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Abstract
In this paper, we compute the approximate numerical solution for the Volterra-Fredholm integral equation (V-
FIE) by using the shifted Jacobi collocation (SJC) method which depends on the operational matrices. Some
properties of the shifted Jacobi polynomials are introduced. These properties allow us to transform the Volterra-
Fredholm integral equation into a system of algebraic equations in a nice form with the expansion coefficients
of the solution. Also, the convergence and error analysis are studied extensively. Finally, some examples which
verify the efficiency of the given method are supplied and compared with other methods.
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1. Introduction

Of course, it is not an easy target to compute an exact solution of a wide class of differential equations of fractional
order. However, in the past years; many numerical techniques have been introduced to find an approximate solution
of this class of fractional models of differential equations, such as variational iteration method for fractional partial
differential equations, the time-fractional Fornberg, and fractional initial-boundary value problems [9, 28, 46]. Finite
difference method for fractional sub-diffusion equations [20], finite element method for the space and time fractional
Fokker-Planck equation [12], A domain decomposition method [25, 39, 40]. The well-known methods are called the
spectral methods in which the solution can be expressed as the expansion of polynomials, and one of special interest
is the solution of space fractional diffusion equation using Jacobi operational matrix [15]. The shifted Jacobi method
is used in solving multidimensional time-fractional order telegraph equation, linear multi-term fractional differential
equations, and variable-order fractional reaction-subdiffusion equation [14, 16, 21, 23]. The solution of hyperbolic
partial differential equations by using the exponential Jacobi method can be found in [49]. In literature, there are
many papers that deal with the spectral methods for solving differential equations, such as shifted Legendre polynomial
for variable-order fractional functional differential equations [22], solutions of third and fifth-order differential equations
by using Petro-Galerkin methods [1]. The most used spectral methods are the Galerkin, Collocation, and Tau methods.
These are used in many articles such as shifted Chebyshev polynomials of the first kind in time and the Sinc function
in space, and solutions of time-fractional Telegraph equation by using Legendre-Galerkin algorithm [41, 47], solution
for telegraph equation of space fractional order by using Legendre Wavelets spectral tau algorithm [31]. Use sinc-
Legendre collocation method for solving diffusion equations with distributed-order in time [32]. Solve hyperbolic partial
differential equations using Shifted Jacobi Galerkin method [17], solution of eigenvalue problems using tau method [37],
solution of the space fractional advection-dispersion problem using tau-Jacobi algorithm [29]. [8] solving a general
class of multi-order fractional pantograph equations using Galerkin schemes, solving Riemann-Liouville and Riesz
fractional advection-dispersion problems using shifted Chebyshev method [13], solving linear and nonlinear fractional-
order differential equations using shifted fifth-kind Chebyshev polynomials [3], solving multi-term fractional differential
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equations and a system of high-order linear differential equations with variable coefficients using Lucas tau method
[6, 33], solving multi-term fractional differential equations using generalized Lucas tau method [4, 30], solutions for the
connection problems between generalized Lucas polynomial sequence, third and fourth kinds of Chebyshev polynomials
[2], solutions for a certain coupled systems of fractional differential equations using the generalized Fibonacci tau
method [7].

Spectral methods can also solve the integral equations such as solving Volterra integral equations and system of
Volterra integral equations using Legendre collocation method and Taylor-collocation method [34, 36, 43]. Solving
Volterra-Fredholm integral equations using Block pulse functions [10], expansion method [11], Legendre collocation
method [19, 35], shifted Legendre and shifted Chebyshev polynomials [24], shifted Chebyshev collocation method [48],
the second kind Chebyshev polynomials [5], Lagrange collocation method [44]. We compared the obtained results
with the Lagrange collocation (LC) method [44], the Taylor collocation (TC) method [45], and the shifted Chebyshev
collocation (SCC) method [48]. To the best of my knowledge, our work in this paper is the first to use the shifted
Jacobi collocation method for solving Volterra-Fredholm integral equations. This method is certainly will provide
highly accurate results but unfortunately takes a longer times. The paper consists of six sections and is organized as
follows: the first section contains a brief history of the subject of our work. Section 2 deals with the basic definitions
and properties of the shifted Jacobi polynomials and the V-FIE, which will be used in the following sections. Section
3 explores the algorithm of the method for solving Volterra-Fredholm integral equation. Section 4 is devoted to the
study of convergence and error analysis. Some numerical examples with remarks are given in section 5. Finally, section
6 contains the conclusion, and we end up with the list of used references.

