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Abstract
In this study, we discuss the inverse problem for the Sturm-Liouville operator with the impulse and with the
spectral boundary conditions on the finite interval (0, π). By taking the Mochizuki-Trooshin’s method, we have
shown that some information of eigenfunctions at some interior point and parts of two spectra can uniquely
determine the potential function q(x) and the boundary conditions.
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1. Introduction

We consider the boundary value problem L = L(q, r, h0, h1,H0,H1) with the differential equation
−y′′ + q(x)y = λr(x)y, x ∈ (0, π), (1.1)

and the boundary conditions
U(y) := y′(0)− (h1ρ+ h0)y(0) = 0, (1.2)

V (y) := y′(π) + (H1ρ+H0)y(π) = 0. (1.3)
Here the potential function q(x) is a complex function in L2[0, π] and the weight function

r(x) =


1, x < π

2 ,

ω2, x > π
2 ,

for 1 ̸= ω > 0. The parameters h0, h1,H0,H1 are complex and λ = ρ2 is a spectral parameter.
Discontinuous boundary value problems have great applications in various branches of natural sciences especially

mathematical physics and quantum mechanics. Sturm-Liouville problems with spectral boundary conditions are also
seen in various fields of sciences. Inverse problems for these problems have been investigated by many scholars in
recent years (see [2, 3, 5, 9, 14, 18, 20–22]). To study discontinuous boundary value problems, some conditions
under titles interface conditions, point interactions, transmission conditions and impulsive conditions are imposed
in the discontinuous point. Among these discontinuities, the impulsive differential equations have been discussed
in many references and a large number of authors surveyed the spectral theory of these equations (see for example
[3, 9, 18]). In this work, we want to study the uniqueness solution for the impulsive Sturm-Liouville equation using
two sets of spectra plus some information of eigenfunctions at some interior point. Inverse problems for second order
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Sturm-Liouville operators have been originated in the studies of Ambarzumian since 1929 [1] and have been gradually
completed in the next years (see, e.g., [7, 13, 15–17, 19, 21, 22, 25]). Some aspects of the spectral theory for the
Sturm-Liouville problem of high order have also been surveyed in [10–12]. Interior inverse problems as one of the
methods to solve the inverse problem were also studied by several scientists and the readers can see the published
results in the works [15, 21, 22, 25]. This method which is originated by Mochizuki and Trooshin shows that a set of
values of eigenfunctions at some interior point and parts of two spectra can uniquely determine the potential q(x) [13].
To the best of my knowledge, interior inverse problems for the boundary value problem (1.1)-(1.3) are not considered
so far. The impulsive condition and spectral boundary condition cause to be difficult to study the spectral properties
of the operator. In this paper, we discuss the inverse problem for the impulsive Sturm-Liouville operator with the
spectral boundary conditions on the finite interval (0,π). By improving the Mochizuki-Trooshin’s method [13], we
will prove that the boundary value problem L is uniquely determined by spectral data of a kind: some information of
eigenfunctions at some interior point and parts of two spectra.

This paper is organized as follows. We present some preliminaries in Sec. 2. In Sec. 3, using the Mochizuki and
Trooshin’s method, we discuss the interior inverse problem for the impulsive Sturm-Liouville problem (1.1)-(1.3) and
state main results. Finally, Sec. 4 contains some conclusion.

2. Preliminaries

Suppose that y(x, ρ) is the solution of the equation (1.1) satisfying the initial conditions
y(0, ρ) = 1, y′(0, ρ) = h1ρ+ h0. (2.1)

It is trivial that U(y) = 0. Denote
∆(ρ) := V (y(x, ρ)), (2.2)

as the characteristic function of L. The zeros of ∆(ρ) coincide with the eigenvalues of L [6].
From [3, 23, 25], we know that for each fixed x ∈ (0, π), the function y(x, ρ) and their derivatives with respect to x

are entire in ρ, and for sufficiently large ρ, one has

y(x, ρ) = cos ρx+ h1 sin ρx+O

(
1

ρ
exp(|ℑρ|x)

)
, x <

π

2
, (2.3)

y(x, ρ) =
ω + 1

2ω
(cos ργ(x) + h1 sin ργ(x))

+
ω − 1

2ω

(
cos ρ

(
2γ

(π
2

)
− γ(x)

)
+ h1 sin ρ

(
2γ

(π
2

)
− γ(x)

))
+O

(
1

ρ
exp(|ℑρ|γ(x))

)
, x >

π

2
, (2.4)

uniformly in x, where γ(x) =
∫ x

0

√
r(t)dt.

