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Abstract

..

In this paper, the numerical solution of an algebraic complex fuzzy equation of degree n, based on the parametric
fuzzy numbers, is discussed. The unknown variable and right-hand side of the equation are considered as fuzzy

complex numbers, whereas, the coefficients of the equation, are considered to be real crisp numbers. The given
method is a numerical method and proposed based on the separation of the real and imaginary parts of the
equation and using the parametric forms of the fuzzy numbers in the form of polynomials of degree at most

m. In this case, a system of nonlinear equations is achieved. To get the solutions of the system, we used the
Gauss-Newton iterative method. We also very briefly explain the conjugate of the solution of such equations.
Finally, the efficiency and quality of the given method are tested by applying it to some numerical examples.
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1. Introduction

The problem of solving equations has many applications in the applied sciences like finance [11, 27], economy
[12, 13, 28, 35], mechanics [19], and etc. Buckley and Qu have done a study on solving the fuzzy equations [14, 15].
They have also investigated analytically, first degree equations as ax+b = c and second degree equations as ax2+bx = c,
by considering the coefficients of the equation as real, or complex fuzzy numbers, as well as the unknown of the equation
as real, or complex fuzzy number [16]. Fuzzy equations a + x = b, where each component of the equation is fuzzy
numbers, have been solved in [25] by α-cut method and also in [29] using the superimposition by analytically. In
[3, 5, 6, 30] researchers have solved the fuzzy equations numerically. The numerical solution of the fuzzy polynomial
equations by the neural network was investigated in [4], as well as was investigated using the ranking method [33].
Abbasbandy and Amirfakhrian considered the application of fuzzy polynomial equations [2]. They proposed a method
for acquiring the best fuzzy function approximation on a set of points. Amirfakhrian presented the numerical solution
of the algebraic fuzzy equation of degree n with a crisp variable in [8] and so with crisp coefficients in [9]. Researchers

have studied the solutions of fully fuzzy equations as ãx̃2 + b̃x̃+ c̃ = d̃, based on the restricted variation method and
based on the optimization theory [7, 31]. The primary purpose of this study is solving an nth degree algebraic fuzzy
complex equation with fuzzy complex unknown and real crisp coefficients. The given method is a numerical method
that transforms an equation into a system of nonlinear equations. The obtained system is solved by the Gauss-Newton
iterative method. The organization of this article is as follows: We first define the parametric form as a complex fuzzy
number, conjugate of it, and some basic properties of them, in section 2. Then, we introduce an nth degree algebraic
fuzzy complex equation, with complex fuzzy unknown and crisp coefficients. section 3 contains the Gauss-Newton
method to solve a system of nonlinear equations. In section 4, we introduce an algorithm to get the solutions of an
nth degree algebraic fuzzy complex equation, for both cases nonnegative or negative root, by a numerical method.
Finally, some examples are presented in section 5.

Received: 12 November 2019 ; Accepted: 18 January 2021.
∗ Corresponding author. Email: amirfakhrian@iauctb.ac.ir.

77



78 S. R. FAYYAZ BEHROOZ AND M. AMIRFAKHRIAN

2. Preliminaries

Definition 2.1. A fuzzy number ũ is a convex normalized fuzzy set of the real line R such that there exists exactly
one x0 ∈ R with µũ(x0) = 1 (µũ is called the membership function which is upper semi-continuous and compactly
supported. We denote by F (R) the set of all real fuzzy numbers [10].

Definition 2.2. A fuzzy number in the parametric form is presented by ũ = (u, u), where functions u and u; 0 ≤ r ≤ 1
apply the following conditions [9, 23, 24, 32, 34]:

(1) u is monotonically increasing left continuous function on [0, 1].
(2) u is monotonically decreasing left continuous function on [0, 1].
(3) u(r) ≤ u(r) , 0 ≤ r ≤ 1.