2. Basic properties

In this section, we present some properties of the shifted Jacobi polynomials [26, 27, 38] and the V-FIE [48].
The orthogonality of the shifted Jacobi polynomials with the weight function ω(a,b)

L (y) = (L− y)ayb, over [0, L] is,
L∫

0

P
(a,b)
L,i (y) P

(a,b)
L,k (y) ω

(a,b)
L (y) dy = g

(a,b)
L,k , (2.1)

where

g
(a,b)
L,k =

La+b+1Γ (k + a+ 1)Γ (k + b+ 1)

(2k + a+ b+ 1) k! Γ (k + a+ b+ 1)
.

The shifted Jacobi polynomials have the form

P
(a,b)
L,k (y) =

k∑
i=0

(−1)k−i Γ (k + b+ 1) Γ (k + i+ a+ b+ 1)

Γ (i+ b+ 1) Γ (k + a+ b+ 1) (k − i)! i! Li
(2.2)

where

P
(a,b)
L,k (0) =

(−1)kΓ (k + b+ 1)

Γ (b+ 1) k!
, P

(a,b)
L,k (L) =

Γ (k + a+ 1)

Γ (a+ 1) k!
.

The function W (y) can be expanded as terms of shifted Jacobi polynomials

W (y) =

∞∑
k=0

ck P
(a,b)
L,k (y), (2.3)

so

ck =
1

g
(a,b)
L,k

L∫
0

W (y) P
(a,b)
L,k (y) ω

(a,b)
L (y) dy. k = 0, 1, 2, ... (2.4)
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suppose that we approximate W (y) by using only the first (M + 1) terms

W (y) ≈WM (y) =

M∑
k=0

ck P
(a,b)
L,k (y) = CT ψL,M (y), (2.5)

where the coefficients
CT = [c0, c1, ..., cM ] ,

are unknowns and must be determined, while

ψL,M (y) =
[
P

(a,b)
L,0 (y), P

(a,b)
L,1 (y), ..., P

(a,b)
L,M (y)

]T
.

Consider the Volterra-Fredholm integral equation [48]:

A(y) W (y) +B(y) W (E(y)) = h(y) + α1

E(y)∫
0

d1(y, t) W (t) dt+ α2

ℓ∫
0

d2(y, t) W (E(t)) dt, (2.6)

where W (y) is an unknown function. A(y), B(y), E(y) and h(y), are known and defined on the interval [0, ℓ] , 0 ≤
E(y) < ∞. d1(y, t) and d2(y, t) are known kernel functions on [0, ℓ] × [0, ℓ] . α1 and α2 are real constants such that
α2
1 + α2

2 ̸= 0.

3. The algorithm of the shifted Jacobi collocation method

In this section, we approximate the solution of Equation (2.6) using the shifted Jacobi polynomials. For this
proposal, let 0 ≤ E(y) < ℓ. And from the approximation (2.5), we have

W (E(y)) ≈
M∑
k=0

ck P
(a,b)
L,k (E(y)) . (3.1)

Using Equations (2.5) and (3.1), Equation (2.6) becomes

A(y)

M∑
k=0

ck P
(a,b)
L,k (y) +B(y)

M∑
k=0

ck P
(a,b)
L,k (E(y)) = h(y) + α1

E(y)∫
0

d1(y, t)

M∑
k=0

ck P
(a,b)
L,k (t) dt (3.2)

+ α2

ℓ∫
0

d2(y, t)

M∑
k=0

ck P
(a,b)
L,k (E(t)) dt.

