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Abstract
In this paper, new analytical solutions for a class of conformable fractional differential equations (CFDEs) and
some more results about Laplace transform introduced by Abdeljawad are investigated. The Laplace transform
method is developed to get the exact solution of CFDEs. The aim of this paper is to convert the CFDEs into
ordinary differential equations (ODEs), this is done by using the fractional Laplace transform of (α+ β) order.
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1. Introduction

Fractional differential equations sometimes called as extraordinary differential equations because of their nature and
easily find in various fields of applied sciences [11, 18]. For example, fractional-order differential equations have been
established for modeling of real phenomena in various fields such as physics, engineering, mechanics, control theory,
economics, medical science, finance and etc, [1, 3, 5–8, 11, 14, 18, 20]. Modeling of spring pendulum in fractional
sense and it’s numerical solution proposed in [5]. Study of the motion of a capacitor microphone in fractional calculus
proposed in [6]. So the scientific and engineering problems which involve fractional calculus are very large and still very
effective. In recent years, scientists have proposed many efficient and powerful methods to obtain exact or numerical
solutions of fractional differential equations [8, 14]. In addition, many researchers have been trying to form a new
definition of fractional derivative. Most of these definitions include integral form for fractional derivatives. There are
many types of differential derivatives in fractional calculus e.g. Grunwald-Letnikov, Riemann-Liouville, Caputo [20],
Caputo-Fabrizio [7], Atangana-Baleanu [3] and more recently one, the conformable fractional derivative (CFD) [14].
The chain rule which is an applicable and useful rule in the calculus, is hold only for conformable fractional derivatives.
Recently, some authors introduced the concept of non-local derivative. In [14], Khalil presented a new definition of
derivative prominently compatible with the classical derivative, this operator is called ”conformable derivative”. This
derivative satisfied some conventional properties, for instance, the chain rule. This operator can be used to solve
conformable differential equations. The Conformable fractional derivative has some advantages in properties. Thus
now it is widely used in many research fields. However, Ortigueira [19], figured out that the CFD, is not a real
fractional definition. Since,

1) The zero order derivative of a function does not return the function. In fact

(T 0
0 u)(t) = lim

ϵ→0

u (t+ ϵt)− u(t)

ϵ
= lim

ϵ→0

u (t(1 + ϵ))− u(t)

1 + ϵ
. lim
ϵ→0

1 + ϵ

ϵ
.

2) The index law does not hold, that is Tα(Tβu(t)) ̸= Tα+βu(t), for any α and β. See Theorem 4.2.
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3) In special case we have, (tT
a
αfg)(t) = g(t)(tT

a
αf)(t) + f(t)(tT

a
αg)(t), but the generalized Leibniz rule is not

valid .
In [8], the author showed the exact solutions of time heat differential equations by using the conformable derivative.
Atangana in [4], investigated some properties of this derivative, related theorems and new definitions were introduced.
Interesting works related with operator are given by [9, 13].

The rest of this study is organized as follows. In section 2, we give some important theorems based on conformable
fractional derivative. In section 3, we present some conformable fractional Laplace transform theorems. In section 4,
new methods for solving a class of CFDEs by fractional Laplace transforms of (α+ β) order are investigated.

2. Basic definitions and tools about CFD

The CFD with a limit operator which was first introduced Khalil et al. [14]. After then Abdeljawad [1], has
also presented fractional versions of the chain rule, exponential functions, Gronwalls inequality, Taylor power series
expansions and Laplace transform for the CFD. Khalil et al. [14], introduced a new kind of fractional derivatives as
follows:

Definition 2.1. The left conformable fractional derivative of order 0 < α ≤ 1 starting from a ∈ R of function
u : [a,+∞) → R, is defined by

(T a
αu)(t) = lim

ϵ→0

u
(
t+ ϵ(t− a)1−α

)
− u(t)

ϵ
, (2.1)

When a = 0, we have:

(T 0
αu)(t) = lim

ϵ→0

u
(
t+ ϵt1−α

)
− u(t)

ϵ
.

