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Abstract
In this paper, European options with transaction cost under some Black-Scholes markets are priced. In fact,
stochastic analysis and Lie group analysis are applied to find exact solutions for European options pricing under
considered markets. In the sequel, using the finite difference method, numerical solutions are presented as well.
Finally, European options pricing are presented in four maturity times under some Black-Scholes models equipped
with the gold asset as underlying asset. For this, the daily gold world price has been followed from Jan 1, 2016 to
Jan 1, 2019 and the results of the profit and loss of options under the considered models indicate that call options
prices prevent arbitrage opportunity but put options create it.
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1. Introduction

In financial literature, the pricing category is considered as one of the most important concepts. Contingent claims
especially options are very good tools for reducing investment risk causing absorb of less risk-averse investors. The
Black-Scholes model made a big progress in option pricing methodology. This model is one of the most reliable
pricing models particularly for European options and it is used in many countries such as the Australian and French
stock exchange. As known the Black-Scholes model, like any other model, considers some conditions in market where
some cases are violated. Absence of transaction cost is an assumption which more observations of volatility of traded
option valuations have exposed that this assumption is not realistic. In markets with transaction cost the formal
Black-Scholes model is switched to a nonlinear one which is considered in this paper. In order to reach the purposes
of this investigation, some instrumentals of stochastic analysis and Lie group analysis are applied. Recently, Lie group
analysis is widely used in financial studies and can be seen in a lot of papers [6, 8, 9]. Also several studies have been
conducted about pde solutions which can be seen in [1–3, 21].

In recent years, several financial studies have been conducted on options pricing. For example, in [9] power option
pricing has been presented under fractional Heston model in the gold world market using fast Fourier transformation.
In this paper, the study period has been classified to periods of three months and the profit and loss resulting from
this option in each period have been calculated. In [7], power option pricing under two stochastic volatility models;
double Heston model and double Heston with three jumps have been compared. This investigation indicates that the
power option yields more premium income under the second considered model, double Heston with three jumps as
well. Many nonlinear Black-Scholes models have been studied in the literature. In [12], analytic solutions for nonlinear
and the Greek parameters are given. In [11], by reduction a nonlinear Black-Sholes model, a particular solution is
presented. Hussain and Alrajhi in [16] used a genetic algorithm to find a numerical solution for the nonlinear Black-
Sholes model. Mashayekhi and Hugger presented a finite difference scheme for a nonlinear Black-Sholes model with
modified volatility [19].
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In this investigation several transaction cost models from the most relevant class of nonlinear Black-Scholes equations
for European options are concerned. So consider two assets in the market, a liquid bond (risk-free asset) with an interest
rate r ≥ 0 and stock that is illiquid. Let (Ω, F, P ) be a probability space that Ft is the filtration generated by the
Brownian motion Wt at time t, 0 ≤ t ≤ T and P is the risk-neutral probability. In the transaction cost models, the
dynamics of one share of underlying asset price S0

t at time t is
dS0

t = µS0
t + σS0

t dWt, 0 ≤ t ≤ T, (1.1)
where µ is drift and σ is volatility. The transaction price at time t is

St(α) = eραS0
t , (1.2)

when α shares are traded and 0 ≤ ρ ≤ 1 is liquidity parameter [12].
Bakstein and Howison developed a parameterized model for liquidity effects arising from the trading in an asset.

They tested and calibrated their model set-up empirically with high-frequency data of German blue chips and discussed
further extensions of the model, including stochastic liquidity [4]. Their model is

∂U

∂t
+

1

2
σ2S2 ∂

2U

∂S2

(
1 + 2ρS

∂2U

∂S2

)
+ rS

∂U

∂S
− rU = 0, (1.3)

where ρ ≥ 0 is liquidity parameter, σ is the volatility and r is the risk-free interest rate. Also for r = 0 the model is
∂U

∂t
+

1

2
σ2S2 ∂

2U

∂S2

(
1 + 2ρ

∂2U

∂S2

)
= 0. (1.4)

The above equation called Cetin et al.’s model [5].
The equations (1.3) and (1.4) have various set solutions, some of them are presented by using lie symmetries method

in this paper. The quoted pde’s have also approximated solutions that have been computed applying finite difference
method.