Let

fk(y) = A(y) P
(a,b)
L,k (y) +B(y) P

(a,b)
L,k (E(y))− α1

E(y)∫
0

d1(y, t) P
(a,b)
L,k (t) dt − α2

ℓ∫
0

d2(y, t) P
(a,b)
L,k (E(t)) dt.

Then Eqaution (3.2) can be written as
M∑
k=0

ck fk(y) = h(y). (3.3)

Obviously Equation (3.3) has M + 1 roots; consequently, we have a system of equations
M∑
k=0

ck fk(yi) = h(yi), i = 0, 1, ...,M . (3.4)

So the matrix form of Equation (3.4) will be
FT C = H,
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where
F = (fki), i, k = 0, 1, ....M,

and
H = [h(y0), h(y0), ..., h(yM )]T .

Now, we can determine the unknown constants by the following equation
C = (FT )−1H.

4. convergence and error analysis

In this section, we investigate the convergence and error analysis of the shifted Jacobi polynomials for V-FIE.
The following Lemmas and theorems will be used in the sequence:

Lemma 1. i) If a, b > −1 then
1∫
0

(1− y)
a
P

(a,b)
k (y)dy = O

(
1√
k

)
,

ii) If a, b > −1 then
∣∣∣P (a,b)

k (y)
∣∣∣ = O (kr) , r = max(a, b, −1

2 ).

Proof. See SzegŌ (1937), p. 163 [42] □
Lemma 2. Γ (n+ λ) = O

(
nλ−1 n!

)
.

Proof. See Rainville (1971)[38] □

Theorem 4.1. If ξk = (2k+a+b+2)(2k+a+b++3)
(k+a+1)(k+b+1) then ϕk(y) =

ξk
L2 (L− y)P

(a+1,b+1)
L,k (y) .

Proof. See Doha (2004)[18] □
Theorem 4.2. The following orthogonality is valid:

L∫
0

ϕk(y) ϕi(y)ω̃
(a,b)(y) dy = δik Rk,

where ω̃(a,b)(y) = yb−1 (L− y)
a−1

, Rk = ξ2k
La+b−1Γ(k+a+2)Γ(k+b+2)

(2k+a+b+3) k! Γ(k+a+b+3) .

Proof. See R. Hafez and Y. Youssri (2018)[21] □
Now we can prove the following:

Theorem 4.3. If W (y) = y (L− y) v(y) and
∣∣∣v′′′

(y)
∣∣∣ ≤ e, then |ck| = O

(
k

−5
2

)
∀k > 3.

Proof. Using Equation (2.5) and Theorem (4.1), one can have:

ck =
1

Rk

L∫
0

W (y) ϕk(y) ω̃
(a,b)(y) dy.

By the given assumptions, it is not hard to prove that

ck =
ξk

L2Rk

L∫
0

yb+1 (L− y)
a+1

v(y) P
(a+1,b+1)
L,k (y) dy.

Then by integrating three times, we have

|ck| = O

∣∣∣∣∣∣ ξk
L2Rk k3

L∫
0

yb+4 (L− y)
a+4

v
′′′
(y) P

(a+4,b+4)
L,k−3 (y) dy

∣∣∣∣∣∣
 ,
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and from Theorem (4.1), we see

ξk
Rk

=
k! Γ (k + a+ b+ 3)

La+b−1Γ (k + a+ 1)Γ (k + b+ 1) (2k + a+ b+ 2)
.

Therefore using Lemmas (1) and (2) the proof is completed □

Theorem 4.4. The estimation

|ck ϕk(y)| = O
(
kb−

3
2

)
.

holds

Proof. From Theorem (4.3), one we have

|ck ϕk(y)| =
∣∣∣(O (

kb−
3
2

))
y (L− y)P

(a+1,b+1)
L,k (y)

∣∣∣ .
From Lemma (1) (ii) and by supposing a < b, the estimation holds. □

Furthermore, to deal with the global error we suppose that
εM (y) = |W (y)−WM (y)| , εEM (y) = εM (E(y)), ϵM = max

0≤y≤ℓ
εM (y) and ϵEM = max

0≤y≤ℓ
εEM (y).