If (T a
αu)(t) exists on (a,+∞), then (T a

αu)(a) = limt→a+(T a
αu)(t). If (T a

αu)(t0) exists and is finite, then we say that u
is left α−differentiable at t0.
The right conformable fractional derivative of order 0 < α ≤ 1 terminating at b ∈ R of function u : (−∞, b] → R, is
defined by

(bTαu)(t) = − lim
ϵ→0

u
(
t+ ϵ(b− t)1−α

)
− u(t)

ϵ
, (2.2)

Tα. If (bTαu)(t) exists on (−∞, b), then (
b

Tαu)(a) = limt→b−(
bTαu)(t). If (bTαu)(t0) exists and is finite, then we say

that u is right α−differentiable at t0. See [16].
Definition 2.2. Let α ∈ (n, n+ 1], and u be an n-differentiable at t, where t > 0, then the conformable derivative of
u of order α is defined by

(tT
0
αu)(t) = lim

ϵ→0

u([α]−1)(t+ ϵt([α]−α))− u([α]−1)(t)

ϵ
, (2.3)

where [α] is the smallest integer greater than or equal to α.

Remark 2.3. Let α ∈ (n, n+ 1], and u is (n+1)-differentiable at t > 0. Then
(tT

0
αu)(t) = t([α]−α)u([α])(t), (2.4)

Theorem 2.4. Let 0 < α ≤ 1, and f, g be left(right) α−differentiable functions. Then,
1) ∀c1, c2 ∈ R, (T a

α(c1f + c2g)) (t) = c1 (T
a
αf) (t) + c2 (T

a
αg) (t),

2) ∀c1, c2 ∈ R,
(
bTα(c1f + c2g)

)
(t) = c1

(
bTαf

)
(t) + c2

(
bTαg

)
(t),

3) ∀λ ∈ R, T a
α

(
(t− a)λ

)
= λ(t− a)λ−α, bTα

(
(b− t)λ

)
= λ(b− t)λ−α,

4) T a
α(C) = 0, bTα(C) = 0, where C is a constant.

5) (Product rule for left and right CF derivative)
(T a

α(fg)) (t) = f(t) (T a
αg) (t) + g(t) (T a

αf) (t),(
bTα(fg)

)
(t) = f(t)

(
bTαg

)
(t) + g(t)

(
bTαf

)
(t),
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6) (Quotient rule for left and right CF derivative)(
T a
α(

f
g )
)
(t) =

g(t)(Ta
αf)(t)−f(t)(Ta

αg)(t)
g(t)2 , g(t) ̸= 0,(

bTα(
f
g )
)
(t) =

g(t)(bTαf)(t)−f(t)(bTαg)(t)
g(t)2 , g(t) ̸= 0,

7) (T a
αf) (t) = (t− a)1−αf ′(t),

(
bTαf

)
(t) = −(b− t)1−αf ′(t),

where f ′(t) = limϵ→0

(
f(t+ϵ)−f(t)

ϵ

)
.

Proof. See [16]. □

Theorem 2.5. If a function u : [0,+∞) → R, is α−differentiable at x0, α ∈ (0, 1]. Then, u is continuous at x0.

The chain rule is valid for conformable fractional derivatives.

Theorem 2.6. (CF-chain rull). Let α ∈ (0, 1] and f, g : [0,∞) → R be α−differentiable functions and h(t) = (fog)(t).
Then, h(t) is left α−differentiable and for all t (t ̸= a and g(t)̸= a), we have

1) If g(t) ≥ a, then (T a
αh)(t) = (T a

αf)(g(t))(T
a
αg)(t)

(
g(t)− a

)α−1

.

2) If g(t) < a, then (T a
αh)(t) = −(aTαf)(g(t))(T

a
αg)(t)

(
a− g(t)

)α−1

.

Analogously, let f, g : (−∞, b] → R be α−differentiable functions and h(t)=(fog)(t). Then, h(t) is right α−differentiable
and for all t (t ̸= b and g(t)̸= b), we have

1) If g(t) ≤ b, then (bTαh)(t) = (bTαf)(g(t))(
bTαg)(t)

(
b− g(t)

)α−1

.

2) If g(t) > b, then (bTαh)(t) = −(T b
αf)(g(t))(

bTαg)(t)
(
g(t)− b

)α−1

.

If
(
T a
αh
)
(t),

(
bTαh

)
(t) exist on (a,+∞) and (−∞, b), respectively, then(

T a
αh
)
(a) = lim

t→a+

(
T a
αh
)
(t),

(b
Tαh

)
(a) = lim

t→b−

(b
Tαh

)
(t).

