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Abstract
In this paper, we propose an exponential Euler method to approximate the solution of a stochastic functional
differential equation driven by weighted fractional Brownian motion Ba,b under some assumptions on a and b.
We obtain also the convergence rate of the method to the true solution after proving an L2-maximal bound for
the stochastic integrals in this case.
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1. Introduction

Many researchers are interested in fractional Brownian motion (fBm) because of some compact properties like, station-
ary increments, long/short range dependence, self-similarity and Holder’s continuity and also because of its applications
in diverse scientific areas containing finance, telecommunications, image processing and turbulence. There are more
informations about it in [4, 8, 9, 11, 12]. As models for different physical phenomena, long-range dependence (or long
memory) stochastic processes with self-similarity have been intensively used. We look for information in work of Taqqu
[18] for a guide on the appearance of the self-similarity in many applications and the monographs in [5, 14, 15], and
by Sheluhin et al. [16] for complete expositions on self-similar processes. In the meantime, a type of generalization
of fractional Brownian motion (fBm), that is, the weighted fractional Brownian motion (wfBm) can be also used for
modeling. The weighted fractional Brownian motion in the rang of time fluctuations is a system of independent and
symmetric particles that moving in Rd.
We consider the following SDE:

dx(t) = (Ax(t) + f(x(t))) dt+ σ(t)dBa,b(t), t ∈ [0, T ],

x(0) = ξ0, (1.1)

where Ba,b
t be a weighted fractional Brownian motion with parameters a, b satisfying a > −1, |b| < 1, |b| < a+1 and

A is the generator of a strongly continuous analytic semigroup S = S(t)t≥0 on a Banach space [19]. In order to get
main results, it is necessary to put some restrictions on f and σ.

Assumption 1.1. For some positive constant L,K1 and K2, for every x, y ∈ Rn and t, s ∈ [0, T ].
|f(x)− f(y)| ≤ L|x− y|, |f(x)|2 ≤ K1

(
1 + |x|2

)
,

|σ(t)− σ(s)| ≤ L|t− s|, |σ(t)| ≤ K2,
(1.2)

where σ is a deterministic function.
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Numerical methods for fractional brownian motion are applied extensively, whereas these methods are not considered
vastly for weighted fractional Brownian motion. We are interested to use the exponential Euler scheme to approximate
the solution of Eq.(1.1). It is worth menthion that in this case there is no estimation for stochastic integrals driven by
weighted fractional Brownian motion, we done in section 3. We apply this powerful inequality to show the convergence
of the method to the true solution in L2 sense.
In section 4, we show that Eq. (1.1) has the exact solution as follows

x(t) = eAtξ0 +

∫ t

0

eA(t−s)f(x(s))ds+

∫ t

0

eA(t−s)σ(s)dBa,b(s). (1.3)

Next, we consider the exponential Euler method for Eq. (1.1). Given a step size h > 0, the exponential Euler
approximate solution [10]

yk+1 = eAh
(
yk + hf(yk) + σ(tk)∆Ba,b

k

)
, (1.4)

where yk is an approximation to x(tk) with tk = kh, for k = 1, · · ·N , also ∆Ba,b
k = Ba,b(tk+1) − Ba,b(tk) is the

weighted fractional Brownian motion increment. It is convenient to use the continuous exponential Euler approximate
solution and hence y(t) is defined by

y(t) = eAtξ0 +

∫ t

0

eA(t−s̄)f(z(s))ds+

∫ t

0

eA(t−s̄)σ(s̄)dBa,b(s), (1.5)

in which s̄ = [ sh ]h in which [x] denote the greatest integer less than or equal to x, and z(t) is the step function which
defined by [7]

z(t) =

n−1∑
k=0

I[tk,tk+1)(t)ytk , (1.6)

in which IC is the indicator function of the set C. Note that, for any integer is k ≥ 0 we have y(tk) = z(tk) = yk.
The organization of this paper is as follows. In section 2, we state the weighted fractional Brownian motion and
Malliavin approach on it. In section 3, we prove some L2-maximal bound for the stochastic integrals of weighted
Brownian motion. In section 4, we first show the existence and uniquness of the solution of the SDE (1.1) and then
the outcomes of the former sections are employed to prove the convergence rate of the method for the stochastic
functional differential equations driven by weighted fractional Brownian motion. In section 5, we illustrate and justify
our theoretical results by numerical examples. In section 6, conclusions are given.

