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Abstract

..

In this article, we use the collocation method based on the radial basis functions with symmetric variable shape
parameter (SVSP) to obtain numerical solutions of neutral-type functional-differential equations with proportional
delays. In this method, we control the absolute errors and the condition number of the system matrix through

the program prepared with Maple 18.0 by increasing the number of collocation points that have a direct effect
on the defined shape parameter. Also, we present the tables of the rate of the convergence (ROC) to investigate
and show the convergence rate of this method compared to the RBF method with constant shape parameter.
Several examples are given to illustrate the efficiency and accuracy of the introduced method in comparison with

the same method with the constant shape parameter (CSP) as well as other analytical and numerical methods.
Comparison of the obtained numerical results shows the considerable superiority of the collocation method based
on RBFs with SVSP in accuracy and convergence over the collocation method based on the RBFs with CSP and
other analytical and numerical methods for delay differential equations (DDEs).
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1. Introduction

In modeling many natural phenomena, paying attention to hereditary effects and not ignoring them leads to the
emergence of a differential equation in which the state variable or its derivatives appear with the delay arguments.
These equations appear in the modeling of many science and engineering problems, especially in physics, chemistry,
economics, population dynamics, species interaction, physiology, and many other fields. We focus on a particular class
of DDEs, namely neutral functional-differential equations with proportional delays, which have the constraint that
the derivatives of delay terms can appear in the equations. Such functional-differential equations play a major role
in describing many different real life phenomena ([16]). In addition, different analytical and numerical methods for
obtaining the solutions of this type of delay differential equations have been presented by different authors.

Wang et al. applied the continuous Runge-Kutta methods ([35]) and one-legθ-methods ([34]) to compute the ap-
proximate solutions of neutral-type delay differential equations. Ishiwata et al. in [16] used the rational approximation
method to obtain the approximate solutions of delay differential equations with proportional delays. Also, applying
the collocation method, these types of equations are solved approximately in [17]. Ghomanjani et al. in [10] applied
the Bezier control points method to get very accurate approximate analytical solutions. In [37], the reproducing ker-
nel Hilbert space method (RKHSM) was applied to neutral functional-differential equations with proportional delays.
Chen and his collaborator in [4] applied the variational iteration method for solving a neutral functional-differential
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(a) CSP (b) SVSP

Figure 1. Graphs of absolute error versus shape parameter with GA-RBF, (N = 24, c∗ = 0.5), for Example 1.

equation with proportional delays. The authors in [31] derived an efficient numerical scheme for DDE and stochas-
tic delay differential equation (SDDE) based on Legendre spectral-collocation method, which proved to be numerical
methods that can significantly speed up the computation. Davaeifar and Rashidinia in [5] considered a system of multi
pantograph type delay differential equations with variable coefficients subject to the initial conditions and proposed
a collocation method to obtain an approximate solution. Based on one of the Appell polynomials, namely Genocchi
polynomials, a new simple and effective algorithm is presented by Isah and Phang to solve delay differential equations
with neutral terms, generalized Pantograph equations and delay differential system with constant and variable coeffi-
cients ([15]). Recently, the author in [8] examined asymptotic mean-square stability analysis of stochastic linear theta
scheme for n-dimensional stochastic delay differential equations. Also, a direct method is proposed in [26] for solving
Volterra-Fredholm integral equations with time delay by using orthogonal functions and their stochastic operational
matrix of integration. The readers are also encouraged to see theoretical and numerical studies in [13, 24, 38–42].

We have allocated this work to introduce the collocation method based on radial basis functions with constant
and symmetric variable shape parameter strategies for the neutral functional-differential equations with proportional
delays used in [4],

(u(t) + a(t)u(pmt))(m) = βu(t) +
m−1∑
k=0

bk(t)u
(k)(pkt) + f(t), (1.1)

with the initial conditions

u(l)(0) = γl, l = 0, 1, ...,m− 1, (1.2)

where a(t) and bk(t) are known analytical functions and β, pk and γk are given constants with 0 < pk < 1 for
k = 0, 1, ...,m.

This paper is organized as follows: after introducing the global radial basis functions in the second section,
functional-differential equations are implemented by RBFs in section 3. Next, in section 4, RBF method is applied to
some initial value problems. Finally, the conclusion is given in section 5.

2. Collocation method based on the radial basis functions

In the last 25 years, the meshless method of radial basis functions has been considered by many researchers to
approximate the solutions of various differential equations due to its significant advantages. This method was first
proposed in 1971 by Hardy ([14]) for the interpolation of multivariate functions with scattered data. The properties
and advantages of radial basis functions have motivated many researchers to apply this method to approximate the
solutions of a variety of differential equations. Edvard Kanasa in [18, 19] introduced a method for the estimation of
partial derivatives. Afterward, this method was applied as a meshless method for numerical solutions of many partial
differential equations (PDEs) and ordinary differential equations (ODEs) based on the collocation scheme. Because
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of the collocation technique, RBF method does not need to evaluate any integral. One of the most important features
of the radial basis functions method is that they are not sensitive to the problem space dimension. Therefore, this
method can be easily used for higher dimensional problems.

Khodayari and Ranjbar in [23] used the global radial basis functions-based differential quadrature (RBFs-DQ)
method for solving multi-dimensional Black-Scholes equation. Rashidinia and Khasi applied a stable Gaussian radial
basis function method for solving Helmholtz equations ([30]). Recently, the authors in [33] employed a combination of
variational iteration method and Padé approximation method, called the VIM-Padé technique, to solve some nonlinear
initial value problems and a delay differential equation.

