )2

uexact
2

i

Where, L∞ and ε are respectively absolute and the relative error. In the following examples, the domain is supposed

to be [0, a]× [0, a] and uniformly discretized with N nodes in x and y directions leading to total number of N
2

nodes.

Thus, the distance between two adjacent nodes is δ =
a

N − 1
. In addition, the radius of the influence domain, h, is

selected as h = 1.5δ. Furthermore, the number of blocks (b) and temporal nodes of each block (Nt) are displayed as
(b, Nt) . Note that in all examples, c = 3.6 and m = 2.
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Figure 1. RMS error of example 4.1 through time for different values of ν. Black: ν = 0, Blue:
ν = 0.2, Red: ν = 0.5, Green: ν = 0.8, Brown: ν = 1.

Example 4.1. In the first example, α = β = 1, and A = B = 1. Spatial and temporal domains are (x, y) ∈ [0, 1]×[0, 1]
and T = 3. The initial and boundary conditions are given by

u(x, y, 0) = sinh(x) sinh(y)

ut(x, y, t)|t=0 = − sinh(x) sinh(y)

u(0, y, t) = u(x, 0, t) = 0

u(1, y, t) = e−t sinh(1) sinh(y)

u(x, 1, t) = e−t sinh(1) sinh(x) (4.2)

The exact solution is u(x, y, t) = e−t sinh(x) sinh(y). The solution parameters are set as: N̄ = 11, (b,Nt) = (9, 5).
Figure (1) shows the variations of RMS error versus time for several values of v. It is evident that for v = 0.5, the
solution provides better approximation with the lowest maximum error. Hence, v = 0.5 is set for obtaining the next
results. Moreover, it is evident that the RMS decreases as the time elapses. This is one of the advantages of this
method since in time-marching methods, e.g. finite difference method, the error is accumulated and subsequently
increases as the time passes. However in step-by-step DQM, the time span is discretized similar to boundary value
problems and the whole discretized domain is solved simultaneously whereas in time-marching methods the solution
at each time step is obtained directly from previous time steps resulting in accumulating the error over time. Hence,
in this method, the errors do not increase necessarily and may even decrease.
In Figure (2), maximum L∞for each point is plotted over whole time span, [0, 3] conceding the accuracy of the solution
throughout the domain. This is similarly certified using Figure (3) depicting exact and numerical solution at various
times. To receive a better consideration of accuracy, different errors obtained by this method are tabulated in Table
(1). It is inferred that the present results are almost one order of magnitude more accurate than those reported in [5].
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Figure 2. Maximum absolute error over time span throughout the domain in example 4.1.

Figure 3. Exact and numerical solution throughout the domain in example 4.1 at various times: (a)
t = 0.66, (b) t = 1.33, (c) t = 2, (d) t = 2.66 ; Black points: numerical solution, 3D plot: exact
solution.

Table 1. Comparison of the present solution of example 4.1 with the corresponding results in [5].
t L2 L∞ ε RMS RMS reported in [5] by IMQ

0.5 4.14× 10−5 1.16× 10−5 1.42× 10−5 3.76× 10−6 1.76× 10−5

1 3.18× 10−5 6.41× 10−6 1.80× 10−5 2.89× 10−6 6.96× 10−6

2 1.39× 10−5 3.33× 10−6 2.15× 10−5 1.26× 10−6 3.05× 10−5

3 2.79× 10−6 5.06× 10−7 1.17× 10−5 2.53× 10−7 4.63× 10−5
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Figure 4. RMS error of example 4.2 through time for various values of ν. Black: ν = 0, Blue:
ν = 0.2, Red: ν = 0.5, Green: ν = 0.8, Brown: ν = 1.

Example 4.2. In the this example, α = β = 1, and A = B = 1. In addition,(x, y) ∈ [0, 1] × [0, 1]and T = 5. The
initial and boundary conditions are as follows.

u(x, y, 0) = sin(x) sin(y)

ut(x, y, t)|t=0 = 0

u(0, y, t) = u(x, 0, t) = 0

u(1, y, t) = cos(t) sin(1) sin(y)

u(x, 1, t) = cos(t) sin(1) sin(x) (4.3)