It follows from the relations (1.3), (2.2) and (2.4) that for sufficiently large ρ,

∆(ρ) =
ρ

2

(
δ(1 + ω)

H1 + h1ω
cos

(
ρ(1 + ω)π

2
− σ+

)
− δ(1− ω)

H1 − h1ω
cos

(
ρ(1− ω)π

2
− σ−

))
+O (exp(|ℑρ|γ(π))) , (2.5)

where δ2 = (H2
1 + ω2)(1 + h2

1) and σ± = 1
2i ln

(H1±h1ω)i−h1H1±ω
(H1±h1ω)i+h1H1∓ω . Applying the Rouche theorem [4], we can write that

the roots of (2.5) have the following asymptotic form for sufficiently large n,

ρn =
1

1 + ω

(
2n+ 1 +

2

π
σ+

)
+O(n−1). (2.6)

In the next section, we discuss the interior inverse problem for the boundary value problem L. For this reason, we
consider the following boundary value problem L̃ := L(q̃, r, h̃0, h̃1, H̃0, H̃1) defined by

−y′′ + q̃(x)y = λr(x)y, x ∈ (0, π), (2.7)
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and the boundary conditions

U(y) := y′(0)− (h̃1ρ+ h̃0)y(0) = 0, (2.8)

V (y) := y′(π) + (H̃1ρ+ H̃0)y(π) = 0. (2.9)
It should be noted that λn and yn(x, ρ) are the eigenvalues and corresponding eigenfunctions of L, respectively.

3. Main result

In this section, we state and prove the main theorem of this paper. To prove the uniqueness theorem we use the
Mochizuki and Trooshin’s method. In the case b ̸= π

2 , by one full spectrum, a part of the second spectrum and some
information of the eigenfunctions at x = b, we can state the uniqueness theorem to the problem L.

First, we give the eigenfunctions and the product of eigenfunctions that are important in proving the main result.
Suppose that A(x, t) and B(x, t) are bounded functions. The following integral representation holds [6, 24],

y(x, ρ) = cos ρx+ h1 sin ρx+

∫ x

0

A(x, t) cos ρtdt+

∫ x

0

B(x, t) sin ρtdt, x <
π

2
.

Therefore

y(x, ρ)ỹ(x, ρ) =
1 + h1h̃1

2
+

1− h1h̃1

2
cos 2ρx+

h1 + h̃1

2
sin 2ρx

+
1

2

∫ x

0

A′(x, t) cos 2ρtdt+
1

2

∫ x

0

B′(x, t) sin 2ρtdt, x <
π

2
,

(3.1)
where A′(x, t) and B′(x, t) are bounded functions.

Consider two sequences l(n) and r(n) as follows:

l(n) =
n

σ1
(1 + ϵ1n), r(n) =

n

σ2
(1 + ϵ2n); 0 < σk ≤ 1, ϵkn −→ 0, (3.2)

for k = 1, 2 and let µn be the eigenvalues of L1 = L(q, r, h0, h1,H0,H1), Hs ̸= Hs,Hs ∈ C for s = 0, 1.

In the following theorem we state the main uniqueness result.

Theorem 3.1. Let l(n) and r(n) be two sequences in (3.2). Suppose that b ∈
(
π
2 , π

)
such that σ1 > 4b

(1+ω)π − 1 and
σ2 > 4ω

1+ω − 4ωb
(1+ω)π . If for any n, have

λn = λ̃n, µl(n) = µ̃l(n),

< yr(n), ỹr(n) >x=b= 0,

where < y, z >:= yz′ − y′z, then q(x) = q̃(x) a.e. on [0, π] and

h0 = h̃0, h1 = h̃1, H0 = H̃0, H1 = H̃1.

We express the following lemma which help us to prove Theorem 3.1.

Lemma 3.2. Consider a sequence m(n) as follows:

m(n) =
n

σ
(1 + ϵn), 0 < σ ≤ 1, ϵn −→ 0.

(1) Choose b ∈
(
0, π

2

)
such that σ > 4b

(1+ω)π . If for any n,

λm(n) = λ̃m(n), < ym(n), ỹm(n) >x=b= 0,
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then q(x) = q̃(x) a.e. on [0, b] and h1 = h̃1, h0 = h̃0.
(2) Choose b ∈

(
π
2 , π

)
such that σ > 4ω

1+ω − 4ωb
(1+ω)π . If for any n,

λm(n) = λ̃m(n), < ym(n), ỹm(n) >x=b= 0,

then q(x) = q̃(x) a.e. on [b, π] and H0 = H̃0, H1 = H̃1.