In recent decades, many researchers have used the RBFs method to solve a variety of differential equations (see
[1, 6, 7, 11, 22, 25, 27, 28] and the references cited therein).

A radial basis function on Rd is a function of the form

ϕ∗(t) = ϕ(∥t− t∗∥2),

where t, t∗ ∈ Rd and ∥.∥2 denotes the Euclidean distance between t and t∗. The radial basis function ϕ is radially
symmetric about the center t∗. Many different radial basis functions have been used in the literature. Some of the
well-known RBFs are listed in Table 1, where r = ∥t− t∗∥2 and c is a free positive parameter, often referred to as the
shape parameter, to be specified by the user.

Table 1. Some well-known functions that generate RBFs

Name of radial basis function Definition

Multiquadric (MQ) ϕ(r) =
√
c2 + r2

Inverse Multiquadric (IMQ) ϕ(r) = 1√
c2+r2

Inverse Quadric (IQ) ϕ(r) = 1
c2+r2

Gaussian (GA) ϕ(r) = e−c2r2

Thin Plate Spline (TPS ) ϕ(r) = r2 log(r)

2.1. RBFs interpolation. RBFs interpolation method was first studied by Roland Hardy for the interpolation of
scattered data ([14]). Polynomial methods had previously been used, but they do not have an insolvency property
for two-dimensional and higher dimensional scattered data. Researchers’ interest in using this interpolation method
developed after the review of Franke ([9]). The convergence property of the RBFs method has been shown by Buhman
in [2].

Now, we employ RBF interpolation method at N separately nodes (ti, fi) with i = 1, 2, ..., N, ti ∈ Rd and fi ∈ R .
For this purpose, if one chooses N center points t∗1, ..., t

∗
N in Rd, then the basic RBF interpolant for data values f(ti)

at scattered data ti, i = 1, 2, ..., N in d dimensions takes the form

P (t) =
N∑
i=1

λiϕ(∥t− t∗i ∥2),

where ϕ(r) with r = ∥t−ti
∗∥2 can be chosen from Table 1. The coefficients λj are chosen by enforcing the interpolation

conditions

P (tj) = f(tj), j = 1, 2, ...N,

at a set of points that usually coincides with the N centers. Enforcing the interpolation condition at the N centers
results in the N ×N linear system of equations which can be represented as the matrix equation

Aλ = f . (2.1)

Solving this system, the solution of the interpolation problem is obtained as

λ = A−1f . (2.2)
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Figure 2. Graphs of absolute error versus shape parameter with GA-RBF, (N = 24, c∗ = 0.5), for Example 2.

If the radial basis functions are of the Gaussian type (GA-RBF), it can be shown that the matrix A with entries
aji = ϕ(∥t∗j − t∗i ∥2), i, j = 1, ..., N is positive definite for distinct interpolation nodes ([32]). The condition number
κs(A) for a given square matrix A is defined as

κs(A) = ∥A∥s∥A−1∥s, s = 1, 2,∞. (2.3)

The condition number depends on various factors. One of the most important factors is the suitable selection of the
shape parameter value. For a fixed number of interpolation nodes, if the shape parameter is large, then RBF methods
are very accurate. However, the system matrix will be very ill-conditioned in this case.

2.2. Variable shape parameter strategy. The choice of a suitable value for shape parameters of RBF methods is
an important topic for applying RBF method for interpolation or approximation. A large value shape parameter c
produces poor approximation and a well-conditioned system matrix A. The system matrix will be ill-conditioned when
we choose a small shape parameter and will result a very accurate RBF approximation. There are many mathematical
techniques for dealing with this problem in the use of RBFs method. Many algorithms and techniques have been
presented to improve bad condition numbers in older works such as the multilevel method, domain decomposition
method, truncated RBF method, RBF with variable shape parameter and knot optimization method ([21]).

The concept of variable shape parameters was proposed by Kansa and Carlson in [20]. They considered a set of
shape parameters which minimizes an error function over some evaluation nodes. In fact, an important advantage
of using the variable shape parameter in radial basis functions is that it usually improves the interpolation matrix
condition number.

Although working with constant shape parameter is simple, some works show that the use of the variable shape
parameter in radial basis functions has a considerable advantage over the constant shape parameter. So far, math-
ematicians have proposed several strategies for determining the variable shape parameter. First, three formulas are
suggested by Kansa in [18] to determine different shape parameter corresponding to each center points. Then, a
random variable shape parameter strategy with

cj = cmin + (cmax − cmin)× rand(1, N) , j = 1, 2, ..., N, (2.4)

is introduced by Sarra and Sturgill, in which cj is the jth shape parameter corresponding to the jth center point
and the minimum and maximum of cj are shown by cmin and cmax, respectively. Also, the function that produces
N uniformly distributed pseudo-random numbers on [0, 1] is shown by rand(1, N) ([32]). A trigonometric VSP for
generalized multiquadric radial basis functions (MQ-RBF) with the formula

cj = cmin + (cmax − cmin) sin(j), j = 1, 2, · · · , N. (2.5)

is used by Xiang et al. in [36]. Since sin function produces non-positive shape parameters, Golbabaie and Rabiei
changed the argument of the function and, with combination of Kansa’s formula, suggested a hybrid shape parameter
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strategy ([12]). A new formula for computing variable shape parameter, called symmetric variable shape parameter
(SVSP), is introduced by Ranjbar in [29] as

cj = c∗ exp(−1

2
(
j − µ

σ
)2), (2.6)

where c∗ ∈ [cmin, cmax] is an arbitrary shape parameter, µ = 0.5N , σ = 0.25N and N is the total number of centers.
Note that µ and σ control the shape parameter values cj around c∗. The main purpose of this paper is solving a
particular class of delay differential equations using GA-RBFs with SVSP.