Proof. See [16]. □

3. The conformable fractional Laplace transform

The conformable fractional Laplace transform introduced by Abdeljawad [1] help us to solve some of the CFDEs.
In this section we will investigate basic definitions and some useful Theorems about conformable fractional Laplace
transform. Over the following set of functions [2].

A =

{
u(t) : ∃M, τ1, τ2 > 0, |u(t)| < Me

|t|
τj , if t ∈ (−1)j [0,∞), j = 1, 2

}
. (3.1)

The conformable fractional Laplace transform is defined as follows:

Definition 3.1. The conformable fractional Laplace transform (CFLT) of function u : [0,∞) → R for t > 0, of order
0 < α ≤ 1, starting from a of u is defined by

La
α{u(t)} =

∫ ∞

a

e−s
(t−a)α

α u(t)(t− a)α−1dt = Ua
α(s). (3.2)

If a=0, we have

L0
α{u(t)} =

∫ ∞

0

e−s tα

α u(t)tα−1dt = U0
α(s) = Uα(s). (3.3)
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In particular, if α = 1, then Eq. (3.3) is reduced to the definition of the Laplace transform

L {u(t)} =

∫ ∞

0

e−stu(t)dt = U(s). (3.4)

Theorem 3.2. Let u : [a,∞) → R be differentiable real valued function and 0 < α ≤ 1. Then
La
α {tT a

α(u)(t)} = sUa
α(s)− u(a). (3.5)

Proof. See [1]. □

Theorem 3.3. Let u is piecewise continuous on [0,∞) and La
α{u(t)} = Ua

α(s), then

L0
α {tnαu(t)} = (−1)nαn dn

dsn
[
U0
α(s)

]
, n ∈ N.

Proof. See [12]. □

Theorem 3.4. If u is piecewise continuous on [0,+∞) with L0
α {u(t)} = Uα(s) and limt→0+

u(t)
tα < ∞ exist, then

L0
α

{
u(t)

tα

}
=

1

α

∫ ∞

s

U(x)dx.

Proof. See [12]. □

Theorem 3.5. (Translation Theorem) If u is piecewise continuous on [0,+∞) and La
α {u(t)} = Ua

α(s), then
La
α

{
eb

(t−a)α

α u(t)
}
= Ua

α(s− b), s > b.

Proof. See [12]. □

4. Solution of certain ordinary CFDEs

In this section, we develop the fractional Laplace transformations for solving a class of CFDEs. The next theorems,
play an important role to convert the CFDEs into ordinary differential equations.

Proposition 4.1. the conformable type problem If 0 < α ≤ 1, s > 0 and k is constant, then the conformable type
problem

k (tT
a
αu(t)) = f(t), (4.1)

has its solution given by

u(t) =
1

k

∫ t

a

(z − a)α−1f(z)dz + u(a). (4.2)

Proof. By using fractional Laplace transform, we have
kLa

α {tT a
αu(t)} = La

α{f(t)}.
From Theorem 3.2, we obtain

Ua
α(s) =

F a
α(s)

ks
+

u(a)

s
.

Now, taking inverse Laplace transform, we have

u(t) = (La
α)

−1 {Ua
α(s)} = (La

α)
−1

{
F a
α(s)

ks

}
+ (La

α)
−1

{
u(a)

s

}
,

which completes the proof. □

For example, by substituting k = 1, f(t) = bt1−α cos(bt) and u(0) = 0, we have tT
0
αu(t) = bt1−α cos(bt), hence

u(t) =
∫ t

0
b cos(bz)dz = sin(bt).
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Theorem 4.2. Let u : [a,∞) → R be twice differentiable on (a,∞) and α, β > 0 such that α+ β ≤ 1, then

tT
a
β (tT

a
αu(t)) = (1− α)(t− a)1−(α+β)u′(t) + (t− a)2−(α+β)u′′(t).

Proof. From Theorem 2.4, we have

tT
a
β (tT

a
αu(t)) = tT

a
β

(
(t− a)1−αu′(t)

)
= (t− a)1−β

(
(t− a)1−αu′(t)

)′
= (1− α)(t− a)1−(α+β)u′(t) + (t− a)2−(α+β)u′′(t).