Proof. Consider y(x) as the solution to the equation
−y′′ + q(x)y = λr(x)y, x ∈ (0, π), (3.3)

with the initial conditions y(0, ρ) = 1 and y′(0, ρ) = h1ρ+ h0, and ỹ(x) as the solution of the equation
−ỹ′′ + q̃(x)ỹ = λr(x)ỹ, x ∈ (0, π), (3.4)

with the initial conditions ỹ(0, ρ) = 1 and ỹ′(0, ρ) = h̃1ρ + h̃0. Multiplying (3.3) by ỹ(x, ρ) and (3.4) by y(x, ρ) and
subtracting the resulted equations, then integrating on [0, b], we obtain

Gb(ρ) :=

∫ b

0

(
q(x)− q̃(x)

)
y(x)ỹ(x)dx+ (h1 − h̃1)ρ+ h0 − h̃0

= (y′(x)ỹ(x)− y(x)ỹ′(x))|x=b. (3.5)
From the assumptions of the theorem, we can write

Gb(ρm(n)) = 0.

Now it needs to be proved that Gb(ρ) = 0 for all ρ ̸= ρn.
Since from (3.1)

|y(x, ρ)ỹ(x, ρ)| ≤ M1exp(2|ℑρ|x),
we can give that

|Gb(ρ)| ≤ M2 exp(2be|sinθ|). (3.6)
Define

h(θ) := lim sup
e→∞

ln(|Gb(e exp(iθ))|)
e

, (3.7)

as an indicator of the function Gb(ρ). By virtue of (3.6) and (3.7), we give that
h(θ) ≤ 2b|sinθ|,

and so
1

2π

∫ 2π

0

h(θ)dθ ≤ b

π

∫ 2π

0

|sinθ|dθ =
4b

π
. (3.8)

Suppose that n(e) denotes the number of roots of the function Gb(ρ) in the disk |ρ| ≤ e. We have

n(e) ≥ 2
∑

2n
σ(1+ω)

(1+O(n−1))<e

1 = eσ(1 + ω)[1 + ϵ(e)], (3.9)

from the assumption of Lemma 3.2 and the asymptotic form of eigenvalues (2.6) for sufficiently large e. From σ >
4b

(1+ω)π , one gives

lim
e→∞

n(e)

e
≥ σ(1 + ω) ≥ 1

2π

∫ 2π

0

h(θ)dθ. (3.10)

For any nonzero entire function Gb(ρ) of exponential type, we have

lim
e→∞

n(e)

e
≤ 1

2π

∫ 2π

0

h(θ)dθ (3.11)
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(see [8] for more details). Taking (3.10) and (3.11), we can give that Gb(ρ) = 0 on the whole complex plane.
Put Q(x) = q(x)− q̃(x). By substituting (3.1) into (3.5) and taking Gb(ρ) = 0 for all values ρ, we infer that

(h1 − h̃1)ρ+ (h0 − h̃0) +

∫ b

0

Q(x)

[
1 + h1h̃1

2
+

1− h1h̃1

2
cos 2ρx+

h1 + h̃1

2
sin 2ρx

]
dx

+

∫ b

0

Q(x)

[ ∫ x

0

A′(x, t) cos 2ρtdt

]
dx

+

∫ b

0

Q(x)

[ ∫ x

0

B′(x, t) sin 2ρtdt

]
dx = 0,

which can be rewritten as

(h1 − h̃1)ρ+ (h0 − h̃0) +

∫ b

0

1 + h1h̃1

2
Q(x)dx

+

∫ b

0

cos 2ρt

[
1− h1h̃1

2
Q(t) +

∫ b

t

A′(x, t)Q(x)dx

]
dt

+

∫ b

0

sin 2ρt

[
h1 + h̃1

2
Q(t) +

∫ b

t

B′(x, t)Q(x)dx

]
dt = 0.