Suppose ũ = (u, u) and ṽ = (v, v) belong to F (R). Some operations on fuzzy numbers are defined as the below
forms [9]:

x > 0 : xũ = (xu, xu), (2.1)

x < 0 : xũ = (xu, xu), (2.2)

ũ+ ṽ = (u+ v, u+ v), (2.3)

ũ− ṽ = (u− v, u− v), (2.4)

ũ.ṽ = (min {u.v, u.v, u.v, u.v} , max {u.v, u.v, u.v, u.v}). (2.5)

A fuzzy number ũ is nonnegative (non-positive) if for x < 0 (x > 0), we have µũ(x) = 0, equivalently if on [0, 1] we
have u ≥ 0 (u ≤ 0). Also a fuzzy number ũ is positive (negative) if for x ≤ 0 (x ≥ 0), we have µũ(x) = 0, equivalently
if on [0, 1] we have u > 0 (u < 0). So we have

• If ũ and ṽ are nonnegative fuzzy numbers, then ũ.ṽ = (u.v, u.v).
• If ũ and ṽ are non-positive fuzzy numbers, then ũ.ṽ = (u.v, u.v).
• If ũ be a non-negative fuzzy number and ṽ be a non-positive fuzzy number, then ũ.ṽ = (u.v, u.v).

Definition 2.3. Inherit from the real complex numbers, a fuzzy complex number z̃, is defined in [22] in the form
of z̃ = x̃ + iỹ, where x̃ and ỹ are two fuzzy real numbers. x̃ is the fuzzy real part of z̃ while ỹ represents the fuzzy
imaginary part.

We denote by F (C), the set of all fuzzy complex numbers.

Definition 2.4. Since the real and imaginary parts are both fuzzy numbers, we can define a parametric representation
for fuzzy complex numbers as

z̃ = x̃+ iỹ = (x, x) + i(y, y), (2.6)

in which x, x, y, y satisfy in requirements of Definition 2.2.

Let z̃1 = x̃1 + iỹ1 = (x1, x1) + i(y
1
, y1) and z̃2 = x̃2 + iỹ1 = (x2, x2) + i(y

2
, y2) are belonging to F (C). We defined

some operations on fuzzy complex numbers as follows:
Addition:

z̃1 + z̃2 = (x1 + x2 , x1 + x2) + i(y
1
+ y

2
, y1 + y2). (2.7)

Subtraction:

z̃1 − z̃2 = (x1 − x2 , x1 − x2) + i(y
1
− y2 , y1 − y

2
). (2.8)

Multiplication:

z̃1.z̃2 = (x̃1x̃2 − ỹ1ỹ2) + i(x̃1ỹ2 + ỹ1x̃2). (2.9)
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Let F (R)+ be the set of all non-negative fuzzy real numbers and F (R)− be the set of all non-positive fuzzy real
numbers. If x̃1, x̃2, ỹ1 and ỹ2 belong to F (R)+, then

z̃1.z̃2 = (x1x2 − y1y2 , x1x2 − y
1
y
2
) + i(x1y2 + y

1
x2 , x1y2 + y1x2). (2.10)

If x̃1, x̃2, ỹ1 and ỹ2 belong to F (R)−, then
z̃1.z̃2 = (x1x2 − y

1
y
2
, x1x2 − y1y2) + i(x1y2 + y1x2 , x1y2 + y

1
x2). (2.11)

Definition 2.5. Conjugate of a fuzzy complex number z̃ = x̃+ iỹ is given by

¯̃z = x̃− iỹ = (x, x) + i(−y,−y). (2.12)

The relation between z̃ and ¯̃z are as the below form:

(1) z̃ + ¯̃z = 2x̃+ i0̃y,

(2) z̃ − ¯̃z = 0̃x + 2iỹ,
(3) z̃.¯̃z = x̃2 + ỹ2 + 0̃xy,

where for a fuzzy number ũ, 0̃u is a fuzzy zero with respect to ũ:0̃u = ũ− ũ.

2.1. Fuzzy polynomial over the set of fuzzy complex numbers. In this section, we generalize the concept of
the fuzzy algebraic equation to complex form based on [9].
Let a1, · · · , an ∈ R, an ̸= 0 and n be a natural number. A complex fuzzy polynomial of degree at most n ≥ 1 with
fuzzy complex variable is shown as

P̃n(z̃) =
n∑

j=1

aj z̃
j . (2.13)

An nth degree algebraic fuzzy complex equation with fuzzy complex unknown and crisp coefficients, is

anz̃
n + · · ·+ a1z̃ = b̃, (2.14)

where b̃ ∈ F (C).
Definition 2.6. A fuzzy number ũ (ũ ∈ F (R)) has ”m−degree polynomial form” if there exist two polynomials of
degree at most m, pm and qm, such that ũ = (pm , qm)[9].
Let Fm(R) be the set of all m− degree polynomial form fuzzy real numbers. By Fm(C) we also denote the set of all
fuzzy complex numbers with m− degree polynomial form:

Fm(C) = {z̃ = x̃+ iỹ : x̃, ỹ ∈ Fm(R)} . (2.15)

The conjugate of a root of an algebraic fuzzy complex equation is n,t a root of the equation, necessarily. Because
¯̃zn and ¯̃z

n

are not the same, even if real and imaginary parts of z̃ are non-negative or non-positive, and even for n = 2.