Theorem 4.5. Let

TM (y) =| A(y) WM (y) +B(y) WM (E(y))− α1

E(y)∫
0

d1(y, t) WM (t) dt− α2

ℓ∫
0

d2(y, t) WM (E(t)) dt − h(y) |,

ŤM = max
0≤y≤ℓ

TM (y),

and if |A(y)| ≤ A1, |B(y)| ≤ B1, |d1(y, t)| ≤ D1, |d2(y, t)| ≤ D2 and |E(y)| ≤ q, where A1, B1, D1, D2, and q are
positive constants. Then we have the following global error:∣∣ŤM

∣∣ = O
(
kb−

3
2

)
,

where

ρ = max {A1, B1, |α1| D1q, |α2| D2ℓ} .

Proof. From Equation (2.6), we have

h(y) = A(y) W (y) +B(y) W (E(y))− α1

E(y)∫
0

d1(y, t) W (t) dt− α2

ℓ∫
0

d2(y, t) W (E(t)) dt.

So

TM (y) ≤ |A(y) εM (y)|+
∣∣B(y) εEM (y)

∣∣+
∣∣∣∣∣∣∣α1

E(y)∫
0

d1(y, t) εM (t)dt

∣∣∣∣∣∣∣+
∣∣∣∣∣∣α2

ℓ∫
0

d2(y, t) ε
E
M (t) dt

∣∣∣∣∣∣ ,
ŤM ≤ {A1 +B1 + |α1| D1q + |α2| D2ℓ} max

(
εM (y), εEM (y)

)
.

Consequently, from Theorem (4.4), the theorem is proved. □



CMDE Vol. 10, No. 2, 2022, pp. 408-418 413

5. Numerical examples

In this section, we will borrow the examples given in [44, 45, 48] and solve them by using the method suggested in
the previous sections i.e. SJC. Then we show the effectiveness of our method compared with the others.

Example 1. Let us consider the following V-FIE [44, 45] and [48]

(sin y)W (y) + (cos y)W (ey) = h(y) +

ey∫
0

ey+tW (t)dt−
1∫

0

ey+tW (et)dt. (5.1)

The exact solution of this equation is W (y) = y2, where

h(y) =
1

3
ey

(
−1 + e3

)
+ ey

{
2− ee

y

[2 + ey (−2 + ey)]
}
+ e2y cos y + y2 sin y.

Table 1 shows the comparison between the absolute errors of our suggested method with the Lagrange collocation
(LC) method [44], the Taylor collocation (TC) method [45], and the shifted Chebyshev collocation (SCC) method
[48]. Notice that the last two columns represent the time used for the running program (CPU time) and the difference
between two consecutive errors (CN ).

Table 1. Comparison between absolute errors with different values of N .
N SJC LC[44] TC[45] SCC[48]
2 1.6× 10−15 2.8× 10−15 7.6× 10−15 5× 10−16

3 1.1× 10−14 1.4× 10−14 1.2× 10−14 1.4× 10−15

4 4.9× 10−15 1.9× 10−13 3.4× 10−14 3.1× 10−15

CPU time CN

21.234 9.4× 10−15

43.688 6.1× 10−15

101.672 4.9× 10−15

Example 2. Let us consider the following V-FIE [44, 45] and [48]

y2W (y) + eyW (2y) = h(y) +

2y∫
0

ey+tW (t)dt−
1∫

0

ey−2tW (2t)dt. (5.2)

The exact solution of this Equation is W (y) = sin y, where

h(y) = −1

4
ey − 1

4
e−2+y cos 2 +

1

2
e3y cos 2y − 1

4
e−2+y sin 2 + y2 sin y + ey sin 2y − 1

2
e3y sin 2y.