The Riemann-Lebesgue lemma concludes that for |ρ| → ∞,

∫ b

0
cos 2ρt

[
Q(t) +

∫ b

t
A′′(x, t)Q(x)dx

]
dt = 0,

∫ b

0
sin 2ρt

[
Q(t) +

∫ b

t
B′′(x, t)Q(x)dx

]
dt = 0,

(3.12)

and 
(h0 − h̃0) +

∫ b

0
1+h1h̃1

2 Q(x)dx = 0,

(h1 − h̃1)ρ = 0,

(3.13)

for bounded functions A′′(x, t) and B′′(x, t). Using the completeness of the functions ” cos ” and ” sin ” [6], one gets

Q(t) +

∫ b

t

A′′(x, t)Q(x)dx = 0 = Q(t) +

∫ b

t

B′′(x, t)Q(x)dx.

Since these equations are homogeneous Volterra integral equations and have only zero solution, it results that Q(x) = 0

for x ∈ (0, b). So, q(x) = q̃(x) a.e. on [0, b] . Furthermore, from (3.13), it is easily shown that h0 = h̃0 and h1 = h̃1.
If we take the change of variable x → π − x, the interval (b, π) is converted to the interval (0, π − b) . To prove the

problem on (b, π), we have to repeat the obtained arguments in the pervious section for the supplementary problem
L̂

−y′′ + q1(x)y = λr1(x)y, x ∈ (0, π), (3.14)

U(y) := y′(0)− (H1ρ+H0)y(0) = 0, (3.15)

V (y) := y′(π) + (h1ρ+ h0)y(π) = 0, (3.16)
where q1(x) = q(π − x) and r1(x) = r(π − x). It is easily seen that the assumptions of theorem 3.1 are satisfied to
L̂. Repeating the previous discussions, we get Q1(x) = Q(π − x) = 0 on (0, π − b). So q(x) = q̃(x) a.e. on [b, π] and
H0 = H̃0, H1 = H̃1. The proof is completed. □



524 Y. KHALILI AND M. KHALEGHI MOGHADAM

Proof of Theorem 3.1. The equality λn = λ̃n gives us that λr(n) = λ̃r(n). Since < yr(n), ỹr(n) >x=b= 0, this equality
and Lemma 3.2 infer that q̃(x) = q(x) on x ∈ [b, π] and H0 = H̃0, H1 = H̃1. To complete the proof, we have to show
that q̃(x) = q(x) for x ∈ [0, b] and h0 = h̃0, h1 = h̃1.

Considering (3.5) in the case b ∈ [π2 , π], we can infer that

Gb(ρ) :=

∫ b

0

(
q(x)− q̃(x)

)
y(x)ỹ(x)dx+ (h1 − h̃1)ρ+ h0 − h̃0

= (y′(x)ỹ(x)− y(x)ỹ′(x))|π
2 −0 − (y′(x)ỹ(x)− y(x)ỹ′(x))|bπ

2 +0.

(3.17)
Since yn(x) and ỹn(x) have the same condition at the point x = π and q̃(x) = q(x) on x ∈ [b, π], we get for any n and
constants αn,

yn(x) = αnỹn(x), x ∈ [b, π]. (3.18)
Together with (3.17) and equality < y, z > |x=π

2 −0 =< y, z > |x=π
2 +0, this yields Gb(λn) = 0 and analogously

Gb(µl(n)) = 0.
We see 1 + e(1 + ω)[1 + ϵ(e)] of λn and 1 + eσ1(1 + ω)[1 + ϵ(e)] of µl(n) inside the disc of radius e. So, the total of

these roots becomes n(e) = 2 + e(1 + ω)[1 + σ1 + ϵ(e)]. Condition σ1 > 4b
(1+ω)π − 1 implies that

lim
e→∞

n(e)

e
≥ (1 + ω)(1 + σ1) ≥

1

2π

∫ 2π

0

h(θ)dθ. (3.19)

For any nonzero entire function Gb(λ) of exponential type, we have

lim
e→∞

n(e)

e
≤ 1

2π

∫ 2π

0

h(θ)dθ (3.20)

(see [8] for more details). Together with (3.19), this yields that Gb(λ) = 0.
From Gb(λ) = 0 and taking the same method as in the proof of Lemma 3.2, we can prove that q(x) = q̃(x) a.e. on

[0, b] and h0 = h̃0, h1 = h̃1. The proof is completed. □

4. Conclusion

In the present paper, we investigated the interior inverse problems for the impulsive Sturm-Liouville operator with
eigenparameter dependent boundary conditions. By taking one full spectrum, a part of the second spectrum and some
information of the eigenfunctions at x = b ∈

(
π
2 , π

)
, we proved the Mochizuki and Trooshin theorem for this inverse

problem.
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