□

In particular, for a = 0, one has

tTβ (tTαu(t)) = (1− α)t
1−(α+β)

u′(t) + t2−(α+β)u′′(t). (4.3)

Theorem 4.3. Let u : [a,∞) → R be twice differentiable on (a,∞) and α, β > 0 such that α+ β ≤ 1, then∫ ∞

0

e−s tα+β

α+β (tu′′(t)) dt = u(0) + s

∫ ∞

0

tα+βe−s tα+β

α+β u′(t)dt− sU(α+β)(s),∫ ∞

0

(
1− α+ stα+β

)
e−s tα+β

α+β u′(t)dt = (α− 1)u(0) + (1− (2α+ β)) sU(α+β)(s)− (α+ β)s2U ′
(α+β)(s).

Proof. By using integration by parts, we obtain∫ ∞

0

e−s tα+β

α+β (tu′′(t)) dt = u(0) + s

∫ ∞

0

tα+βe−s tα+β

α+β u′(t)dt− s

∫ ∞

0

tα+β−1e−s tα+β

α+β u(t)dt.

Therefore, from Definition 3.1, we arrive at the first formula. Next, Theorem 3.3 and integration by parts yields∫ ∞

0

(
1− α+ stα+β

)
e−s tα+β

α+β u′(t)dt = (α− 1)u(0) + (1− (2α+ β)) s

∫ ∞

0

e−s tα+β

α+β tα+β−1u(t)dt

+ s2
∫ ∞

0

e−s tα+β

α+β
(
tα+βu(t)

)
tα+β−1dt.

Thus, the second formula Theorem 4.3 holds. □

Theorem 4.4. Let u : [a,∞) → R be twice differentiable on (a,∞) and α, β > 0 such that α+ β ≤ 1, then

L0
(α+β) {tTβ(tTαu(t))} = αu(0)− (2α+ β)sU(α+β)(s)− s2(α+ β)U ′

(α+β)(s).

Proof. From Eq. (4.3) and using fractional Laplace transformation, we get

L0
(α+β) {tTβ(tTαu(t))} = L0

(α+β)

{
(1− α)t1−(α+β)u′(t) + t2−(α+β)u′′(t)

}
,

= (1− α)

∫ ∞

0

e−s tα+β

α+β

(
t1−(α+β)u′(t)

)
t(α+β)−1dt

+

∫ ∞

0

e−s tα+β

α+β

(
t2−(α+β)u′′(t)

)
t(α+β)−1dt.

Therefore, by simple calculations and Theorem 4.3, we have

L0
(α+β) {tTβ(tTαu(t))} =

∫ ∞

0

(
1− α+ stα+β

)
e−s tα+β

α+β u′(t)dt+ u(0)− sU(α+β)(s),

= αu(0)− (2α+ β)sU(α+β)(s)− s2(α+ β)U ′
(α+β)(s),

and the theorem is thus proved. □
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Lemma 4.5. Let s > 0 and α, β > 0 be such that α+ β ≤ 1, then

L0
α+β {tα} =

(α+ β)
α

α+β

s1+
α

α+β
Γ

(
1 +

α

α+ β

)
. (4.4)

Proof. By change of variable z = tα

α , we have

L0
α {tp} =

∫ ∞

0

e−s tα

α tptα−1dt =

∫ ∞

0

e−sz
(
α

1
α z

1
α

)p
dz =

α
p
α

s1+
p
α

Γ
(
1 +

p

α

)
.

By setting p = α, α = α+ β, the desired result for L0
α+β {tα} can be concluded, i.e. (4.4) is valid. □

Proposition 4.6. Suppose that u(t) be twice differentiable on (0,∞) and α, β > 0 be such that α + β ≤ 1, p is
constant. Then, the following CFDE

tTβ (tTαu(t)) = p(p− α)tp−(α+β), u(0) = 0,

has its solution given by

u(t) = tp +
C

(α+ β)
α

α+β Γ
(
1 + α

α+β

) tα, (4.5)

where C is constant.

Proof. Applying L0
α+β and Theorem 4.4 with Eq. (4.4) gives

αu(0)− (2α+ β)sUα+β(s)−s2(α+ β)U ′
α+β(s) = p(p− α)

(α+ β)
p

α+β−1

s
p

α+β

Γ

(
p

α+ β

)
.

Since u(0) = 0, the above differential equation can be written as

U ′
α+β(s) +

(2α+ β)

s(α+ β)
Uα+β(s) = −p(p− α)(α+ β)

p
α+β−2

s
p

α+β+2
Γ

(
p

α+ β

)
.