2. Weighted fractional Brownian motion

Consider a weighted fractional Brownian motion Ba,b with parameters a, b that a > −1, |b| < 1 and |b| < a+1 on the
complete probability space (Ω,F, P ) for t ∈ [0, T ].
This is a mean zero Guassian process and with simple covariance function [17]

Ra,b(t, s) = E[Ba,b(t)Ba,b(s)] =

∫ s∧t

0

ua[(t− u)b + (s− u)b]du, s, t ≥ 0.

The process with weighted fractional Brownian motion (wfBm) is self-similar, long-range dependence with Hölder
paths. Some surveys and references could be found in [2, 12].
Let ε be the space of indicator functions {1[0,t], t ∈ [0, T ]} and H be the Hilbert space defined as the closure of the
linear space ε with respect to the inner product

〈
1[0,s]1[0,t]

〉
H

= Ra,b(t, s). Then

∥u∥2H =

∫ T

0

∫ T

0

u(s)u(t)ϕ(t, s)dtds,

where ϕ(t, s) = b(t ∧ s)a(t ∨ s − t ∧ s)b−1. The mapping 1[0,t] → Ba,b(t) can be extended to an isometry between H

and the Gaussian space associated with Ba,b. For every u ∈ H, we denote Ba,b(u) =
∫ T

0
u(s)dBa,b(s).
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Also, let us consider the subspace |H| of H defined as the set of measurable function u on [0, T ] such that

∥u∥2|H| =

∫ T

0

∫ T

0

|u(s)||u(t)|ϕ(t, s)dtds < ∞. (2.1)

It was shown that |H| is a Banach space with the norm ∥u∥|H| and ε is dense in |H|, see [13, 17].
Moreover,

L2([0, T ]) ⊂ L2/(a+b+1) ⊂ |H| ⊂ H. (2.2)
When b > 0, we denote by S the set of smooth functionals of the form

F = f
(
Ba,b(u1), B

a,b(u2), · · ·Ba,b(un)
)
,

where f ∈ C∞
b (Rn) (f and all its derivatives are bounded) and ui ∈ H, i = 1, 2, · · · , n. Denote by Da,b and δa,b the

Malliavin operator and its adjoint operator associated with the wfBm. We have the following properties to the adjoint
operator δa,b.

• We have D1,2 ⊂ Dom(δa,b) and for any φ ∈ D1,2,

E
[
δa,b(φ)2

]
= E∥φ∥2H + E

∫
[0,T ]4

Da,b
ξ φ(r)Da,b

η φ(s)ϕ(η, r)ϕ(ξ, s)dsdrdξdη

≤ E∥φ∥2|H| + E
∫
[0,T ]4

|Da,b
ξ φ(r)||Da,b

η φ(s)|ϕ(η, r)||ϕ(ξ, s)|dsdrdξdη.

• We note to Proposition 1.5.8 in [12] and employ the inclusion (2.2) to conclude that if φ ∈ D1,2(|H|), the space
of |H|-valued variables with derivative belongs to L2(|H| ⊗ |H|), and Da,bφ = 0, then for some constant C0,
we can write
E
∣∣δa,b(φ)∣∣2 ≤ C0∥Eφ∥2L2/(a+b+1)([0,T ]), (2.3)

We refer to [3, 12] for more detailes.
• For every φ ∈ D1,2(|H|), Shen and et.al. [17] have shown that the divergence operator δa,b(φ) =

∫ T

0
φ(s)δBa,b(s)

satisfy∫ T

0

φ(s)dBa,b(s) = δa,b(φ) +

∫ T

0

∫ T

0

Da,b
s φ(r)ϕ(r, s)drds.