3. Solving the system of equations

The system of linear equations containing s variables and d equations (d ≥ s) can be shown like F (X) =
(F1(X), · · · , Fd(X))T = 0, in which X = [xi]s×1. For the solution of the system, the iterative process of Gauss-
Newton [20, 21], is as the following:

First, it is required to use the Jacobian matrix J(X) = [∂Fi(X)
∂Xj

], where i = 1, · · · , d and j = 1, · · · , s, then we select an

arbitrary starting vector X(0) as an approximated solution. To gain the desired solution one have to solve the system
J(Xk)Hk = −F (Xk), and in the next iterate is replaced X(k) by X(k) +H(k) in other words X(k+1) = X(k) +H(k).
This system is evaluated by the least squares method as the following form

J(X(k))TJ(X(K))H(k) = −J(X(k))TF (X(k)). (3.1)

The conditions on convergence and uniqueness of the solution are studied in [17, 18, 26].

Theorem 3.1. [9] Let N be a d × s, matrix where d > s and the linear system of equations NX = C has a unique
solution. With any initial vector, the sequence of the Gauss-Newton method will be converged to the exact solution of
a linear system of equations at the first iterations.
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4. Solving an Algebraic Fuzzy Complex Equation

We consider the following nth degree algebraic complex fuzzy equation with the complex fuzzy variable as

n∑
j=1

aj z̃
j = b̃ (4.1)

where an ̸= 0 and b̃ ∈ F (C). By inserting z̃ = x̃+ iỹ and b̃ = c̃+ id̃ in (4.1), we acquire

n∑
j=1

aj(x̃+ iỹ)j = c̃+ id̃, (4.2)

where x̃ and ỹ are single modal value fuzzy numbers in Fm(R), and c̃, d̃ are known fuzzy numbers in parametric form
belonging to Fl(R), such that l ≤ nm.
From (4.2), according to binomial expansion, we have

n∑
j=1

aj(

j∑
k=0

(
j

k

)
x̃k(iỹ)j−k) = (

l∑
q=0

cq r
q,

l∑
q=0

cq r
q) + i(

l∑
q=0

dq r
q,

l∑
q=0

dq r
q). (4.3)

Left hand side of (4.3) is equal to

n∑
j=1

aj(

[j/2]∑
k=0

(−1)k
(

j

j − 2k

)
x̃j−2kỹ2k + i

j−[j/2]−1∑
k=0

(−1)k
(

j

j − (2k + 1)

)
x̃j−(2k+1)ỹ2k+1). (4.4)

Since the multiplication of fuzzy numbers is dependent on the sign of numbers, so we consider the “Eq. (4.4)” in two
special cases, i.e first case is that x̃ and ỹ are nonnegative fuzzy numbers belonging to Fm(R), and another case is
that both of them are negative fuzzy numbers belonging to Fm(R).
First case:
By taking x̃ = (x, x), ỹ = (y, y) as non-negative single modal value fuzzy numbers belonging to Fm(R) and by
considering (4.4), Eq. (4.3) is equivalent to following two equations:

n∑
j=1

aj

[j/2]∑
k=0

(−1)k
(

j

j − 2k

)
(xj−2ky2k, xj−2ky2k) = (

l∑
q=0

cq r
q,

l∑
q=0

cq r
q), (4.5)

n∑
j=1

aj

j−[j/2]−1∑
k=0

(−1)k
(

j

j − (2k + 1)

)
(xj−(2k+1)y2k+1, xj−(2k+1)y2k+1) = (

l∑
q=0

dq r
q,

l∑
q=0

dq r
q). (4.6)

By defining

αj,k = aj(−1)k
(

j
j−2k

)
, βj,k = aj(−1)k

(
j

j−(2k+1)