The exact solution is u(x, y, t) = cos(t) sin(x) sin(y). To solve this initial-boundary value problem, N̄ and (b,Nt) are
respectively taken 11, (9, 5). Figure (4) illustrates RMS error through time for various values of ν. Similar to example
4.1, it can be realized that applying ν = 0.5 results in a more accurate solution. Therefore, ν is set to be 0.5. Moreover,
maximum value of L∞ all over the domain is depicted in Figure (5). In Figure (6), exact and numerical solution at
different times are shown through the domain. Figures (4) and (5) demonstrate the capability of the proposed method
for solving two dimensional telegraph equation.
Additionally, various errors, defined in Eq. (4.1) are calculated and given in Tables (2) and (3). Comparing the results
with those presented in [8], [3] and [5] using these tables reveals higher accuracy of this method. On the other hand in
[8] and [3], N̄ = 21 . While in [8] standard RK4 method with ∆t = 0.001 was employed to solve time-dependent set of
ordinary differential equations (ODEs), an iterative process with ∆t = 0.1 was used in [3] to solve ODE set. Hence, in
the current paper, total number of spatial and temporal nodes are fewer than those in the aforementioned researches
whereas the obtained accuracy is higher. This proves the superiority of the present method over some previous works.
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Figure 5. Maximum absolute error over time span throughout the domain in example 4.2.

Figure 6. Exact and numerical solution throughout the domain in example 4.2 at various times: (a)
t=0.66, (b) t=2, (c) t=3.33, (d) t=4.66; Black points: numerical solution, 3D plot: exact solution.

Table 2. Comparison of the errors in example 4.2 with the corresponding results in [8] and [5].
t L2 RMS RMS reported in [8] RMS reported in [5] via

IMQ
1 3.18× 10−5 3.18× 10−6 4.27× 10−6 7.24× 10−5

2 2.29× 10−5 2.08× 10−6 3.94× 10−6 9.37× 10−5

3 2.01× 10−5 1.83× 10−6 7.65× 10−7 5.46× 10−5

4 3.58× 10−5 3.25× 10−6 - -
5 2.89× 10−5 2.63× 10−6 4.18× 10−6 -
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Figure 7. RMS error of example 4.3 with respect to time for different values of ν. Black: ν = 0,
Blue: ν = 0.2, Red: ν = 0.5, Green: ν = 0.8, Brown: ν = 1.

Table 3. The results of example 4.2 compared with those reported in [8] and [3].
t L∞ ε Relative error reported in

[8]
Relative error reported in
[3] by MLWS-MLS

Relative error reported in
[3] by MLPG-MLS

1 6.24× 10−6 2.09× 10−5 2.66× 10−5 5.60× 10−5 2.24× 10−5

2 5.15× 10−6 1.78× 10−5 3.19× 10−5 8.17× 10−5 5.00× 10−5

3 7.57× 10−6 6.59× 10−6 2.60× 10−6 1.90× 10−4 8.00× 10−5

4 6.20× 10−6 1.77× 10−5 - - -
5 6.29× 10−6 3.30× 10−5 4.98× 10−5 - -

Example 4.3. Similar to foregoing examples, α = β = A = B = 1, (x, y) ∈ [0, 1]× [0, 1] and T = 5. The initial and
boundary conditions are written as:

u(x, y, 0) = log(1 + x+ y)

ut(x, y, t)|t=0 =
1

1 + x+ y

u(0, y, t) = log(1 + y + t)

u(x, 0, t) = log(1 + x+ t)

u(1, y, t) = log(2 + y + t)

u(x, 1, t) = log(2 + x+ t) (4.4)

The exact solution is u(x, y, t) = log(1+x+y+t). In this example, N̄ = 9 and (b,Nt) = (15, 5) . In order to clarify the
role of v in attaining an appropriate approximation, RMS error versus time for v = 0, 0.2, 0.5, 0.8, 1 is plotted in Figure
(7). According to this figure, v is taken to be 0.2 as this value offers higher accuracy. Furthermore, Figures (8) and
(9) indicate that the numerical results agree well with the exact solution. To have a precise image of accuracy level,
Tables (4) and (5) compare the results with obtained errors in [8],[3], and [5]. It can be inferred that the proposed
method provides more accurate solution using fewer spatial and temporal nodes and consequently less computational
cost.
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Figure 8. Maximum absolute error over time span throughout the domain in example 4.3.

Figure 9. Exact and numerical solution throughout the domain in example 4.3 at various times: (a)
t=0.66, (b) t=2, (c) t=3.33, (d) t=4.66; Black points: numerical solution, 3D plot: exact solution.

Table 4. Comparison of the errors in example 4.3 with the corresponding results in [8] and [5].
t L2 RMS RMS reported in [8] RMS reported in [5] via

IMQ
1 6.19× 10−5 6.87× 10−6 5.39× 10−5 1.14× 10−5

2 2.45× 10−5 2.72× 10−6 4.95× 10−5 2.39× 10−5

3 1.84× 10−5 2.04× 10−6 4.96× 10−5 3.18× 10−5

4 2.09× 10−5 2.33× 10−6 - -
5 1.97× 10−5 2.19× 10−6 4.42× 10−5 -
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Figure 10. RMS error of example 4.4 with respect to time for different values of ν. Black: ν=0,
Blue: ν=0.2, Red: ν=0.5, Green: ν=0.8, Brown: ν=1.