(a) CSP (b) SVSP

Figure 3. Graphs of absolute error versus shape parameter with GA-RBF, (N = 24, c∗ = 0.5), for Example 3.

(a) CSP (b) SVSP

Figure 4. Graphs of absolute error versus shape parameter with GA-RBF, (N = 24, c∗ = 0.5), for Example 4.

3. Solving neutral functional-differential equations with RBFs

In this section, we intend to solve neutral functional-differential equations with proportional delays using the
collocation method based on the radial basis functions with constant and variable shape parameters. In the RBF
approximation method, the unknown u(t) is approximated by

u(t) ≃ uN (t) =
N∑
j=1

λjϕj(t), (3.1)

where RBF used in this paper is Gaussian (GA) as

ϕj(t) = ϕ(∥t− tj∥, cj) = e−c2j∥t−tj∥2

, (3.2)
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where tj is coordinate of node j and shape parameter cj is SVSP. Using the linear combination Eq(3.1), the sth
derivatives in Eq(1.1) are approximated as

u(s)(t) ≃ u
(s)
N (t) =

N∑
j=1

λjϕ
(s)
j (t), (3.3)

where s = 1, 2, ...m. Equations Eq(3.1) and Eq(3.3) can be expressed in the matrix form by

uN (t) = Φ(t)Λ,

and

u
(s)
N (t) = Φ(s)(t)Λ, (3.4)

where the RBFs vector Φ(t) and the coefcients vector Λ are given respectively by

Φ(t) = [ϕ1(t), ϕ2(t), ..., ϕN (t)],

and

Λ = [λ1, λ2, ..., λN ]T .

By substituting Eq(3.1) and Eq(3.3) into Eq(1.1), we get

N∑
j=1

λjϕ
(m)
j (t) +

m∑
k=0

(
m
k

)
a(m−k)(t)(

N∑
j=1

λjϕ
(k)
j (pmt)) = β

N∑
j=1

λjϕj(t) +

m−1∑
k=0

bk(t)(

N∑
j=1

λjϕ
(k)
j (pkt)) + f(t). (3.5)

Its the matrix form is

Φ(m)(t)Λ +

m∑
k=0

(
m
k

)
a(m−k)(t)Φ(k)(pmt)Λ = βΦ(t)Λ +

m−1∑
k=0

bk(t)Φ
(k)(pkt)Λ + f(t). (3.6)

To find the unknown coefficients, the collocation points ti = i TN , i = 1, 2, ..., N − m are put into Eq(3.6) and the
equations are obtained as

Φ(m)(ti)Λ +

m∑
k=0

(
m
k

)
a(m−k)(ti)Φ

(k)(pmti)Λ = βΦ(ti)Λ +

m−1∑
k=0

bk(ti)Φ
(k)(pkti)Λ + f(ti),

where i = 1, 2, ..., N −m. This system can be rewritten as

[Φ(m)(ti) +
m∑

k=0

(
m
k

)
a(m−k)(ti)Φ

(k)(pmti)− βΦ(ti)−
m−1∑
k=0

bk(ti)Φ
(k)(pkti)]Λ = f(ti).

Now, the fundamental matrix equation corresponding to Eq(1.1) can be written as

AΛ = F. (3.7)

Here, F = [f(t1), f(t2), ..., f(tN−m)]T and A = [A1, A2, ..., AN−m]T where

Ai = [Φ(m)(ti) +
m∑

k=0

(
m
k

)
a(m−k)(ti)Φ

(k)(pmti)− βΦ(ti)−
m−1∑
k=0

bk(ti)Φ
(k)(pkti)], i = 1, 2, ..., N −m.

Using Eq(3.1) and Eq(3.3) at t = 0, the initial conditions given in Eq(1.2) can be rewritten in the matrix form

N∑
k=1

λkϕ
(l)
k (0) = Φ(l)(0)Λ = γl, l = 0, 1, ...,m− 1. (3.8)

Thus, the matrix form of Eq(1.2) is

BΛ = Γ, (3.9)
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Here, Γ = [γ1, γ2, ..., γm−1]
T and B = [B0, B1, ..., Bm−1]

T where

Bl = [ϕ
(l)
1 (0), ϕ

(l)
2 (0), ..., ϕ

(l)
N (0)], l = 0, 1, ...,m− 1.

Finally, by adding m algebraic equations Eq(3.9) to equations Eq(3.7), we reduce Eq(1.1) under conditions Eq(1.2) to
the following linear system of algebraic equations.[

A
B

] [
Λ

]
=

[
F
Γ

]
. (3.10)

Matrix equation Eq(3.10) is a system of (N ×N) linear algebraic equations. The unknown coefficients vector Λ can
be uniquely determined after solving this system. Then, by putting it into Eq(3.1), approximate solution uN (t) at any
point t in terms of RBFs can be obtained.

(a) CSP (b) SVSP

Figure 5. Graphs of absolute error versus shape parameter with GA-RBF, (N = 24, c∗ = 0.5), for
Example 5.