)
, (4.7)

and considering

α̂j,k =

{
αj,k, αj,k ≥ 0,
0, αj,k < 0,

, α̌j,k =

{
0, αj,k ≥ 0,
αj,k, αj,k < 0,

(4.8)

Eq. (4.5) reduces to the following form:
n∑

j=1

[j/2]∑
k=0

(α̂j,kx
j−2ky2k + α̌j,kx

j−2ky2k) =
l∑

q=0
cq r

q,

n∑
j=1

[j/2]∑
k=0

(α̂j,kx
j−2ky2k + α̌j,kx

j−2ky2k) =
l∑

q=0
cq r

q.

(4.9)
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Similarly by considering

β̂j,k =

{
βj,k, βj,k ≥ 0,
0, βj,k < 0,

, β̌j,k =

{
0, βj,k ≥ 0,
βj,k, βj,k < 0,

(4.10)

Eq.(4.6) will be of the following form:
n∑

j=1

j−[j/2]−1∑
k=0

(β̂j,kx
j−(2k+1)y2k+1 + β̌j,kx

j−(2k+1)y2k+1) =
l∑

q=0
dq r

q,

n∑
j=1

[j−[j/2]−1]∑
k=0

(β̂j,kx
j−(2k+1)y2k+1 + β̌j,kx

j−(2k+1)y2k+1) =
l∑

q=0
dq r

q.

(4.11)

Let 
x(r) =

m∑
s=0

xs r
s, x(r) =

m∑
s=0

xs r
s,

y(r) =
m∑
s=0

y
s
rs, y(r) =

m∑
s=0

ysr
s.

(4.12)

Eq.(4.9) and Eq.(4.11), are equivalence to the following equations

n∑
j=1

[j/2]∑
k=0

(α̂j,k(
m∑
s=0

xs r
s)j−2k(

m∑
s=0

y
s
rs)2k

+α̌j,k(
m∑
s=0

xs r
s)j−2k(

m∑
s=0

ysr
s)2k) =

l∑
q=0

cq r
q,

n∑
j=1

[j/2]∑
k=0

(α̂j,k(
m∑
s=0

xs r
s)j−2k(

m∑
s=0

xs r
s)2k

+α̌j,k(
m∑
s=0

xs r
s)j−2k(

m∑
s=0

ys r
s)2k) =

l∑
q=0

cq r
q,

(4.13)

and 

n∑
j=1

j−[j/2]−1∑
k=0

(β̂j,k(
m∑
s=0

xs r
s)j−(2k+1)(

m∑
s=0

y
s
rs)2k+1

+β̌j,k(
m∑
s=0

xs r
s)j−(2k+1)(

m∑
s=0

ys r
s)2k+1) =

l∑
q=0

dq r
q,

,
n∑

j=1

[j−[j/2]−1]∑
k=0

(β̂j,k(
m∑
s=0

xs r
s)j−(2k+1)(

m∑
s=0

ys r
s)2k+1

+β̌j,k(
m∑
s=0

xsr
s)j−(2k+1)(

m∑
s=0

y
s
rs)2k+1) =

l∑
q=0

dq r
q.

(4.14)

Let for i = 0, 1, · · · , nm;Li, Ui,Mi and Ni be the coefficients of ri in (4.13) and (4.14), respectively, thus

nm∑
i=0

Li(x0, · · · , xm, x0, · · · , xm, y0, · · · , ym, y0, · · · , ym)ri = 0,

nm∑
i=0

Ui(x0, · · · , xm, x0, · · · , xm, y0, · · · , ym, y0, · · · , ym)ri = 0,

nm∑
i=0

Mi(x0, · · · , xm, x0, · · · , xm, y0, · · · , ym, y0, · · · , ym)ri = 0,

nm∑
i=0

Ni(x0, · · · , xm, x0, · · · , xm, y0, · · · , ym, y0, · · · , ym)ri = 0.