In particular, if Da,bφ(r) = 0, then
∫ T

0
φ(s)dBa,b(s) = δa,b(φ).

3. L2-maximal estimates for the stochastic integral

Let I = (a0, b0) with 0 < a0 < b0 ≤ ∞ and v be almost everywhere positive functions, which are locally integrable on
the interval I.
Denote by L2(v, I) the set of all functions measurable on I such that

∥f∥2,v =

(∫ b0

a0

|f(x)|2v(x)dx

) 1
2

< ∞.

For every α0 ≥ 0 and 0 ≤ β ≤ 1, we consider the Hardy type operator Tα0,β defined by

Tα0,βf(x) =

∫ x

a0

sα0f(s)ds

(x− s)
1−β

x ∈ [0, T ].

According to Theorem 3.3 in [1] for every 1 ≤ α ≤ a+ b+ 1 =: p , 1
p + 1

q = 1, if

Aα0,β := sup
z∈I

(∫ z

a0

uq(s)sqβds
) 1

p
(∫ b0

z

sp(α0−1)ds
) 1

p

< ∞,
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then for some constant C ′
0(∫ b

a

(Tα0,βf(x))
p
v(x)dx

) 1
p

≤ C ′
0

(∫ b

a

(f(x))
α
dx

) 1
α

. (3.1)

The following theorem will give us a maximal L2-estimate for the indefinite integral
∫ t

0
φ(s)δBa,b(s).

Theorem 3.1. Let 0 ≤ a ≤ 1
2 , 0 < b < 1 and a+ 3b ≥ 1 and u = {u(t), t ∈ [0, T ]} be a stochastic process with

Da,bu = 0. Then for every 1 ≤ α ≤ a+ b+ 1

E

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

u(s)δBa,b
s

∣∣∣∣2
)

≤ C
(∫ T

0

|Eu(s)|
2α

a+b+1 ds
) a+b+1

α

≤ C

∫ T

0

|Eu(s)|2 ds,

where the constant C depends on a, b and T .

Proof. Using the equality

ca,b =

∫ t

r

tb(t− θ)−ara(θ − r)b−1dθ < ∞,

and the Fubini’s stochastic theorem, we have∫ t

0

u(s)δBa,b(s) = c−1
a,b

∫ t

0

tb(t− r)−a

(∫ r

0

u(s)sa(r − s)b−1δBa,b(s)

)
dr.

Chebyshev’s inequality results that for some constant Ca,b∣∣∣∣∫ t

0

u(s)δBa,b(s)

∣∣∣∣2 ≤ Ca,b

∫ t

0

∣∣∣∣∫ r

0

u(s)sa(r − s)b−1δBa,b(s)

∣∣∣∣2 dr,
E

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

u(s)δBa,b(s)

∣∣∣∣2
)

≤ Ca,bE
∫ T

0

∣∣∣∣∫ r

0

u(s)sa(r − s)b−1δBa,b(s)

∣∣∣∣2 dr.
Using now inequality (2.3) and then applying (3.1) for p = a+ b+ 1, α0 = 2a

a+b+1 , β − 1 = 2(b−1)
a+b+1 and

f(s) =
(
E(|u(s)|)

) 2
a+b+1 , which satisfies desired condition according to our assumption in the theorem, we obtain

E

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

u(s)δBa,b(s)

∣∣∣∣2
)

≤ C0Ca,b

{∫ T

0

(∫ r

0

s
2a

(a+b+1) (r − s)
2(b−1)

(a+b+1) |Eu(s)|
2

(a+b+1) ds

)(a+b+1)

dr

≤ TC ′
0C0Ca,b

(∫ T

0

|Eu(r)|
2α

a+b+1 dr

) a+b+1
α

≤ C

∫ T

0

|Eu(r)|2 dr.

which completes the proof. □
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4. Convergence Rate of Numerical Exponential Euler Scheme

In this section we first show that the SDE (1.1) has a unique solution as the form (1.3). Then we will study the
convergence rate of the approximation solution to this exact solution of Equ. (1.1).