By solving the above ODE of first order, we have

Uα+β(s) = s−
α

α+β−1

(
p(α+ β)

p
α+β−1Γ

(
p

α+ β

)
s

α
α+β− p

α+β

)
+ Cs−

α
α+β−1.

Since p
α+βΓ

(
p

α+β

)
= Γ

(
1 + p

α+β

)
, we can write

Uα+β(s) = Γ

(
1 +

p

α+ β

)
(α+ β)

p
α+β

s1+
p

α+β

+
C

s1+
α

α+β
.

By applying
(
L0
α+β

)−1

, we obtain

u(t) =
(
L0
α+β

)−1 {Uα+β(s)} =
(
L0
α+β

)−1

{
Γ

(
1 +

p

α+ β

)
(α+ β)

p
α+β

s1+
p

α+β

}
+
(
L0
α+β

)−1
{

C

s1+
α

α+β

}
,

and the solution (4.5) follows from Eq. (4.4). □

In particular, if α = β, then function u(t) = tp + C
√

2
πα t

α is the solution to the following CFDE

tTα (tTαu(t)) = p(p− α)tp−2α, u(0) = 0.
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Proposition 4.7. Suppose that u(t) be twice differentiable on (0,∞) and α, β > 0 be such that α + β ≤ 1, k is
constant. Then, the following CFDE

tTβ (tTαu(t)) + ku(t) = f(t),

has its solution given by

u(t) =
(
L0
α+β

)−1

{
s−

2α+β
α+β e

−k
(α+β)s

(∫
αu(0)− Fα+β(s)

(α+ β)s
β

α+β

e
k

(α+β)s ds+ C

)}
,

where C is constant.

Proof. Applying L0
α+β and Theorem 4.4, we have

αu(0)− (2α+ β)sUα+β(s)− s2(α+ β)U ′
α+β(s) + kUα+β(s) = Fα+β(s).

Hence, we have

U ′
α+β(s) +

2α+ β − k
s

s(α+ β)
Uα+β(s) =

αu(0)− Fα+β(s)

s2(α+ β)
.

By solving the above ODE, we have

Uα+β(s) = s−
2α+β
α+β e

−k
(α+β)s

(∫
αu(0)− Fα+β(s)

(α+ β)s
β

α+β

e
k

(α+β)s ds+ C

)
.

Thus, solution u(t) results from the CF inverse transform. □

In particular, when α = β = 1
2 , the solution to the CFDE

tT 1
2

(
tT 1

2
u(t)

)
+ u(t) =

√
t, u(0) = 0,

is given by

u(t) = L−1

{
Γ( 32 )

s
3
2

}
+ CL−1

{
e

−1
s

s
3
2

}
=

√
t+

C√
π
sin
(
2
√
t
)
.

Theorem 4.8. Let s > 0 and α, β > 0 be such that α+ β ≤ 1, then
L0
α+β {tTα+βu(t)} = sUα+β(s)− u(0). (4.6)

Proof. From the equality tTα+βu(t) = t−β (tTαu(t)), we calculate

L0
α+β {tTα+βu(t)} =L0

α+β

{
t−β (tTαu(t))

}
= L0

α+β

{
t−β

(
t1−αu′(t)

)}
=

∫ ∞

0

e−s tα+β

α+β u′(t)dt.

Now, by using integration by parts, we obtain∫ ∞

0

e−s tα+β

α+β u′(t)dt = −u(0) + s

∫ ∞

0

e−s tα+β

α+β tα+β−1u(t)dt = sUα+β(s)− u(0),

and this completes the proof □

Proposition 4.9. Assume u(t) be twice differentiable on (0,∞) and α, β > 0 be such that α + β ≤ 1, k is constant.
Then, the solution to the CFDE

tTβ (tTαu(t)) + k (tTα+βu(t)) = q(t),

is given by

u(t) =
(
L0
α+β

)−1

{
s−

2α+β−k
α+β

(∫
(α− k)u(0)−Qα+β(s)

(α+ β)s
β+k
α+β

ds+ C

)}
,

where C is constant.
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Proof. Applying L0
α+β and using Theorems 4.4, 4.8, we have

L0
α+β {tTβ (tTαu(t))}+ kL0

α+β {tTα+βu(t)} = L0
α+β {q(t)} ,

or, equivalently,

αu(0)− (2α+ β)sU(α+β(s)− s2(α+ β)U
′

(α+β)(s) + k (sUα+β(s)− u(0)) = Qα+β(s).