(4.15)
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Since the fuzzy numbers are one modal fuzzy numbers, we consider the following equations

Q1(x0, · · · , xm, x0, · · · , xm) = x(1)− x(1) = 0 (4.16)

and

Q2(y0, · · · , ym, y0, · · · , ym) = y(1)− y(1) = 0 (4.17)

Eqs.(4.15), (4.16), and (4.17) yield that

Li(x0, · · · , xm, x0, · · · , xm, y0, · · · , ym, y0, · · · , ym) = 0, i = 0, · · · , nm
Ui(x0, · · · , xm, x0, · · · , xm, y0, · · · , ym, y0, · · · , ym) = 0, i = 0, · · · , nm
Mi(x0, · · · , xm, x0, · · · , xm, y0, · · · , ym, y0, · · · , ym) = 0, i = 0, · · · , nm
Ni(x0, · · · , xm, x0, · · · , xm, y0, · · · , ym, y0, · · · , ym) = 0, i = 0, · · · , nm

Q1(x0, · · · , xm, x0, · · · , xm) = 0,
Q2(y0, · · · , ym, y0, · · · , ym) = 0,

(4.18)

which is a system of the nonlinear equations with 4nm+ 6 equations and 4m+ 4 unknowns.
We solve the system (4.18) by an iterative Gauss-Newton method that introduced in section 3. Defining

J =



∂Li

∂xj

∂Li

∂xj

∂Li

∂y
j

∂Li

∂yj

∂Ui

∂xj

∂Ui

∂xj

∂Ui

∂y
j

∂Ui

∂yj

∂Mi

∂xj

∂Mi

∂xj

∂Mi

∂y
j

∂Mi

∂yj

∂Ni

∂xj

∂Ni

∂xj

∂Ni

∂y
j

∂Ni

∂yj

1 −1 0 0
0 0 1 −1


, (4.19)

and

B = −


Li

Ui

Mi

Ni

Q1

Q2

 , X =


xj
xj
y
j

yj

 ,H =


h1
h2
...

h4m+4

 , (4.20)

where i = 0, 1, · · · ,mn; j = 0, 1, · · · ,m, we have JH = B (J = J(X), B = B(X),H = H(X)). We solve this system
with an initial vector X(0), by the least squares method and then we improve this guess. We find the sequence Y (k)

as follows: With an initial vector X(0), in iteration k, we compute J (k) and B(k) and solve J (k)H(k) = B(k) by the
least squares method as the following: (J (k) = J(Xk), B(k) = B(Xk) )

J (k)TJ (k)H(k) = J (k)TB(k). (4.21)

The solution will be improved by

X(k+1) = X(k) +H(k). (4.22)

If X(k) converges to a vector X∗; then x̃∗ in the form of

x̃∗ = (
m∑
s=0

xs
∗ rs ,

m∑
s=0

xs
∗ rs ) (4.23)

and ỹ∗ in the form of

ỹ∗ = (
m∑
s=0

y
s
∗ rs ,

m∑
s=0

ys
∗ rs ) (4.24)
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are the parts of the Gauss-Newton solution. If x∗ and y∗ are both increasing, x∗ and y∗ are both decreasing, then
z̃∗ = x̃∗ + iỹ∗ is a solution of (2.14).
Second case:
For a negative fuzzy number such as x̃ = (x, x), we have

x̃2j = (x2j , x2j), x̃2j+1 = (x2j+1, x2j+1), (4.25)

therefore, if x̃ and ỹ be two negative fuzzy numbers, then real and imaginary parts of (4.3) will be rewritten to the
following two relations :
Real part of (4.3) is:

n∑
j=1

aj

[j/2]∑
k=0

(−1)k
(

j

j − 2k

)
x̃j−2kỹ2k =

l1∑
j=1

a2j

j∑
k=0

(−1)k
(

2j

2j − 2k

)
(x2j−2k, x2j−2k)(y2k, y2k) (4.26)

+

l2∑
j=0

a2j+1

j∑
k=0

(−1)k
(

2j + 1

2j + 1− 2k

)
(x2j+1−2k, x2j+1−2k)(y2k, y2k).

Imaginary part of (4.3) is:

n∑
j=1

aj

j−[j/2]−1∑
k=0

(−1)k
(

j

j − (2k + 1)

)
x̃j−(2k+1)ỹ2k+1 =

l1∑
j=1

a2j

j−1∑
k=0

(−1)k
(

2j

2j − (2k + 1)

)
(x2j−2k−1, x2j−2k−1)(y2k+1, y2k+1)

(4.27)

+

l2∑
j=0

a2j+1

j∑
k=0

(
2j + 1

2j − 2k

)
(x2j−2k, x2j−2k)(y2k+1, y2k+1).