Theorem 4.1. Under Assumption 1.1, the SDE (1.1) has a unique solution as the form (1.3).

Proof. The proof is motivated from [6]. We first start to prove the uniquness of solutions. Assume that X,Y are two
solutions of (1.1). Then from Assumption 1.1

sup
0≤t≤T

E(|X(t)− Y (t)|2) ≤ TL2

∫ T

0

|e2AT | sup
0≤u≤s

E(|X(u)− Y (u)|2)ds.

Applying Gronwall’s inequality results the uniquness of solutions. Now, to prove the existence of the solution, Let
X0 = 0 and define a sequence {Xn} of processes as{

Xn(t) = eAtξ0 +
∫ t

0
eA(t−s)f

(
Xn−1(s)

)
ds+

∫ t

0
eA(t−s)σ(s)dBa,b(s)

Xn(t) = ξ0 t ∈ [−τ, 0]

Let Y n(t) := sup0≤s≤t E(|Xn+1(s)−Xn(s)|2) and employ Assumption 1.1 to obtain

E(|Xn+1(t)−Xn(t)|2) ≤ tL2

∫ t

0

|e2AT | sup
0≤u≤s

E(|Xn(u)−Xn−1(u)|2)ds.

Consequently, by iteration we result

Y n(t) ≤ (tL2)n−1Tn−1

(n− 1)!
Y 1(T ),

from which the cauchy property of {Xn} implies. Now, it is straightforward to show that X(t), as the limit of the
sequence, is the solution of the SDE (1.1). Indeed, when n → ∞

E
(∣∣∣ ∫ t

0

eA(t−s)
(
f(Xn−1)− f(X(s))

)
ds
∣∣∣2) ≤ tL2E

(∫ t

0

∣∣Xn−1(s)−X(s)
∣∣2 ds)→ 0.

□

Lemma 4.2. Under Assumption 1.1, there exists variable C1 independent of h such that

(i) E
(

sup
0≤t≤T

|y(t)|2
)

≤ C1, (ii) E
(

sup
0≤t≤T

|x(t)|2
)

≤ C1. (4.1)

Proof. Due to the fact (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we put forward our argumentation for every t ≥ 0,

|y(t)|2 ≤ 3

[
|eAtξ0|2 + |

∫ t

0

eA(t−s̄)f(z(s))ds|2 + |
∫ t

0

eA(t−s̄)σ(s̄)dBa,b(s)|2
]
. (4.2)

Taking the expectation of both sides and using Hölder inequality, the result obtain as follow

E
(

sup
0≤t≤T

|y(t)|2
)

≤ 3|eAT |2E|ξ0|2 + 3TE
∫ T

0

∣∣∣eA(t−s̄)
∣∣∣2 |f(z(s))|2 ds+ 3E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

eA(t−s̄)σ(s̄)dBa,b(s)

∣∣∣∣2
)
.

(4.3)
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If we let M = max{1, |eAt|2} then we apply Assumption 1.1 to result the following

E
(

sup
0≤t≤T

|y(t)|2
)

≤ 3

{
ME|ξ0|2 + TM

∫ T

0

E|f(z(s))|2ds+MCE

(∫ T

0

|σ(ū)|2du

)}

≤ 3M

{
E|ξ0|2 + TK1

∫ T

0

(1 + E|z(s)|2)ds+ TCK2
2

}

≤ 3M
{
E|ξ0|2 + T 2K1 + TCK2

2

}
+ 3MK1T

∫ T

0

E
(

sup
0≤r≤s

|yr|2
)
ds.