In this paper two linear Black-Scholes models are considered in which two assets are assumed; a bond as risk-free and
liquid asset and stock as illiquid. In this investigation with stochastic analysis and Lie group analysis instrumentals,
exact solutions of European options pricing equipped transaction cost under considered models are presented. Then
following the daily gold world price from Jan 1, 2016 to Jan 1, 2019, considering the gold 18 cutie as underlying asset
and calculating the profit and loss of options under considered models. It has been shown that call options prices
prevent arbitrage opportunity but put options create it.

This paper is outlined in 6 sections. In section 2 the basic concepts of Lie symmetries are given. Symmetry operators
are found and some exact solutions for equations (1.3) and (1.4) are constructed by the reduction process. Section
3 is devoted to numerical solutions of equations (1.3) and (1.4) by finite difference method. Section 4 describes our
methodology for the case study, the world gold market. The numerical solutions of option pricing with gold price in
the world market are presented in section 5. The paper is concluded in section 6.

1.1. Lie point symmetries. Consider a system of differential equation with independent variables xi(1 ≤ i < n)
and dependent variable u of form

∆s(xi, u, ui, uij , . . . ) = 0, 1 ≤ s < k, (1.5)
where ui =

∂u
∂xi . The infinitesimal Lie transformation for considered equations are

x̃i 7→ xi + ϵξi +O(ϵ2), (1.6)
ũ 7→ u+ ϵϕ+O(ϵ2),

with a small parameter ϵ � 1 and which leaves the system of equations invariant to O(ϵ2). Lie point symmetries
correspond to the case where the infinitesimal generators ξi = ξi(xi, u) and ϕ = ϕ(xi, u) depend only on xi and u and
not on the derivatives or integrals of u. Generalized Lie symmetries are obtained in the case when the transformations
(1.6) also depend on the derivatives or integrals of u. The infinitesimal transformations for the first and second
derivatives to O(ϵ2) are given by the prolongation formula

ũi = ui + ϵζi, ũij = uij + ϵζij , (1.7)
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where
ζi = Diϕ̂+ ξsusi, ζij = DiDj ϕ̂+ ξsusij , (1.8)

and
ϕ̂ = ϕ− ξsus, (1.9)

corresponds to the canonical Lie transformation for which x̃i = xi and ũ = u + ϵϕ̃. The symbol Di in (1.8) denotes
the total derivative operator with respect to xi. Similar formula to (1.8) can be applied for the transformation of the
higher order derivatives. The condition for invariance of the DE system (1.5) to O(ϵ2) under the Lie transformation
(1.6) can be expressed as

Lv∆
s ≡ ṽ(∆s) = 0 where ∆s = 0, 1 ≤ s ≤ k, (1.10)

where

ṽ = v + ζi
∂

∂ui
+ ζij

∂

∂uij
+ . . . (1.11)

is the prolongation of the vector field

v = ξi
∂

∂xi
+ ϕ

∂

∂u
, (1.12)

associated with the infinitesimal transformation (1.6). The symbol Lv∆
s in (1.10) denotes the Lie derivative of ∆s

with respect to the vector field v (i.e., Lv∆
s = d∆s

dϵ

∣∣
ϵ=0

) [15].
Now consider x1 = x, x2 = t and s = 2. The infinitesimal Lie transformations for these conditions are

x 7→ x+ ϵξ1(x, t, u) +O(ϵ2),

t 7→ t+ ϵξ2(x, t, u) +O(ϵ2), (1.13)
u 7→ u+ ϵϕ(x, t, u) +O(ϵ2).

The vector field associated with the above group of transformation can be written as

X = ξ1(x, t, u)
∂

∂x
+ ξ2(x, t, u)

∂

∂t
+ ϕ(x, t, u)

∂

∂u
. (1.14)

Because of the order of both equations (1.3) and (1.4), we need to apply the second prolongation of the operator (1.14)
of the form [17]

X(2) = X + ϕx ∂

∂ux
+ ϕt ∂

∂ut
+ ϕxx ∂

∂uxx
+ ϕxt ∂

∂uxt
+ ϕtt ∂

∂utt
, (1.15)

where ϕx, ϕt, ϕxx, ϕxt and ϕtt are prolongation coefficients written by
ϕx = Dx(ϕ− ξ1ux − ξ2ut) + ξ1uxx+ ξ2uxt,