In (4.26) and (4.27) l1 and l2 are as follows:

l1 = [n2 ] , l2 =

{
[n2 ] n is odd

[n2 ]− 1 n is even
(4.28)

Thus Eqs. (4.5) and (4.6) reduce to following:

l1∑
j=1

a2j

j∑
k=0

(−1)k
(

2j

2j − 2k

)
(x2j−2k, x2j−2k)(y2k, y2k)+

l2∑
j=0

a2j+1

j∑
k=0

(−1)k
(

2j + 1

2j + 1− 2k

)
(x2j+1−2k, x2j+1−2k)(y2k, y2k)

(4.29)

= (
l∑

q=0

cqr
q ,

l∑
q=0

cqr
q),

and
l1∑

j=1

a2j

j−1∑
k=0

(−1)k
(

2j

2j − 2k − 1

)
(x2j−2k−1, x2j−2k−1)(y2k+1, y2k+1)+

l2∑
j=0

a2j+1

j∑
k=0

(
2j + 1

2j − 2k

)
(x2j−2k, x2j−2k)(y2k+1, y2k+1)

(4.30)

= (

l∑
q=0

dqr
q,

l∑
q=0

dqr
q). (4.31)

By using

αj,k = (−1)ka2j
(

2j
2j−2k

)
, βj,k = (−1)ka2j+1

(
2j+1

2j+1−2k

)
, (4.32)

and considering

α̂j,k =

{
αj,k, αj,k ≥ 0,
0, αj,k < 0,

α̌j,k =

{
0, αj,k ≥ 0,
αj,k, αj,k < 0,

, (4.33)
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and

β̂j,k =

{
βj,k, βj,k ≥ 0,
0, βj,k < 0,

β̌j,k =

{
0, βj,k ≥ 0,
βj,k, βj,k < 0,

, (4.34)

Eq. (4.29) is changed to the following equations

∑l1
j=1

∑j
k=0(α̂j,kx̄

(2j−2k)ȳ2k + α̌j,kx
(2j−2k)y2k)+∑l2

j=0

∑j
k=0(β̂j,kx

2j−2k+1y2k + β̌j,kx̄
2j−2k+1ȳ2k) =

l∑
q=0

cqr
q,

∑l1
j=1

∑j
k=0(α̂j,kx

(2j−2k)y2k + α̌j,kx̄
2j−2kȳ2k)+∑l2

j=0

∑j
k=0(β̂j,kx̄

2j−2k+1ȳ2k + β̌j,kx
(2j−2k+1)y2k) =

l∑
q=0

cqr
q.

(4.35)

Also, by using

γ̂j,k =

{
γj,k, γj,k ≥ 0
0, γj,k < 0,

, γ̌j,k =

{
0, γj,k ≥ 0
γj,k, γj,k < 0,

(4.36)

and

η̂j,k =

{
ηj,k, ηj,k ≥ 0
0, ηj,k < 0

, η̌j,k =

{
0, ηj,k ≥ 0
ηj,k, ηj,k < 0

(4.37)

where

γj,k = (−1)
k
a2j

(
2j

2j−2k−1

)
, ηj,k = (−1)

k
a2j+1

(
2j+1
2j−2k

)
, (4.38)

Eq. (4.30) changes to the following system

∑l1
j=1

∑j−1
k=0(γ̂j,kx̄

(2j−2k−1)ȳ(2k+1) + γ̌j,kx
(2j−2k−1)y(2k+1))+∑l2

j=0

∑j
k=0(η̂j,kx

(2j−2k)y(2k+1) + η̌j,kx̄
(2j−2k)ȳ(2k+1)) =

l∑
q=0

dqr
q,

∑l1
j=1

∑j−1
k=0(γ̂j,kx

(2j−2k−1)y(2k+1) + γ̌j,kx̄
(2j−2k−1)ȳ(2k+1))+∑l2

j=0

∑j
k=0 η̂j,kx̄

(2j−2k)ȳ(2k+1) + η̌j,kx
(2j−2k)y(2k+1) =

l∑
q=0

dqr
q.

(4.39)

Eqs.(4.35) and (4.39) yield that for i = 0, · · · ,mn; Li, Ui,Mi and Ni are the coefficients of ri, respectively, also
Q1 , Q2 are the same as (4.17), (4.18). Thus again we have 4nm+ 6 equations.