Table 2. Absolute errors between the exact and approximate solution u(t) at t = 0.1, 0.2, ..., 0.9, 1.0 and comparing

with other methods for Example 1.

t Method[34] Method[35] Method[4] GARBF-CSP GARBF-SVSP GARBF-CSP GARBF-SVSP
n = 8 N = 12 N = 12 N = 24 N = 24

0.1 2.57 × 10−3 4.55 × 10−4 3.72 × 10−4 2.1649 × 10−11 2.7644 × 10−11 1.0010 × 10−20 1.5429 × 10−27

0.2 8.86 × 10−3 4.24 × 10−4 7.08 × 10−4 2.7862 × 10−11 3.5567 × 10−11 1.1804 × 10−20 1.8279 × 10−27

0.3 1.72 × 10−2 1.12 × 10−3 1.01 × 10−3 3.0163 × 10−11 3.8505 × 10−11 1.2545 × 10−20 1.9050 × 10−27

0.4 2.66 × 10−2 1.35 × 10−3 1.29 × 10−3 3.0833 × 10−11 3.9356 × 10−11 1.2550 × 10−20 1.9055 × 10−27

0.5 3.63 × 10−2 1.52 × 10−3 1.54 × 10−3 3.0817 × 10−11 3.9345 × 10−11 1.2224 × 10−20 1.8629 × 10−27

0.6 4.58 × 10−2 1.66 × 10−3 1.76 × 10−3 2.9997 × 10−11 3.8299 × 10−11 1.3033 × 10−20 1.7984 × 10−27

0.7 5.47 × 10−2 1.75 × 10−3 1.97 × 10−3 2.8678 × 10−11 3.6565 × 10−11 1.1488 × 10−20 1.7245 × 10−27

0.8 6.29 × 10−2 1.81 × 10−3 2.15 × 10−3 2.8744 × 10−11 3.6887 × 10−11 1.0673 × 10−20 1.6452 × 10−27

0.9 7.02 × 10−2 1.84 × 10−3 2.32 × 10−3 1.9666 × 10−11 2.3121 × 10−11 1.1245 × 10−20 1.5788 × 10−27

1.0 7.66 × 10−2 1.85 × 10−3 2.47 × 10−3 4.0925 × 10−10 6.4970 × 10−10 1.0874 × 10−19 5.5954 × 10−26

RMSE - - 1.70 × 10−3 1.2084 × 10−10 1.9031 × 10−10 2.4625 × 10−20 1.1538 × 10−26

E∞ - - 2.47 × 10−3 4.0925 × 10−10 6.4970 × 10−10 1.0874 × 10−19 5.5954 × 10−26

E2 - - 1.60 × 10−3 5.6736 × 10−11 8.5906 × 10−11 1.6517 × 10−20 6.4819 × 10−27

κs(A) - - - 4.6553 × 1025 8.2925 × 1017 1.3096 × 1052 2.9128 × 1040
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(a) CSP (b) SVSP

Figure 6. Graphs of absolute error versus shape parameter with GA-RBF, (N = 24, c∗ = 2.5), for
Example 6.

Table 3. Absolute errors between the exact and approximate solution u(t) at t = 0.1, 0.2, ..., 0.9, 1.0 and comparing
with other methods for Example 2.

t Method[34] Method[35] Method[4] GARBF-CSP GARBF-SVSP GARBF-CSP GARBF-SVSP
n = 6 N = 12 N = 12 N = 24 N = 24

0.1 4.65 × 10−3 8.68 × 10−4 2.15 × 10−4 7.4275 × 10−11 9.5638 × 10−11 5.2869 × 10−21 9.6698 × 10−27

0.2 1.45 × 10−2 1.49 × 10−3 3.39 × 10−3 6.1921 × 10−11 7.9620 × 10−11 4.6674 × 10−21 8.1024 × 10−27

0.3 2.57 × 10−2 1.90 × 10−3 8.75 × 10−3 5.1750 × 10−11 6.6562 × 10−11 3.8398 × 10−21 6.6896 × 10−27

0.4 3.60 × 10−2 2.16 × 10−3 1.56 × 10−2 4.2224 × 10−11 5.4293 × 10−11 2.7821 × 10−21 5.4767 × 10−27

0.5 4.43 × 10−2 2.28 × 10−3 2.35 × 10−2 3.4279 × 10−11 4.4072 × 10−11 2.4884 × 10−21 4.4448 × 10−27

0.6 5.03 × 10−2 2.31 × 10−3 3.20 × 10−2 2.7772 × 10−11 3.5741 × 10−11 1.9635 × 10−21 3.5713 × 10−27

0.7 5.37 × 10−2 2.27 × 10−3 4.06 × 10−2 2.1247 × 10−11 2.7187 × 10−11 1.3086 × 10−21 2.8354 × 10−27

0.8 5.47 × 10−2 2.17 × 10−3 4.93 × 10−2 2.0223 × 10−11 2.6742 × 10−11 1.0025 × 10−21 2.2188 × 10−27

0.9 5.35 × 10−2 2.03 × 10−3 5.76 × 10−2 1.1880 × 10−11 2.2585 × 10−11 8.4996 × 10−22 1.8549 × 10−27

1.0 5.03 × 10−2 1.86 × 10−3 6.55 × 10−2 1.3115 × 10−9 2.1447 × 10−9 2.1851 × 10−20 5.0121 × 10−25

RMSE - - 3.69 × 10−2 3.8065 × 10−10 6.2121 × 10−10 5.3726 × 10−21 1.0245 × 10−25

E∞ - - 6.55 × 10−2 1.3115 × 10−9 2.1447 × 10−9 2.1851 × 10−20 5.0121 × 10−25

E2 - - 3.37 × 10−2 1.6131 × 10−10 2.6014 × 10−10 3.9466 × 10−21 5.6317 × 10−26

κs(A) - - - 4.6553 × 1025 8.2925 × 1017 1.3096 × 1052 2.9128 × 1040

Table 4. Absolute errors between the exact and approximate solution u(t) at t = 0.1, 0.2, ..., 0.9, 1.0 and comparing

with other methods for Example 3.