ϕt = Dt(ϕ− ξ1ux − ξ2ut) + ξ1uxt+ ξ2utt,

ϕxx = Dx(Dx(ϕ− ξ1ux − ξ2ut)) + ξ1uxxx+ ξ2uxxt,

ϕxt = Dx(Dt(ϕ− ξ1ux − ξ2ut)) + ξ1uxxt+ ξ2uxtt,

ϕtt = Dt(Dt(ϕ− ξ1ux − ξ2ut)) + ξ1uxtt+ ξ2uttt,

where the operator Dx and Dt denote the total derivative with respect to x and t [14]. Using the standard Lie
symmetry method, it can be concluded that equation (1.3) admits a 5-dimensional Lie group of symmetry spanned
by the following infinitesimal generators,

X1 =
∂

∂t
, X2 = ert

∂

∂u
, X3 = x

∂

∂u
, X4 = x

∂

∂x
+ u

∂

∂u
,

X5 = xrt
∂

∂x
+ t

∂

∂t
− −2x lnx+ (2 + (σ2 + 2r)t)x+ 8u(rt− 1)ρ

8ρ

∂

∂u
.
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Similarly, equation (1.4) admits the operators

X∗
1 =

∂

∂t
, X∗

2 =
∂

∂u
, X∗

3 = x
∂

∂u
, X∗

4 = x
∂

∂x
+ u

∂

∂u
,

X∗
5 = x

∂

∂x
+ t

∂

∂t
− x(σ2t+ 2 lnx− 2)

8ρ

∂

∂u

as the basis for symmetry generators.

1.2. Reduction and exact solutions. The first advantage of the symmetry group method is to construct new
solutions from known solutions. To do this, the infinitesimals are considered and their corresponding invariants
are determined. The Bakstein-Howison equation is expressed in the coordinates (x, t, u) to reduce this equation
for searching its form in specific coordinates. Those coordinates will be constructed by searching for independent
invariants (y, v) corresponding to an infinitesimal generator. So using the chain rule, the expression of the equation
in the new coordinate allows us to the reduced equation. Here we will obtain some invariant solutions with respect
to symmetries. First, we obtain the similarity variables for each term of the symmetries, then we use this method to
reduce the equations and find the invariant solutions. As we see Lie point symmetries of equations (1.3) and (1.4)
are determined by solving the overdetermining equation for the infinitesimal generators ξi and ϕ. Classical similarity
solutions are obtained by requiring the solution surfaces for u which are mapped onto the same set of surfaces in
the sense that u′(x, t) = u(x, t). This condition yields the first-order partial differential equations ξiui = ϕ with
characteristics given by the group trajectories [14],

dxi

dε
= ξi,

du

dε
= ϕ. (1.16)

Integrations of the group trajectories yield the invariants of the point Lie group admitted by the equation, and they
may be used to construct the classical similarity solutions of equations. Some classical similarity solutions of the model
including invariants are expected in the sequel.

1.2.1. Reduced equations for (1.3). In this part some reduced form and exact solutions of the equation (1.3) are given
via the extracted invariants of some symmetries.

1. For generator X1, the classical similarity solution of (1.3) is obtained by integrating the group of trajectories,

dx

dε
= 0,

dt

dε
= 1,

du

dε
= 0,

where ε is a parameter along the trajectories. The above integrations give u = v(y), t = y as the invariant
transformations. Substituting u = v(y) into (1.3), it is reduced to

v′ − rv = 0, (1.17)

with v = Cery as its solution. Consequently the group invariant solution is u = Cert.
2. Consider the generator X2. The classical similarity solution of (1.3) is obtained by integrating the group of

trajectories,

dx

dε
= x,

dt

dε
= 0,

du

dε
= u,

where ε is a parameter along the trajectories. This system gives u = v(y), t = y as the invariant transforma-
tions. Inserting y into (1.3), leads to the trivial equation

v = 0, (1.18)

with the trivial solution u = 0.