(4.4)

Using Gronwall inequality we derive

E
(

sup
0≤t≤T

|y(t)|2
)

≤ C1,

Also, from Eq.(1.3) and by arguments a like, the result (ii) is produced. □
Lemma 4.3. Under Assumption 1.1, there exists some constant C2 such that

E
(

sup
0≤t≤T

|y(t)− z(t)|2
)

≤ C2h
a+b+1

α .

Proof. Through defining z(t) and Eq.(1.5) for t ∈ [tk, tk+1), the following equality yields.

y(t)− z(t) = eA(t−tk)yk +

∫ t

tk

eA(s−tk)f(yk)ds+

∫ t

tk

eA(s−tk)σ(tk)dB
a,b(s)− yk.

Then Hölder’s inequality and Assumption 1.1 imply

|y(t)− z(t)|2 ≤ 3
∣∣∣eA(t−tk) − In

∣∣∣2 y2k + 3hK2
1

∫ t

tk

∣∣∣eA(s−tk)
∣∣∣2 (1 + |yk|2

)
ds+ 3

∣∣∣∣∫ t

tk

eA(s−tk)σ(tk)dB
a,b(s)

∣∣∣∣2
, (4.5)

where In is an identity matrix. Take the expectation on the supremum with respect to t of the both sides of (4.5).
Applying Theorem (3.1) and then Lemma 4.2 we derive

E

(
sup

0≤k≤n
sup

tk≤t<tk+1

|y(t)− z(t)|2
)

≤ 3|eA(t−tk) − In|2E
(
sup
k

|yk|2
)
+ 3MhK2

1E

(∫ tk1+1

tk1

(1 + |yk|2)ds

)

+ 3MCE

(∫ tk2+1

tk2

|σ(tk)|
2α

a+b+1 ds

) a+b+1
α

≤ 3
{
|eA(tk+1−tk) − In|2C1 + h2MK2

1 (1 + C1)
}
+ 3MCK

2α
a+b+1

2 h
a+b+1

α .

in which two last supremum is taken for some 0 ≤ k1, k2 ≤ n for the first inequality.
For every tk ≤ t ≤ tk+1, we know |eA(t−tk) − In| ≤ e|A|h − 1 ≤ |A|hM , therefore for some constant C2, independent of
h,

E
(

sup
0≤t≤T

|y(t)− z(t)|2
)

≤ C2h
a+b+1

α .

□
Theorem 4.4. Under Assumptions 1.1 and conditions in Theorem 3.1, the numerical approximated solution y(t)
converges to the exact solution of Eq.(1.1) i.e.,

lim
h→0

E
(

sup
0≤t≤T

x(t)− y(t)|2
)

= 0.
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In fact, we prove the more efficient inequality and show that for some constant C6

E
(

sup
0≤t≤T

|x(t)− y(t)|2
)

≤ C6h
a+b+1

α . (4.6)

Proof. From Eq.(1.3) and Eq.(1.5) we know

(x(t)− y(t))2 ≤ 2
[ ∫ t

0

∣∣∣eA(t−s)f(x(s))− eA(t−s̄)f(z(s̄))
∣∣∣ ds]2 + 2

[ ∫ t

0

∣∣∣eA(t−s)σ(s)− eA(t−s̄)σ(s̄)
∣∣∣ dBa,b(s)

]2
≤ 4
[ ∫ t

0

∣∣∣eA(t−s) − eA(t−s̄)
∣∣∣ f(x(s))ds]2 + 4

[ ∫ t

0

[f(x(s))− f(z(s̄))| eA(t−s̄)ds
]2

+ 4
[ ∫ t

0

∣∣∣eA(t−s) − eA(t−s̄)
∣∣∣σ(s)dBa,b(s)