Table 5. The results of example 4.3 compared with those reported in [8] and [3].
t L∞ ε Relative error reported in

[8]
Relative error reported in
[3] by MLWS-MLS

Relative error reported in
[3] by MLPG-MLS

1 1.43× 10−5 6.26× 10−6 5.34× 10−5 9.09× 10−5 7.19× 10−5

2 6.72× 10−6 1.96× 10−6 3.33× 10−5 8.70× 10−4 8.78× 10−5

3 4.76× 10−6 1.27× 10−6 2.77× 10−5 9.93× 10−4 4.80× 10−4

4 5.75× 10−6 1.30× 10−6 - 4.70× 10−3 6.09× 10−4

5 5.46× 10−6 1.12× 10−6 2.27× 10−5 7.30× 10−3 9.49× 10−4

Example 4.4. In this example, the following singular problem is investigated: α =
1

x2
, β =

1

x
,A = B = 1+x2, (x, y) ∈

[0, 1]× [0, 1] and T = 5. The initial and boundary conditions are written as:

u(x, y, 0) = sinh(x) sinh(y)

ut(x, y, t)|t=0 = − sinh(x) sinh(y)

u(0, y, t) = u(x, 0, t) = 0

u(1, y, t) = sinh(1)e−t sinh(y)

u(x, 1, t) = sinh(1)e−t sinh(x) (4.5)

The exact solution is u(x, y, t) = e−t sinh(x) sinh(y). In this example, N̄ = 11 and (b,Nt) = (15, 5) . Similar to
previous examples, RMS error versus time for ν = 0, 0.2, 0.5, 0.8, 1 is depicted in Figure (10) suggesting ν be selected
as 0.2. Besides, Figures (11) and (12) reveal the agreement of numerical solution with the exact one. Moreover, Table
(6) displays various errors and compares them with those given in [2] where finite difference scheme was used with
Nt = 1001 andN̄ = 11. It is induced that this method is capable of solving 2D telegraph equation more accurately
with significantly less computational cost.
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Figure 11. Maximum absolute error over time span throughout the domain in example 4.4.

Figure 12. Exact and numerical solution throughout the domain in example 4.4 at various times:
(a) t=0.66, (b) t=2, (c) t=3.33, (d) t=4.66; Black points: numerical solution, 3D plot: exact solution.

Table 6. Comparison of the errors in example 4.4 with the corresponding results in [2].
t L∞ L∞ reported in [18] L2 L2 reported in [2] ε RMS RMS reported in [2]
1 4.55× 10−6 4.06× 10−5 1.88× 10−5 1.70× 10−4 1.07× 10−5 1.71× 10−6 1.55× 10−5

2 1.74× 10−6 2.10× 10−5 7.69× 10−6 8.57× 10−5 1.18× 10−5 6.99× 10−7 7.79× 10−6

3 6.68× 10−7 9.35× 10−6 3.02× 10−6 3.71× 10−5 1.26× 10−5 2.74× 10−7 3.37× 10−6

4 2.52× 10−7 3.79× 10−6 1.17× 10−6 1.51× 10−5 1.33× 10−5 1.06× 10−7 1.37× 10−6

5 9.54× 10−8 1.48× 10−6 4.48× 10−7 5.95× 10−6 1.39× 10−5 4.07× 10−8 5.41× 10−7
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5. Conclusion

This paper deals with solving two-dimensional hyperbolic telegraph equation. The solution method is based on
a linear combination of shape functions arising in the moving least square (MLS) meshless method and local radial
basis functions (LRBFs). In order to obtain higher accuracy in comparison with some previous works, the step-by-
step differential quadrature method (DQM) is employed to solve the time-dependent ODE set. Moreover, a control
parameter is introduced to be experimentally optimized to achieve minimum errors. Besides, numerical examples
are provided to validate the applicability and efficiency of the method. The results demonstrate that by using the
proposed method, higher accuracy, as well as less computational cost, are achieved. This proves that the presented
method is a trustworthy and promising tool for investigating the telegraph equation.