CMDE Vol. 10, No. 2, 2022, pp. 461-474 465

The one-parameter group for generator X5 gives a non-trivial solutions obtaining from (1.18).
The flow exp(sX5)(x, t, u) = (x̄, t̄, ū) is

x̄ = xert(s−1), t̄ = tes (1.19)

ū = −exp(rtes − s)

16ρrt

(
t2 exp(−rt+ 2s)σ2rx− rσ2t2xe−rt + 2x exp(−rt+ 2s)r2t2 − 2e−rtr2t2x+ 2x ln (x)

2
e−rt

−2x ln (x exp{rt(es − 1)})2 − 4xrte−rt − 16urtρe−rt + 4rtx exp(−rt+ s)

)
.

The substitution u = Cert in this flow gives the following non-trivial exact solution

u(x, t) = C exp{rt(es − 1) + s+ rx} − xert−s

16ρrt

(
t2σ2r exp{rt(1− e−s − es)}

−rσ2t2ert(1−e−s−es) + 2r2t2 exp{rt(1− e−s − es)− 2s}

−2t2r2 exp{rt(1− e−s − es)}+ 2 ln
(
x exp{rte−s(es−1)}

)2

exp{rt(1− e−s − es)}

−2 ln
(
xert exp{−s(es−1)}

)2

exp{rt(1− e−s − es)}

−4rt exp{rt(1− e−s − es) + s}+ 4rt exp{−rte−s − s}
)
. (1.20)

Also the substitution u = 0 in flow (1.19) gives the following non-trivial exact solution

u(x, t) = −xert−s

16ρrt

(
t2σ2rert(1−e−s−es) − rσ2t2ert(1−e−s−es) + 2r2t2ert(1−e−s−es)−2s

− 2t2r2ert(1−e−s−es) + 2 ln (xerte
−s(es−1)

)
2

ert(1−e−s−es)

− 2 ln (xerte
−s(es−1)

)
2

ert(1−e−s−es) − 4rtert(1−e−s−es)+s + 4rte−rte−s−s

)
. (1.21)

(a) Equation (1.20) (b) Equation (1.21)

Figure 1. Plots of solutions with European option conditions with σ = 0.4, ρ = 0.6, r = 0.05

See [20] for more details.
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1.2.2. Reduced equations for (1.4). The same process is done in order to find some exact solution for equation (1.4).
1. For generator X∗

1 , the classical similarity solution of (1.4) is obtained by integrating the group of trajectories,
dx

dε
= 0,

dt

dε
= 1,

du

dε
= 0,

where ε is a parameter along the trajectories. The above integrations gives u = v(y), y = x as the invariant
transformations. Substituting u = v(y), into (1.4), it is reduced to

−1

2
σ2(2ρrv′′ + 1)r2v′′ = 0. (1.22)

So, the reduced equation (1.22) gives two exact solutions

u(x, t) = −1

2

x ln(x)

ρ
+

1

2

x

ρ
+ C1x+ C2, (1.23)

u(x, t) = C1x+ C2. (1.24)

Figure 2. Plots of (1.23) for European option

Using the one-parameter group exp(sX∗
5 )(x, t, u) = (x̄, t̄, ū) for equation (1.4) yields

x̄ = xes, t̄ = tes (1.25)

ū = − te2sσ2x− σ2tx+ 4x ln (xes)es − 4x ln (x)− 8xes − 16uρ+ 8x

16ρ
.

The new solutions are obtained by substituting (1.23) and (1.24) into (1.25) as follows [20].

u(x, t) = − 1

2ρ

[
(xe−s) ln(xe−s) + xe−s

]
+ C1xe

−s + C2 (1.26)

− te−2sσ2xe−s − σ2txe−s + 12xe−s ln (xe−s)e−s − 4xe−s ln (x)− 8 + 8xe−s

16ρ
,

and

u(x, t) = C1xe
−s + C2 −

te−2sσ2xe−s − σ2txe−s + 12xe−s ln (xe−s)e−s − 4xe−s ln (x)− 8 + 8xe−s

16ρ
. (1.27)

2. For another solution, consider the generator X∗
2 . Thus, the classical similarity solution of (1.4) is obtained by

integrating the group of trajectories,
dx

dε
= x,

dt

dε
= 0,

du

dε
= u,

where ε is a parameter along the trajectories. The above integrations give u = v(y), x = exp(q) and t = y as
the invariant transformations. Substituting these variables into (1.4),
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v′ exp(q) = 0, (1.28)

that yields the trivial solution

u = 0. (1.29)