t GARBF-CSP GARBF-SVSP GARBF-CSP GARBF-SVSP
N = 12 N = 12 N = 24 N = 24

0.1 1.0791 × 10−8 1.6288 × 10−12 1.6605 × 10−20 2.6166 × 10−29

0.2 3.3662 × 10−8 4.1403 × 10−12 3.7382 × 10−20 5.8659 × 10−29

0.3 6.4303 × 10−8 6.8491 × 10−12 5.9967 × 10−20 9.3993 × 10−29

0.4 1.0222 × 10−7 9.7779 × 10−12 8.4382 × 10−20 1.3215 × 10−28

0.5 1.4775 × 10−7 1.2930 × 10−11 1.1058 × 10−19 1.7313 × 10−28

0.6 2.0158 × 10−7 1.6302 × 10−11 1.3859 × 10−19 2.1693 × 10−28

0.7 2.6462 × 10−7 1.9889 × 10−11 1.6841 × 10−19 2.6356 × 10−28

0.8 3.3795 × 10−7 2.3689 × 10−11 2.0003 × 10−19 3.1303 × 10−28

0.9 4.2280 × 10−7 2.7704 × 10−11 2.3349 × 10−19 3.6532 × 10−28

1.0 5.2058 × 10−7 3.1933 × 10−11 2.6871 × 10−19 4.2043 × 10−28

RMSE 2.5302 × 10−7 1.7363 × 10−11 1.4427 × 10−19 2.4429 × 10−28

E∞ 5.2058 × 10−7 3.1933 × 10−11 2.6871 × 10−19 4.2043 × 10−28

E2 2.3827 × 10−7 1.6752 × 10−11 1.4184 × 10−19 2.2198 × 10−28

κs(A) 4.6553 × 1025 8.2925 × 1017 1.3096 × 1052 2.9128 × 1040

4. Illustrative examples

In this section, we present some examples to show the efficiency and accuracy of the proposed method. In order
to compare the results, we provided examples 1-5 examined by Chen and Wang in [4] and example 6 of a nonlinear
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Table 5. Absolute errors between the exact and approximate solution u(t) at t = 0.1, 0.2, ..., 0.5 and comparing with
other methods for Example 4.

t Method[34] Method[35] Method[4] GARBF-CSP GARBF-SVSP GARBF-CSP GARBF-SVSP
n = 6 N = 12 N = 12 N = 24 N = 24

0.1 6.10 × 10−3 1.00 × 10−3 1.67 × 10−4 1.0791 × 10−8 4.2973 × 10−12 7.5070 × 10−20 8.7358 × 10−29

0.2 2.58 × 10−2 2.02 × 10−3 7.15 × 10−4 3.3662 × 10−8 1.3384 × 10−11 2.1190 × 10−19 2.4442 × 10−28

0.3 6.47 × 10−2 3.07 × 10−3 1.73 × 10−3 6.4303 × 10−8 2.5553 × 10−11 3.8891 × 10−19 4.4712 × 10−28

0.4 1.37 × 10−1 4.17 × 10−3 3.30 × 10−3 1.0222 × 10−11 4.0609 × 10−11 6.0540 × 10−19 6.9479 × 10−28

0.5 2.81 × 10−1 5.34 × 10−3 5.55 × 10−3 1.4775 × 10−7 5.8687 × 10−11 8.6410 × 10−19 9.9067 × 10−28

RMSE - - - 2.5302 × 10−7 1.0047 × 10−10 1.4112 × 10−18 1.6156 × 10−27

E∞ - - - 5.2058 × 10−7 2.0670 × 10−10 2.9778 × 10−18 3.4076 × 10−27

E2 - - - 2.3827 × 10−7 9.4618 × 10−11 1.3710 × 10−18 1.5697 × 10−27

κs(A) - - - 4.6553 × 1025 8.2925 × 1017 1.3096 × 1052 2.9128 × 1040

Table 6. Absolute errors between the exact and approximate solution u(t) at t = 0.1, 0.2, ..., 0.9, 1.0 and comparing
with other methods for Example 5.

t Method[35] Method[4] GARBF-CSP GARBF-SVSP GARBF-CSP GARBF-SVSP
n = 6 N = 12 N = 12 N = 24 N = 24

0.1 4.97 × 10−5 9.09 × 10−12 5.4908 × 10−7 3.4822 × 10−9 3.8050 × 10−17 3.3972 × 10−25

0.2 4.43 × 10−4 2.98 × 10−10 3.8228 × 10−8 2.4193 × 10−8 2.4541 × 10−18 2.1803 × 10−24

0.3 1.57 × 10−3 2.33 × 10−9 1.1650 × 10−5 7.3664 × 10−8 7.2363 × 10−18 6.4149 × 10−24

0.4 3.85 × 10−3 1.01 × 10−8 2.5573 × 10−5 1.6160 × 10−7 1.5586 × 10−15 1.3800 × 10−23

0.5 7.78 × 10−3 3.20 × 10−8 4.7056 × 10−5 2.9726 × 10−7 2.8324 × 10−15 2.5060 × 10−23

0.6 1.39 × 10−2 8.24 × 10−8 7.7554 × 10−5 4.8981 × 10−7 4.6277 × 10−15 4.0924 × 10−23

0.7 2.28 × 10−2 1.85 × 10−7 1.1855 × 10−4 7.4862 × 10−7 7.0297 × 10−15 6.2141 × 10−23

0.8 3.53 × 10−2 3.76 × 10−7 1.7161 × 10−4 1.0835 × 10−6 1.0127 × 10−14 8.9499 × 10−23

0.9 5.19 × 10−2 7.09 × 10−7 2.3837 × 10−4 1.5048 × 10−6 1.4016 × 10−14 1.2383 × 10−22