Therefore, we can write

U ′
α+β(s) +

2α+ β − k

(α+ β)s
Uα+β(s) =

(α− k)u(0)−Qα+β(s)

(α+ β)s2
.

By solving the above ODE of first order, we have

Uα+β(s) = s−
2α+β−k

α+β

(∫
(α− k)u(0)−Qα+β(s)

(α+ β)s
β+k
α+β

ds+ C

)
.

So, by taking (L0
α+β)

−1 with respect to s, we obtain the explicit solution. □

In particular, for α = β = k = 1
2 , the solution to the CFDE

tT 1
2

(
tT 1

2
u(t)

)
+

1

2
t−

1
2

(
tT 1

2
u(t)

)
= −3e−3t + 9te−3t, u(0) = 1,

is given by

u(t) = L−1

{
−1

s

}
+ L−1

{
1

s+ 3

}
+ L−1

{
C

s

}
= −1 + e−3t + C.

Since u(0) = 1, so C = 1 and u(t) = e−3t.

Proposition 4.10. Let u(t) be twice differentiable on (0,∞) and α, β > 0 be such that α + β ≤ 1, k is constant.
Then, the following CFDE

tTβ (tTαu(t)) + ktα+βu(t) = q(t), (4.7)
has its solution given by

u(t) =
(
L0
α+β

)−1

{
(s2 + k)−

2α+β
2(α+β)

(∫
αu(0)−Qα+β(s)

(α+ β)(s2 + k)
β

2(α+β)

ds+ C

)}
,

where C is constant.

Proof. Applying the CF Laplace transform to the both sides of equation (4.7) yields

L0
α+β {tTβ (tTαu(t))}+ kL0

α+β

{
tα+βu(t)

}
= L0

α+β {q(t)} ,

and from Theorems 4.4, 3.3, we get

αu(0)− (2α+ β)sUα+β(s)− s2(α+ β)U
′

α+β(s)− k(α+ β)U ′
α+β(s) = Qα+β(s).

So, we can write

U ′
α+β(s) +

2α+ β

(α+ β)(s2 + k)
sUα+β(s) =

αu(0)−Qα+β(s)

(α+ β)(s2 + k)
.

By solving the above ODE of first order, we have

Uα+β(s) = (s2 + k)−
2α+β

2(α+β)

(∫
αu(0)−Qα+β(s)

(α+ β)(s2 + k)
β

2(α+β)

ds+ C

)
,

by taking (L0
α+β)

−1 with respect to s, we obtain the explicit solution u(t). □
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For example, if α = β = 1
2 , then the conformable type problem

tT 1
2

(
tT 1

2
u(t)

)
+ tu(t) = t

3
2 , u(0) = 0,

has the solution given by

u(t) = L−1

{
Γ
(
3
2

)
s

3
2

}
+ L−1

{
C

(s2 + 1)
3
4

}
=

√
t+ 1.216280215Ct

1
4 J0

(
t

4

)
.

Theorem 4.11. Let α, β > 0 be such that α+ β ≤ 1, s > 0, then the following relation is valid:

L0
α+β

{
tα+β (tTα+βu(t))

}
= −(α+ β)

(
Uα+β(s) + sU ′

α+β(s)
)
.

Proof. From Theorem 4.8 and 3.3, it is clear that

L0
α+β

{
tα+β (tTα+βu(t))

}
= (−1)1(α+ β)

d

ds
(sUα+β(s)− u(0)) ,

and this completes the proof. □

Remark 4.12. Since tu′(t) = tα+β (tTα+βu(t)), then we have

L0
α+β {tu′(t)} = −(α+ β)

(
Uα+β(s) + sU ′

α+β(s)
)
. (4.8)

Proposition 4.13. Assume u(t) be twice differentiable on (0,∞) and α, β > 0 be such that α+ β ≤ 1, k is constant.
Then, the solution to the CFDE

tTβ (tTαu(t)) + ktα+β (tTα+βu(t)) = q(t), (4.9)

is given by

u(t) =
(
L0
α+β

)−1

{
1

s(s+ k)
α

α+β

(∫
αu(0)−Qα+β(s)

(α+ β)(s+ k)
β

α+β

ds+ C

)}
,

where C is constant.