In order to find a non-trivial solution, the advantage of exp(sX∗
5 )(x, t, u) = (x̄, t̄, ū) is used again. This gives

the following non-trivial solution

u(x, t) =
te2sσ2x− σ2tx+ 4xses lnx− 4x lnx− 8xes + 8x

16ρ
. (1.30)

(a) Equation (1.26) (b) Equation (1.27)

(c) Equation (1.30)

Figure 3. Plots of solutions with European option conditions with σ = 0.4, ρ = 0.6

2. Numerical solution

In this section, finite difference method is used to construct a numerical simulation for PDE (1.3) and (1.4). In
relations (1.3) and (1.4), t denotes maturity time which decreases from T to zero. To simplify finite difference method
calculations, by changing the variable t as τ(t) = T − t, the backward equation has been transformed to a forward
equation [10]. Note that τ increases from zero to T .

∂U(S, t)

∂t
=

∂U(S, τ(t))

∂τ(t)
τ ′(t) = −∂U(S, τ)

∂τ
. (2.1)
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By replacing τ(t) with t Bakstein and Howison’s model is converted to
∂U

∂t
− 1

2
σ2S2 ∂

2U

∂S2

(
1 + 2ρS

∂2U

∂S2

)
− rS

∂U

∂S
+ rU = 0. (2.2)

To solve (1.3), we divide the interval [0, T ] into M subintervals of length ∆t. We also choose an upper bound (Smax)
for S, for example, three or four times the value of the strike price. Now we divide [0, Smax] to N subintervals of
length δS. By this mesh, a grid point is denoted by (n∆S,m∆t) where n = 0, 1, . . . , N and m = 0, 1, . . . ,M . Using
an explicit method for the discretization of derivatives means a forward difference approximation for ∂U

∂t as
∂U

∂t
(n∆S,m∆t) =

um+1
n − vmn

∆t
+O(∆t), (2.3)

a central difference approximation for ∂U
∂S as

∂U

∂S
(n∆S,m∆t) =

um
n+1 − um

n−1

2∆S
+O((∆S)2), (2.4)

and a symmetric central difference approximation for ∂2U
∂S2 as [10].

∂2U

∂S2
(n∆S,m∆t) =

um
n+1 − 2um

n + um
n−1

(∆S)2
+O((∆S)2). (2.5)

Now, we have
um+1
n − um

n

∆t
− rn∆S

um
n+1 − um

n−1

2∆S
+ rum

n − 1

2
σ2n2(∆S)2

um
n+1 − 2um

n + um
n−1

(∆S)2

(
1 + 2ρn∆S

um
n+1 − 2um

n + um
n−1

(∆S)2

)
= 0, (2.6)

for n = 1, . . . , N − 1 and m = 1, . . . ,M − 1. From (2.6) we get,

um+1
n = um

n +
σ2n2∆t

2
(um

n+1 − 2um
n + um

n−1)

(
1 + 2ρn

um
n+1 − 2um

n + um
n−1

∆S

)
+ r∆tum

n − rn∆t

2
(um

n+1 − um
n−1), (2.7)

and for Cetin et al.’s model (1.4) we obtain,
um+1
n − um

n

∆t
− 1

2
σ2n2(∆S)2

um
n+1 − 2um

n + um
n−1

(∆S)2

(
1 + 2ρn∆S

um
n+1 − 2um

n + um
n−1

(∆S)2

)
= 0, (2.8)

for n = 1, . . . , N − 1 and m = 1, . . . ,M − 1. From (2.8) we can get

um+1
n = um

n +
σ2n2∆t

2
(um

n+1 − 2um
n + um

n−1)

(
1 + 2ρn

um
n+1 − 2um

n + um
n−1

∆S

)
. (2.9)

In each time step the term um+1
n is evaluated from one time step back. Values u0

n, um
0 , um

N for n = 1, . . . , N, m =
1, . . . ,M are known from initial and boundary conditions.