1.0 7.34 × 10−2 1.26 × 10−6 3.2062 × 10−4 2.0238 × 10−6 1.8797 × 10−14 1.6604 × 10−22

RMSE - - 1.3763 × 10−4 8.6888 × 10−7 7.7148 × 10−15 6.8166 × 10−23

E∞ - - 3.2062 × 10−4 2.0238 × 10−6 1.8797 × 10−14 1.6604 × 10−22

E2 - - 1.2487 × 10−4 7.8836 × 10−7 7.3562 × 10−15 6.5000 × 10−23

κs(A) - - 4.6553 × 1025 8.2925 × 1017 1.3096 × 1052 2.9128 × 1040

Table 7. Absolute errors between the exact and approximate solution u(t) at t = 0.1, 0.2, ..., 0.9, 1.0 and comparing
with other methods for Example 6.

t Method[4] GARBF-CSP GARBF-SVSP GARBF-CSP GARBF-SVSP
n = 6 N = 12 N = 12 N = 24 N = 24

0.1 3.4443 × 10−28 1.2156 × 10−5 1.0923 × 10−7 2.7099 × 10−12 2.1371 × 10−18

0.2 2.8177 × 10−24 9.6000 × 10−6 8.8217 × 10−8 2.6431 × 10−12 2.0827 × 10−18

0.3 5.4713 × 10−22 9.6622 × 10−6 8.8017 × 10−8 2.5082 × 10−12 1.9763 × 10−18

0.4 2.2956 × 10−20 8.7807 × 10−6 8.0177 × 10−8 2.3224 × 10−12 1.8300 × 10−18

0.5 4.1586 × 10−19 7.9617 × 10−6 7.2539 × 10−8 2.0893 × 10−12 1.6463 × 10−18

0.6 4.4270 × 10−18 6.9128 × 10−6 6.3568 × 10−8 1.8128 × 10−12 1.4284 × 10−18

0.7 3.2646 × 10−17 5.6458 × 10−6 4.9207 × 10−8 1.4980 × 10−12 1.1803 × 10−18

0.8 1.8396 × 10−16 4.3203 × 10−6 5.2234 × 10−8 1.1506 × 10−12 9.0681 × 10−19

0.9 8.4395 × 10−16 5.1154 × 10−6 6.2543 × 10−8 7.8211 × 10−13 6.9489 × 10−19

1.0 3.2912 × 10−15 1.3753 × 10−4 3.8390 × 10−6 2.0053 × 10−11 2.1925 × 10−16

RMSE 1.0760 × 10−15 4.0390 × 10−5 1.1104 × 10−6 4.5438 × 10−12 4.4783 × 10−17

E∞ 3.2912 × 10−15 1.3753 × 10−4 3.8390 × 10−6 2.0053 × 10−11 2.1925 × 10−16

E2 6.3542 × 10−16 1.7899 × 10−5 4.6371 × 10−7 3.0218 × 10−12 2.4565 × 10−17

κs(A) - 1.6382 × 1010 7.0578 × 109 1.9560 × 1029 1.4888 × 1024

Table 8. The error norms and the rate of convergence for various numbers of collocation points for Example 1

Rate of convergence with CSP Rate of convergence with SVSP
N E2 ROC(E2) E∞ ROC(E∞) E2 ROC(E2) E∞ ROC(E∞)
4 0.4567e-2 − 0.1506e-1 − 0.5662e-1 − 0.2078e0 −
8 0.7622e-6 12.5487 0.4318e-5 11.7680 0.5154e-5 13.4233 0.3147e-4 12.6889
12 0.5673e-10 23.4438 0.4092e-9 22.8480 0.8590e-10 27.1345 0.6497e-9 26.6065
16 0.2288e-14 35.1720 0.1830e-13 34.8129 0.6282e-15 41.1073 0.5173e-14 40.8117
20 0.5602e-19 47.5813 0.4679e-18 47.3872 0.2569e-20 55.6014 0.2186e-19 55.4544
24 0.1651e-19 6.7010 0.1087e-18 8.0059 0.6481e-26 70.7001 0.5595e-25 70.6208
28 0.1359e-20 16.1998 0.2535e-20 24.3813 0.1085e-31 86.2806 0.9449e-31 86.2239

neutral functional-differential equation examined in [3]. We solve these examples with the introduced method and
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Table 9. The error norms and the rate of convergence for various numbers of collocation points for Example 2

Rate of convergence with CSP Rate of convergence with SVSP
N E2 ROC(E2) E∞ ROC(E∞) E2 ROC(E2) E∞ ROC(E∞)
4 0.4483e-2 − 0.1678e-1 − 0.6454e-1 − 0.2714e0 −
8 0.1432e-5 11.6122 0.9411e-5 10.8001 0.7380e-5 13.0942 0.5019e-4 12.4007
12 0.1613e-9 22.4219 0.1311e-8 21.8979 0.2601e-9 25.2875 0.2144e-8 24.8132
16 0.8527e-14 34.2314 0.7406e-13 34.0008 0.3206e-14 39.2926 0.2802e-13 39.0892
20 0.2522e-18 46.7346 0.2229e-17 46.6564 0.1810e-19 54.1562 0.1605e-18 54.0913
24 0.3942e-20 22.8087 0.2185e-19 25.3678 0.5631e-25 69.5504 0.5012e-24 69.5299
28 0.2634e-20 2.6155 0.1633e-19 1.8890 0.1094e-30 85.3150 0.9759e-30 85.3006

Table 10. The error norms and the rate of convergence for various numbers of collocation points for Example 3