]2
+ 4
[ ∫ t

0

|σ(s)− σ(s̄)| eA(t−s̄)dBa,b(s)
]2

=: I1(t) + I2(t) + I3(t) + I4(t). (4.7)

In sequence, we will find some upper bounds to E
(
sup0≤t≤T |Ii(t)|2

)
for every 1 ≤ i ≤ 4 with respect to

E
(
sup0≤t≤T |x(t)− y(t)|2

)
and h. To do this. for i = 1 from Lemma 4.2, assumption 1.1 part a and Lemma 4.3 we

result

E
(

sup
0≤t≤T

|I1(t)|2 + |I2(t)|2
)

= E
(

sup
0≤t≤T

∫ t

0

eA(t−s̄)
∣∣∣eA(s̄−s) − In

∣∣∣ f(x(s))ds)2

+ TL2E
(

sup
0≤t≤T

∫ t

0

|eA(t−s̄)|2|x(s)− z(s̄)|2ds
)

≤ TK1M

∫ T

0

∣∣∣eA(s̄−s) − In

∣∣∣2(1 + E
(

sup
0≤u≤s

|x(u)|2
))

ds

+ 2L2TM

∫ T

0

E
(

sup
0≤u≤s

|x(u)− y(u)|2
)
ds+ 2L2T 2MC2h

a+b+1
α

≤ T 2K1M
2|F |2h2(1 + C1) + 2L2TM

∫ T

0

E
(

sup
0≤u≤s

|x(u)− y(u)|2
)
ds

+ 2L2T 2MC2h
a+b+1

α . (4.8)

To bound E
(
sup0≤t≤T |I3(t)|2

)
and E

(
sup0≤t≤T |I4(t)|2

)
we use Theorem 3.1. So, as we done in 4.8, we deduce

E
(

sup
0≤t≤T

|I3(t)|2 + |I4(t)|2
)

≤ C

(∫ T

0

[
eA(t−s) − eA(t−s̄)

] 2α
a+b+1 |σ(s)|

2α
a+b+1 ds

) a+b+1
α

+M

(∫ T

0

|σ(s)− σ(s̄)|
2α

a+b+1 ds

) a+b+1
α

≤ C(MK2|A|)
2α

a+b+1T a+b+1h
a+b+1

α + L2h2MT
a+b+1

α . (4.9)

Now, substituting Eq.(4.8) and (4.9) into (4.7) can conclude that

E( sup
0≤t≤T

|x(t)− y(t)|2) ≤ T 2K1M
2|A|2h2(1 + C1) + 2L2TM

∫ T

0

E
(

sup
0≤u≤s

|x(u)− y(u)|2
)
ds

+ 2L2T 2MC2h
a+b+1

α + C(MK2|A|)
2α

a+b+1T a+b+1h
a+b+1

α + L2h2MT
a+b+1

α

≤ C3h
2 + C4h

a+b+1
α + C5

∫ T

0

E
(

sup
0≤u≤s

|x(u)− y(u)|2
)
ds,
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Figure 1. (a) Log-Log scale of method for example 1, a=0.2, b=0.9, (b) Log-Log scale for exponential
Euler method for example 1, T=1, a=0.3, b=0.8.

Table 1. The mean, standard deviation of error.

a = 0.2 b = 0.9 a = 0.3 b = 0.8
n− dimensional x̄E SE x̄E SE

1− dimensional 0.058078 0.042101 0.063612 0.050348
2− dimensional 0.047122 0.042627 0.045524 0.048724
3− dimensional 0.052205 0.050952 0.062094 0.045738

for some positive constants C3, C4 and C5.
Hence, Gronwall’s inequality results the assertion (4.6) for some constant C6. □

5. Numerical Results

In this section, we show our proposed method for numerical results to demonstrate the results of the convergence of
the numerical solution for stochastic differential equation.