2.1. Numerical examples. In this subsection, we want to price some European options. The initial condition for
European call option is u(s, 0) = max(s−K, 0), 0 ≤ s ≤ Smax, and boundary conditions are{

u(0, t) = 0,
lims→∞ u(s,t)

s = 1.
(2.10)

For put option, the initial condition is u(s, 0) = max(K − s, 0), 0 ≤ s ≤ Smax, and boundary conditions are{
u(0, t) = Ke−rt,

u(s, t) = 0 for s → ∞.
(2.11)

Let ρ = 0.6 and σ = 0.4 in Bakstein and Howison’s model and take r = 0.05. Let ST is underlying asset price at
maturity time. In Table 1 numerical results for (1.3) and (1.4) with finite difference method (FDM) and closed form,
using “pdsolve” in Maple 18, are shown. The requirement parameters for finite difference method are M = 500 and
N = 10. Table 1 shows that finite difference method and closed form have very close results.
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Table 1. Comparison between finite difference method and closed form for T = 1 and K = 10
Bakstein and Howison’s model. Cetin et al.’s model.

FDM closed form FDM closed form
ST = 6 0.569 0.45 0.48 0.36
ST = 9 2.31 2.1 2.1213 1.98
ST = 12 5.02 4.3 4.72 4.03
ST = 18 12.31 10.3 11.89 10.002
ST = 24 20.95 18.9 20.613 19
ST = 27 25.48 22.7 25.26 24.9

CPU Time 0.007193 0.047 0.00622 0.015

Figure 4 shows FDM and closed form of a call option under this model. In Figure 5, FDM and closed form for
Cetin et al.’s model are presented. As regards Figure 4 and Figure 5, the numerical solutions and closed form are very
similar and their difference can be ignored.

(a) FDM (b) Closed form

Figure 4. Finite difference method and closed form for Bakstein and Howison’s model

(a) FDM (b) Closed form

Figure 5. Finite difference method and closed form for Cetin et al.’s model.
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(a) Cetin et al.’s model (b) Bakstein and Howison’s model

Figure 6. Call option pricing at some maturities when K = 10.

3. Methodology

In this paper, the underlying asset is the price of one Ounce gold in the world market. So the daily price of the
considered underlying asset is observed from Jan 1, 2016 to Jan 1, 2019. For simplicity in calculation, all prices
are reduced by 10−3. Table 2 shows descriptive statistics of gold data in the considered period. It shows that the
standard deviation and variance of 2019 are higher than other years. This volatility may create arbitrage opportunity
for options in 2018 and this opportunity depends on option and strike price. This indicates the importance of option
pricing and choosing an appropriate model. A good option price has a few profit, but a large profit of an option can
create an arbitrage opportunity. Table 2 illustrates that the skewness is positive only in year 2018 which means this
year has right-skewed distribution and other periods of study have left-skewed distribution. But measure of skewness
in all periods are very low which shows that their distributions are not very asymmetry. Table 2 illustrates that the
kurtosis is positive only for year 2017 as well. In other years, especially in years 2018 and 2019, kurtosis is too little.

Table 2. Descriptive statistics of underlying asset.

2016 2017 2018 2019
Mean 1.24761 1.25931 1.26854 1.39834

Std. Deviation 0.07404 0.03443 0.05418 0.09289
Variance 0.005 0.001 0.003 0.009
Skewness -0.537 -0.297 0.020 -0.030

Std. Error of Skewness 0.152 0.148 0.145 0.143
Kurtosis -0.443 0.343 -1.525 -1.708

Std. Error of Kurtosis 0.303 0.295 0.289 0.285

To calculate liquidity parameter, the following formula has been used [13],

ρ =
Bid-Ask price

Final trade price .

Pricing of European option with T = 0.5 and T = 1 at the beginning of 2017, 2018 and 2019 is our goal. In Table 3,
the required parameters for options pricing are shown.
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Table 3. Requirement parameters.
2017 2018 2019

r 0.03 0.02 0.02
σ 0.07 0.03 0.05
ρ 0.007 0.01 0.002
S0 1.209 1.316 1.281

ST for T = 0.5 1.264 1.292 1.305
ST for T = 1 1.316 1.281 1.517
K for T = 0.5 1.227 1.329 1.293
K for T = 1 1.245 1.342 1.306

4. Numerical results

Let C1 (P1), C2 (P2), and C3 (P3) be the Eorupean call (put) option with present spot at the beginning of year
2017, the beginning of year 2018 and the beginning of year 2019, respectively.