Rate of convergence with CSP Rate of convergence with SVSP
N E2 ROC(E2) E∞ ROC(E∞) E2 ROC(E2) E∞ ROC(E∞)
4 0.2183 − 0.4309 − 0.2661e-1 − 0.5245e-1 −
8 0.2943e-3 9.5348 0.5665E-3 9.5710 0.2364e-5 13.4584 0.4549e-5 13.4931
12 0.4478e-7 21.6802 0.8538e-7 21.7037 0.1675e-10 29.2441 0.3193e-10 29.2673
16 0.2383e-11 34.2084 0.4528e-11 34.2203 0.1030e-16 49.7137 0.1957e-16 49.7252
20 0.6325e-16 47.2197 0.1199e-15 47.2302 0.8977e-22 52.2103 0.1702e-21 52.2199
24 0.1418e-18 33.4597 0.2687e-18 33.4618 0.2219e-27 70.8118 0.4204e-27 70.8159
28 0.5735e-19 5.8724 0.1085e-18 5.8828 0.2500e-33 88.8499 0.4730e-33 88.8586

Table 11. The error norms and the rate of convergence for various numbers of collocation points for Example 4

Rate of convergence with CSP Rate of convergence with SVSP
N E2 ROC(E2) E∞ ROC(E∞) E2 ROC(E2) E∞ ROC(E∞)
4 0.2237 − 0.5028 − 0.4612 − 1.0347 −
8 0.1287e-2 7.4414 0.2830e-2 7.4730 0.1124e-4 15.3244 0.2471e-4 12.0308
12 0.2382e-6 21.1971 0.5205e-6 21.2126 0.9461e-10 28.8193 0.2067e-9 28.8346
16 0.1429e-10 33.7918 0.3112e-10 33.8036 0.7018e-16 49.0618 0.1528e-15 49.0737
20 0.4135e-15 46.8326 0.8989e-15 46.8406 0.5890e-21 52.3795 0.1280e-20 52.3879
24 0.1371e-17 31.3134 0.2977e-17 31.3197 0.1569e-26 70.4016 0.3407e-26 70.4060
28 0.2061e-18 12.2927 0.4476e-18 12.2916 0.1866e-32 88.4988 0.4048e-32 88.5050

Table 12. The error norms and the rate of convergence for various numbers of collocation points for Example 5

Rate of convergence with CSP Rate of convergence with SVSP
N E2 ROC(E2) E∞ ROC(E∞) E2 ROC(E2) E∞ ROC(E∞)
4 0.1097e+1 − 0.2980e+1 − 0.4991 − 0.1305e+1 −
8 0.1686 2.7018 0.4357 2.7739 0.9712e-2 5.6834 0.2507e-1 5.7019
12 0.1248e-3 17.7785 0.3206e-3 17.7931 0.7883e-6 23.2301 0.2023e-5 23.2445
16 0.2100e-7 30.2067 0.5378e-7 30.2175 0.9538e-11 39.3571 0.2442e-10 39.3652
20 0.1335e-11 43.3055 0.3415e-11 43.3105 0.3754e-16 55.7730 0.9600e-16 55.7782
24 0.7356e-14 28.5274 0.1879e-13 28.5353 0.6500e-22 72.7644 0.1660e-21 72.7718
28 0.7479e-14 -0.1075 0.1910e-13 -0.1061 0.5477e-28 90.7343 0.1398e-27 90.7377

compare the obtained numerical results with the results of each of the variational iteration methods ([4]), the two-stage
one-order Runge-Kutta method of Wang et al. ([35]), the one-leg θ-method of Wang and Li ([34]) with θ = 0.8 and
h = 0.01 and RBF method with constant shape parameter in Tables 2-7. Also, the E∞, E2 and RMS error norms of
u(t) and condition number of system matrix for these examples are listed in these tables to compare CSP and SVSP
strategies. Throughout this section, we will study the performance of the collocation method based on the radial basis
functions with symmetric variable shape parameter and constant shape parameter. All calculations and numerical
and symbolic results provided for the examples, performed by using Maple 18.0 software. The accuracy of the method
is measured through the following error norms. The formula for the root-mean-square error (RMSE) is given by

RMSE =

√√√√ 1

N

N∑
j=0

(ue(tj)− ua(tj))2. (4.1)

The error norms of the solution, E∞ and E2, are defined by

E∞ = ∥ue − ua∥∞ = max
j=0,...N

|ue(tj)− ua(tj)|, (4.2)
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Table 13. The error norms and the rate of convergence for various numbers of collocation points for Example 6

Rate of convergence with CSP Rate of convergence with SVSP
N E2 ROC(E2) E∞ ROC(E∞) E2 ROC(E2) E∞ ROC(E∞)
4 0.4567e-2 − 0.1506e-1 − 0.5662e-1 − 0.2078 −
8 0.7622e-6 12.5487 0.4318e-5 11.7680 0.5154e-5 13.4233 0.3147e-4 12.6889
12 0.5673e-10 23.4438 0.4092e-9 22.8480 0.8590e-10 27.1345 0.6497e-9 26.6065
16 0.2288e-14 35.1720 0.1830e-13 34.8129 0.6282e-15 41.1073 0.5173e-14 40.8117
20 0.5602e-19 47.5813 0.4679e-18 47.3872 0.2569e-20 55.6014 0.2186e-19 55.4544
24 0.1651e-19 6.7010 0.1087e-18 8.0059 0.6481e-26 70.7001 0.5595e-25 70.6208
28 0.1359e-20 16.1998 0.2535e-20 24.3813 0.1085e-31 86.2806 0.9449e-31 86.2239

and

E2 = ∥ue − ua∥2 =

√∫ T

0

(ue(t)− ua(t))2dt, (4.3)

where ua and ue are the approximate and the exact solutions of the problems, respectively. Using the following
formula, we calculate the numerical rate of convergence (ROC) of the method.