Table 2 compares our results with the others. Note that the absolute error of the proposed method is better than the
others for small values N . The errors of this method are displayed at N = 2, 5, 8, and 9 in Figure 1. It is clear from
this Figure that the absolute errors decrease drastically with decreasing the number of steps.
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Table 2. Maximum absolute errors with various values of E.
N SJC LC[44] TC[45] SCC[48]
2 2× 10−2 7.9× 10−2 7.9× 10−2 3.4× 10−2

5 4.9× 10−5 6.2× 10−5 6.2× 10−5 5.5× 10−5

8 4.2× 10−8 1.8× 10−7 1.9× 10−8 8× 10−9

9 7.3× 10−9 7.2× 10−6 2.4× 10−8 5.5× 10−10

CPU time CN

22.015 2× 10−2

150.515 4.9× 10−5

208.781 3.5× 10−8

238.234 2.2× 10−8

Figure 1. Graph of the error at N=2, 5, 8 and 9.

Example 3. Let us consider the following V-FIE

W (y) = h(y) +

y∫
0

y tW (t)dt+

1∫
0

(y − t)W (t)dt. (5.3)

The exact solution of this equation is W (y) = y
1
2 , where

h(y) =
−2

5
y

7
2 − 2

3
y + y

1
2 +

2

5
.

Table 3 lists The numerical results obtained by the proposed method for N= 8, 12 and 16 for different values of a
and b. The absolute errors of this method are plotted in Figure 2. We observe from the Figure that the convergence
is exponential.

Table 3. Results of absolute errors for various values of N , a and b.
a b N E N E N E
1 1 8 3.4× 10−3 12 1.4× 10−3 16 7.7× 10−4

2 1 3.4× 10−3 1.4× 10−3 7.7× 10−4

- 12 - 12 3.4× 10−3 1.4× 10−3 7.7× 10−4
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Figure 2. Graph of the absolute error at N=8, 12, 16 and different values of a and b.

Example 4. Let us consider the following V-FIE [44, 45] and [48]

W (y) = h(y) +

ln(y+1)∫
0

ey+tW (t)dt−
1∫

0

ey+ln(y+1)W (ln (t+ 1))dt. (5.4)

The exact solution of this equation is W (y) = e−y, where

h(y) = e−y (ln (y + 1)− 1) .

In Table 4, there is a comparison between the absolute errors of the present method with the Lagrange collocation
(LC) method [44], the Taylor collocation (TC) method [45], and the shifted Chebyshev collocation (SCC) method
[48]. In Figure 3, we illustrate the results of our suggested method at N = 2, 5, 8, and 9. The Figure shows that the
convergence is exponential and the errors are better when the values of N are getting large.

Table 4. Comparison between the absolute errors with various values of N .
N SJC LC[44] TC[45] SCC[48]
2 1.3× 10−2 3.3× 10−3 3.3× 10−3 4.8× 10−3

5 3.5× 10−7 4.3× 10−7 4.3× 10−7 4.8× 10−7

8 1.1× 10−11 5.8× 10−7 6× 10−8 1.4× 10−11

9 2.8× 10−13 1.9× 10−5 8.8× 10−8 4.2× 10−13

CPU time CN

16.032 1.3× 10−2

197.5 3.5× 10−7

415.062 1.3× 10−11

512.736 3.2× 10−8
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Figure 3. Graph of the absolute error at N=2, 5, 8 and 9

6. Conclusions

In this paper, the collocation method based on the shifted Jacobi polynomials is successfully implemented to
compute numerical solutions for the V-FIEs. Four problems are examined to show the efficiency of this method by
using Mathematica software. The analytical results have been given in terms of a system of linear algebraic equations.
The proposed solutions declare better results outcome comparing with [44, 45] and [48]. Also, the spectral results
of the proposed method are high adequacy, viable and easy to apply. Finally, the convergence and error analysis
are given. And we conclude that the proposed method can be used to solve different types of fractional differential
equations and integral equations.
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