All six European options with two maturity times have been priced by using parameters quoted in Table 3. Figures
5 and 6 illustrate the changes of option price up to maturity time.

(a) Cetin et al.’s model (b) Bakstein and Howison’s model

Figure 7. Call options pricing at T = 1.

(a) Cetin et al.’s model (b) Bakstein and Howison’s model

Figure 8. Put options pricing under at T = 1.
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As is seen in Figures 7 and 8, option price has a jump if high volatility and intense increasing of underlying asset
price happen at the same time. This jump may sound creator of an arbitrage opportunity, but option price controls
the profit of option holder when the underlying asset price goes up. In Figure 9, pricing option of C1 under Cetin
et al.’s model and Bakstein and Howison’s model by changing K ∈ [0.8, 1.8] and T ∈ [0, 1] is shown. As is shown in
Figure 9, the price of options is very close under both models, also in option pricing, some jumps appear. Figure 9
shows that the price of option rapidly increases at short maturities but the increasing speed become slower after three
months maturity or more.

(a) Cetin et al.’s model (b) Bakstein and Howison’s model

Figure 9. Pricing C1 with changing K and T .

In the sequel, the profit of considered options are given by using the real price of asset at maturity time (Table 3).
As is known, call option is used when the strike price is less than the real price of the underlying asset in the maturity
time. Otherwise, the future price of call option becomes holder loss. The future price of option is equal to the cost
that the holder pays for the option. If call option is applied, the profit can be seen as,

Profit = real price − strike price − future option price.

Similarly, the put option is used when the strike price is more than the real price of underlying asset in the maturity
time and otherwise the future price of put option becomes holder loss. If put option is applied, the profit can be seen
as below,

Profit = strike price − real price − future option price.

According to Table 3, C1, C3 and P2 are applied and P1, P3 and C2 are not used. In Table 4, the results of option
pricing are shown. Columns “Profit” indicate profit of option for it’s holder.
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Table 4. Numerical results
Bakstein and Howison’s model Cetin et al.’s model

Option type Price Profit Price Profit

C1
T=0.5 0.7335 -0.71874 0.7334 -0.73684
T=1 0.747 -0.69875 0.747 -0.69875

C2
T=0.5 0.1428 -0.14313 0.1403 -0.14568
T=1 0.3057 -0.30647 0.3004 -0.31188

C3
T=0.5 0.629 -0.62879 0.6281 -0.62971
T=1 0.7536 -0.55742 0.7532 -0.55782

P1
T=0.5 0.0033 -0.003 0.0034 -0.0034
T=1 0.00001 -0.00001 0.00001 -0.00001

P2
T=0.5 0.5319 -0.51319 0.5393 -0.50565
T=1 0.4735 -0.43288 0.4841 -0.42207

P3
T=0.5 0.1639 -0.16854 0.1652 -0.16721
T=1 0.0346 -0.03581 0.0351 -0.0353

As is shown in Table 4, the price of options under two models are really near. For all options, profits are negative,
which means the holder of option not only gets no profit but also loses. In fact, the option holder loses as much as
option price, if he/she does not use the option. The holder gets no profit, if he/she uses the option because of high
price of option. So there exists no arbitrage opportunity for option holder. It can be imagined that in this option
pricing, the option holder loses and seller of option gets an arbitrage profit and the models are not suitable for this
option pricing. But note that the profit of the option seller consequently is just as much as the price of option, and as
a result, the models have good results to prevent arbitrage opportunity for option holder as well.

5. Conclusion

Investment in gold market is in high risk due to high volatility of this market. So future price forecast in this market
is too difficult. Using options is one of the best methodologies for reducing risk and creating a more secure place for
investment. Finding appropriate price for options is a big challenge in option pricing. Because the option profit in a
market with high volatility can create an arbitrage opportunity and consequently makes the market more unsecured
for investment, choosing of appropriate model, especially in markets with transaction cost, is an effective factor on
suitable pricing. In this paper, investigating of the two models shows that these two models with appropriate pricing
of European option not only hedge the market risk, but also prevent arbitrage opportunity.
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