Example 5.1. Consider the stochastic differential equation:

dx(t) = (Ax(t) + 1− x(t)) dt+ dBa,b(t), t ∈ [0, 1],

x(t) = 0, A =

 −2 1 1
1 −2 1
1 1 −2

 . (5.1)

Exponential Euler method with step sizes h = 2p−12−8 for 1 < p ≤ 5 is used for discretization. The numerical results
obtained from exponential Euler method show the order of convergence 1

2 as α = a+ b+1, displayed in Figures 1 and
2. We used the parameters a = 0.2, b = 0.9 produces the slop=0.5009, residual=0.0609 and a = 0.3, b = 0.8 produces
the slop=0.5083, residual=0.0287 displayed in Figures 1. In table 1, mean of error x̄E , and standard deviation of error
SE for 2000 iterations of exponential Euler method is presented.
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Figure 2. (a) Log-Log scale for exponential Euler method for example 2, T=1, a=0.4, b=0.7, (b)
Log-Log scale for exponential Euler method for example 2, T=1, a=0.2, b=0.9.

Table 2. The mean, standard deviation of error.

a = 0.4 b = 0.7 a = 0.2 b = 0.9
n− dimensional x̄E SE x̄E SE

1− dimensional 0.071499 0.043180 0.068295 0.044134
2− dimensional 0.046365 0.035848 0.057645 0.032884
3− dimensional 0.049738 0.034820 0.041542 0.039798

Example 5.2. Consider the stochastic differential equation:
dx(t) = Ax(t)dt+ dBa,b(t), t ∈ [0, 1],

x(t) = 0, A =

 −2 1 1
1 −2 1
1 1 −2

 . (5.2)

Exponential Euler method with step sizes h = 2p−12−10 for 1 < p ≤ 5 is used for discretization. The numerical results
obtained from exponential Euler method show the order of convergence 1

2 as α = a + b + 1, displayed in Figures 5.2
and 5.2. The parameters a = 0.4, b = 0.7 produce the slop=0.5008, residual=0.0438 and a = 0.2, b = 0.9 produce the
slop=0.5048, residual=0.0570.

Example 5.3. Consider the stochastic differential equation:

dx(t) =
(
Ax(t) + 1−

√
x(t)

)
dt+ dBa,b(t), t ∈ [0, 1],

x(t) = 0. (5.3)

A =

 −2 1 1
1 −2 1
1 1 −2

 .

Exponential Euler method with step sizes h = 2p−12−9 for 1 < p ≤ 5 is used for discretization. The numerical results
obtained from exponential Euler method shows that the order of convergence is of (a+ b+1)/2 as α = 1. We used the
parameters a = 0.05, b = 0.4 which produce the slop=0.7294, residual=0.1060 and a = 0.04, b = 0.7 which produce
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Figure 3. Log-Log scale for exponential Euler method for example 3, T=1, a=0.05, b=0.4.
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Figure 4. The numerical solutions for exponential Euler method for example 3, T=1, a=0.04, b=0.7.

Table 3. The mean, standard deviation of error.

a = 0.04 b = 0.7 a = 0.05 b = 0.4
n− dimensional x̄E SE x̄E SE

1− dimensional 0.009902 0.007343 0.055054 0.022718
2− dimensional 0.010415 0.01058 0.057804 0.028336
3− dimensional 0.022413 0.012454 0.038389 0.030996

the slop=0.8827, residual=0.0642. In table 3, exponential Euler method is the number of iterations, x̄E is mean of
error, and SE is standard deviation of error.

6. Conclusions

In this paper, we study convergence of stochastic integral of the numerical solution for the exponential Euler method
to stochastic functional differential equation driven by weighted fractional Brownian motion in additrive case. We
also establish the convergence rate a+b+1

2α for every 1 ≤ α ≤ a + b + 1. A numerical example is given to verify the
exponential Euler method, the conclusion is correct.

Declaration: No funding was received.
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