Proof. Similarly, taking L0
α+β to the both sides of equation (4.9) and using Theorems 4.4 and 4.11, we have

U ′
α+β(s) +

(
α

(α+ β)(s+ k)
+

1

s

)
Uα+β(s) =

αu(0)−Qα+β(s)

(α+ β)(s2 + ks)
.

The above is an ODE, so we obtain

Uα+β(s) =
1

s(s+ k)
α

α+β

(∫
αu(0)−Qα+β(s)

(α+ β)(s2 + ks)
s(s+ k)

α
α+β ds+ C

)
.

Thus, solution u(t) results from the CF inverse transform. □

Proposition 4.14. Assume u(t) be twice differentiable on (0,∞) and α, β > 0 be such that α+ β ≤ 1, k is constant.
Then, the solution to the CFDE

tTβ (tTαu(t)) + ktu′(t) = q(t), (4.10)

is given by

u(t) =
(
L0
α+β

)−1

{
1

s(s+ k)
α

α+β

(∫
αu(0)−Qα+β(s)

(α+ β)(s+ k)
β

α+β

ds+ C

)}
,

where C is constant.

Proof. From Remark 4.12, the proof is clear. □
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In particular, for α = 1
3 , β = 2

3 , k = 1, the solution to the CFDE

tT 2
3

(
tT 1

3
u(t)

)
+ tu′(t) =

2

3
et + 2tet, u(0) = 1,

is given by

u(t) =
(
L0

1
3+

2
3

)−1 {
U 1

3+
2
3
(s)
}

= L−1

{
1

s− 1

}
+ L−1

{
C

s(s+ 1)
1
3

}
= et + C

(
1 +

√
3Γ
(
2
3

)
6πt

2
3

(
2Γ
(
− 2

3
t
)
t
2
3 − 3e−t

))
.

On the other hand, since u(0) = 1, then C = 0 and u(t) = et.

Proposition 4.15. Assume u(t) be twice differentiable on (0,∞) and α, β > 0 be such that α + β ≤ 1, k,m are
constants. Then, the following CFDE

tTβ (tTαu(t)) + ktu′(t) +mu(t) = q(t). (4.11)

has its solution given by

u(t) =
(
L0
α+β

)−1

{
s

m−k(α+β)
k(α+β)

(s+ k)
αk+m
k(α+β)

(∫
αu(0)−Qα+β(s)

s
m

k(α+β) (α+ β)
(s+ k)

m−kβ
k(α+β) ds+ C

)}
,

where C is constant.

Proof. Applying the CF Laplace transform to the both sides of equation (4.11) and from Theorems 4.4 and Remark
4.12, we calculate

αu(0)− (2α+ β)sUα+β(s)− s2(α+ β)U ′
α+β(s)− k(α+ β)Uα+β(s)

− k(α+ β)sU ′
α+β(s) +mUα+β(s) = Qα+β(s).

Therefore, we can write

U ′
α+β(s) +

(
α

(α+ β)(s+ k)
+

1

s
− m

s(s+ k)(α+ β)

)
Uα+β(s) =

αu(0)−Qα+β(s)

(s2 + ks)(α+ β)
.

By solving the above ordinary differential equation, we have

Uα+β(s) =

{
s

m−k(α+β)
k(α+β)

(s+ k)
αk+m
k(α+β)

(∫
αu(0)−Qα+β(s)

s
m

k(α+β) (α+ β)
(s+ k)

m−kβ
k(α+β) ds+ C

)}
.

Thus, solution u(t) results from the CF inverse transform. □

For example, if α = β = 1
2 , k = m = 1, then the conformable type problem

tT 1
2

(
tT 1

2
u(t)

)
+ tu′(t) + u(t) =

1

2
+ 2t, u(0) = 0,

has the solution given by

u(t) =
(
L0

1
2+

1
2

)−1 {
U 1

2+
1
2
(s)
}

= L−1

{
1

s2

}
+ L−1

{
−C

(s+ 1)
3
2

}
= t− 2Ce−t

√
t

π
.
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5. Conclusion

The conformable fractional derivative is a new kind of fractional derivatives which needs to investigate more. We
discussed about the fractional Laplace transform which is compatible with type of fractional derivatives. Some new
results are reported which is useful in the theory of conformable fractional differential equations. Our representations
of analytical solutions of CFDEs, explicitly reveal the complete reliability and efficiency of the presented method.
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