References

[1] C. A. Brebbia , J. C. F. Teles, and L.C. Wrobel, Boundary element techniques, Berlin: Springer, 1984.
[2] M. Dehghan and A. Shokri, A Meshless Method for Numerical Solution of a Linear Hyperbolic Equation with

Variable Coefficients in Two Space Dimensions, Numer. Methods Partial Differential Eq., 25 (2009), 494-506.
[3] M. Dehghan and A. Ghesmati, Combination of meshless local weak and strong (MLWS) forms to solve the two

dimensional hyperbolic telegraph equation, Engineering Analysis with Boundary Elements, 34 (2010), 324-336.
[4] M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numerical Methods

Partial Differential Eq, 24 (2008), 1080-1093.
[5] M. Dehghan and R. Salehi, A method based on meshless approach for the numerical solution of the two-space

dimensional hyper bolic telegraph equation, Math. Meth. Appl. Sci.
[6] F. Gao and C. Chi, Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equa-

tion, Appl. Math. Comput, 187 (2007), 1272-1276.
[7] R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, Journal of Geophysical Research,

76(8) (1971), 1905-1915.
[8] R. Jiwari, S. Pandit, and R. C. Mittal, A differential quadrature algorithm to solve the two dimensional lin-

ear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions, Applied Mathematics and
Computation, 218 (2012), 7279-7294.

[9] S. Kazem, J. A. Rad, and K. Parand, A meshless method on non-Fickian flows with mixing length growth in
porous media based on radial basis functions: a comparative study, Comput. Math. Appl, 64 (2012), 399-412.

[10] D. Levin, The approximation power of moving least-squares, Math. Comput, 67 (1998), 1517-1531.
[11] K. M. Liew, C. Yumin, and S. Kitipornchai, Boundary Element-free method (BEFM) for two-dimensional elasto-

dynamic analysis using Laplace transforms, Int. J. Numer. Methods. Eng, 64(12) (2005), 1610-1627.
[12] G. R. Liu, Moving Beyond the Finite Element Method, Second Edition, Boca Raton, CRC Press, 2009.
[13] C. Micchelli, Interpolation of scattered data: Distance matrices and conditionally positive definite functions,

Constructive Approximation, 2 (1986), 11-22.
[14] S. Patankar, Numerical heat transfer and fluid flow, USA, Taylor & Francis, 1980.
[15] B. Rezapour and M. A. Fariborzi Araghi, Nanoparticle delivery through single walled carbon nanotube subjected

to various boundary conditions, Microsyst. Technol, 25 (2019), 1345-1356.
[16] D. Rostamy, M. Emamjomea, and S. Abbasbandy, A meshless technique based on the pseudospectral radial basis

functions method for solving the two-dimensional hyperbolic telegraph equation, Phys. J. Plus, (2017), 132-263.
[17] K. Salkauskas, Moving least squares interpolation with thin-plate splines and radial basis functions, Comput.

Math. Appl, 24 (1992), 177-185.
[18] S. A. Sarra, A numerical study of the accuracy and stability of symmetric and asymmetric RBF collocation methods

for hyperbolic PDEs, Numerical Method Partial Differential Equations, 24(2) (2008), 670-686.
[19] A. Shokri and M. Dehghan, Meshless method using radial basis functions for the numerical solution of two-

dimensional complex Ginzburg–Landau equation, Comput. Model Eng. Sci, 34 (2012), 333-358.
[20] A. Shokri and M. Dehghan, A Not-a-Knot meshless method using radial basis functions and predictor–corrector

scheme to the numerical solution of improved Boussinesq equation, Comput. Phys. Commun, 181 (2010), 1990-
2000.



REFERENCES 985

[21] C. Shu and K. S. Yao, Block-marching in time with DQ discretization: an efficient method for time-dependent
problems, Comput. Methods Appl. Mech. Eng, 191 (2002), 4587-4597.

[22] G. D. Smith, Numerical solution of partial differential equations: finite difference methods, USA, Oxford University
Press, 1986.

[23] M. Tatari and M. Dehghan, A method for solving partial differential equations via radial basis functions: appli-
cation to the heat equation, Eng. Anal. Bound. Elem, 34 (2010), 206-212.

[24] B. Wang, A local meshless method based on moving least squares and local radial basis functions, Engineering
Analysis with Boundary Elements, 50 (2015), 395-401.

[25] Z. Zhang, L. Yumin, K. M. Cheng, and Y. Y. Lee, Analyzing 2D fracture problems with the improved element-free
Galerkin method, Eng. Anal. Boundary Elem, 32 (2008), 241-250.

[26] Z. Zhang, P Zhao, and K. M. Liew, Improved element-free Galerkin method for two- dimensional potential problems
, Eng. Anal. Boundary Elem, 33 (2009), 547-554.

[27] O. C. Zienkiewicz and R. L. Taylor, The finite element method, Bristol, Butterworth, 2000.


	1. Introduction
	2. Spatial and temporal discrete schemes
	2.1. A brief review of RBF and LRBF
	2.2. Moving Least Square Approximation 
	2.3. The combined shape function
	2.4. Time discrete scheme

	3. Solution procedure
	4. Numerical experiments
	5. Conclusion
	References