ROC = log(
Es+1

Es
)/ log(

Ns

Ns+1
), (4.4)

where Es is E∞, E2 or RMS error norms corresponding to the number of collocation points Ns. Therefore, some
further numerical runs for different number of time steps have been performed. All graphs show the absolute error
versus shape parameter with GA-RBF and N = 24.

Remark 4.1. In the tables of the following examples, n shows the repetition step of the variational iteration method
(Method [4]) and N shows the number of central points in this manuscript.

Example 1. ([4]) Consider the first-order neutral functional-differential equation with proportional delay

u′(t) = −u(t) +
1

2
u(

1

2
t) +

1

2
u′(

1

2
t), t ∈ [0, 1],

subject to initial condition u(0) = 1. The exact solution is u(t) = e−t. We solve this example with the introduced
method and compare the obtained numerical results with the results of each of the variational iteration method (for
n=8) ([4]), the two-stage one-order Runge-Kutta method of Wang et al. ([35]), the one-leg θ-method of Wang and Li
([34]) with θ = 0.8 and h = 0.01 in Table 2. Also, the E∞, E2 and RMS error norms of u(t) and condition number of
system matrix for this example are listed in this table to compare CSP and SVSP strategies. In Figure. 1 Absolute
error graph of the solution of the RBF method with CSP and SVSP (N = 24) are shown. The reported numerical
results in Tables 2, 8 show that, firstly, the RBF method with SVSP has a significant advantage over other comparison
methods in terms of reducing solution error, especially with increasing N. Secondly, the numerical convergence rate
analysis of the approximations obtained according to the Table 8 shows that the RBF method with SVSP has a regular
and upward convergence rate with increasing N, while the RBF method with CSP has an irregular and oscillating
convergence rate. Also, for each fixed N, the RBF-SVSP method has more accuracy and lower system matrix condition
number than the RBF-CSP method, which reduces the computational error and the accuracy of the solution in the
proposed method.

Example 2.([4]) Consider the following first-order neutral functional-differential equation with proportional delay

u′(t) = −u(t) + 0.1u(0.8t) + 0.5u′(0.8t) + (0.32t− 0.5) exp(−0.8t) + exp(−t),

t ≥ 0,

subject to initial condition u(0) = 0 and with the exact solution u(t) = te−t. Comparison of numerical results
according to Tables 3 and 9 show that GA-RBF method with SVSP is more accurate than the GA-RBF method with
CSP.
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Example 3. ([4]) As another example, consider the following second-order neutral functional-differential equation
with proportional delay

u′′(t) = u′(
1

2
t)− 1

2
tu′′(

1

2
t) + 2, t ≥ 0,

u(0) = 1, u′(0) = 0.

The exact solution is u(t) = 1 + t2. According to Tables 3 and 10, it is clear that for different values of N, the
RBF-SVSP method is in a better position than the RBF-CSP method in terms of accuracy, condition number of
system matrix and convergence rate growth.

Example 4. ([4]) Consider the second-order neutral functional-differential equation with proportional delay

u′′(t) =
3

4
u(t) + u(

1

2
t) + u′(

1

2
t) +

1

2
u′′(

1

2
t)− t2 − t+ 1, t ≥ 0,

u(0) = u′(0) = 0,

which has the exact solution u(t) = t2. For this example, comparing the graph of the absolute errors of the proposed
method with other methods in Fig. 4 and the values of the error norms and the system matrix condition number in
Table. 5 and also, the numerical convergence rates analysis of the RBF-SVSP and RBF-CSP methods in Table. 11 all
show the superiority of the proposed method over the compared methods and especially, over the RBF-CSP method
in terms of the solution accuracy and reduction of the system ill-condition for the same N.

Example 5. ([4]) Consider the third-order neutral functional-differential equation with proportional delay

u′′′(t) = u(t) + u′(
1

2
t) + u′′(

1

3
t) +

1

2
u′′′(

1

4
t)− t4 − t

2
− 4

3
+ 21t, t ∈ [0, 1],

u(0) = u′(0) = u′′(0) = 0,

which has the exact solution u(t) = t4. Tables 6, 12 shows that obtained solutions with RBF-SVSP method by
increasing N are very accuracy in compared to the two-stage one-order Runge-Kutta method and variational iteration
method (for n=6) and specially RBF-CSP method.

Example 6. Finally, consider the nonlinear first-order neutral functional-differential equation with proportional
delay used in [3]

u′(t) = 1− 2u2(
t

2
), t ∈ [0, 1],

subject to initial condition u(0) = 0. The exact solutions of this problem is u(t) = sin(t). Comparison of numerical
results in Tables 7, 13 shows that GA-RBF method with SVSP is more accurate than the GA-RBF method with CSP.

5. Conclusion

In this work, an easy-to-code numerical method based on collocation method based on the radial basis functions with
constant and variable shape parameter has been successfully applied to find the solutions of neutral delay differential
equations. In the last section, by several examples, we showed that the collocation method based on the radial basis
functions with SVSP can accurately solve a large variety of such problems including linear, nonlinear and high-order
DDEs. It is concluded from figures (Fig1.-Fig 6.) that GA-RBF method with SVSP is an accurate and efficient
method to solve neutral functional-differential equations. Finally, the numerical rate of convergence of the numerical
approximates was also obtained. The advantage of SVSP strategy over CSP strategy can also be seen in the analysis
of tables (Table 8 -Table 13), especially when the number of nodes tends to increase.
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