Algorithm

(1) Input an initial solution X(0).
(2) Evaluate J (k) and B(k) from (4.19) and (4.20).

(3) Solve H(k) from the system of linear equations J (k)TJ (k)H(k) = J (k)TB(k).
(4) X(k+1) = X(k) +H(k).
(5) If the convergence condition is yield, then end.
(6) k = k + 1, and go to step 3.

Theorem and lemmas of this part are extended from theorem and lemmas related to [9].
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Lemma 4.1. Let n = 1 (i.e. az̃ = b̃), where real and imaginary parts of z̃ and b̃ belong to Fm(R). If a ̸= 0, then in
each iteration, we have

JTJ = a2I4m+4 + V, (4.40)

and

(JTJ)−1 =
1

a2
I4m+4 −

1

a2(a2 + 2m+ 2)
V (4.41)

such that

V =


ψ −ψ O O
−ψ ψ O O
O O ψ −ψ
O O −ψ ψ

 , (4.42)

where ψij = 1, for i, j = 1, 2, · · · ,m+ 1 [9].

Proof. For equation of degree 1, i.e. a(x, x) + ia(y, y) = (b, b), we have

k=m∑
k=0

(âxk + ǎxk − bk)r
k = 0

k=m∑
k=0

(âxk + ǎxk − bk)r
k = 0

k=m∑
k=0

(ây
k
+ ǎyk)r

k = 0

k=m∑
k=0

(âyk + ǎy
k
)rk = 0

(4.43)

where

â =

{
a, a ≥ 0
0, a < 0

, ǎ =

{
0, a ≥ 0
a, a < 0.

(4.44)

Thus for k = 0, · · · ,m+ 1 we have

Lk = âxk + ǎxk − bk = 0

Uk = âxk + ǎxk − bk = 0
Mk = ây

k
+ ǎyk = 0

Nk = âyk + ǎy
k
= 0

Q1 =
k=m∑
k=0

(xk − xk) = 0

Q2 =
k=m∑
k=0

(y
k
− yk) = 0

(4.45)

thus Jacobian matrix has the following form

J =


T1 T2 O O
T2 T1 O O
O O T1 T2
O O T2 T1
ST −ST O O
O O ST −ST

 (4.46)
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where T1 = âIm+1, T2 = ǎIm+1 and ST is an 1× (m+ 1) matrix such that Si = 1 for i = 1, 2, · · · ,m+ 1. This yields
that

JTJ =


a2Im+1 + ψ −ψ O O

−ψ a2Im+1 + ψ O O
O O a2Im+1 + ψ −ψ
O O −ψ a2Im+1 + ψ

 = a2I4m+4 + V. (4.47)

Let

B =
1

a2
I4m+4 −

V

a2(a2 + 2m+ 2)
. (4.48)

we show that BJTJ = JTJB = I. Consequently

JTJB = (a2I4m+4 + V )(
1

a2
I4m+4 −

V

a2(a2 + 2m+ 2)
) (4.49)

= I4m+4 +
1

a2(a2 + 2m+ 2)
((2m+ 2)V − V 2) = I4m+4

because

V 2 =


2ψ2 −2ψ2 O O
−2ψ2 2ψ2 O O
O O 2ψ2 −2ψ2

O O −2ψ2 2ψ2

 = 2(m+ 1)V. (4.50)

Similarly we have BATA = I4m+4.
It can be proved for the matrix defined above we have

|JTJ | = a4(2m+1)((m+ 1)(4m+ 4) + (4m+ 4)a2 + a4). (4.51)

�

Lemma 4.2. For n=1 i.e. az̃ = b̃ , a ̸= 0 the algorithm is convergent to the exact solution of equation, at the first
step, with every initial vector.
proof: According to Lemma 4.1, F (Y ) = 0 is a linear system of equations, and by using Theorem 3.1, the proof is
completed.

Theorem 4.3. If the equation is crisp then the sequence is given by the following recurrence equation:

zk+1 = zk − anz
n
k + . . .+ a1zk − b

nanz
n−1
k + . . .+ a1

(4.52)

Proof. We consider Eq. (4.1) at the following forms

F (x, y) = f1(x, y) + if2(x, y) = 0. (4.53)

and

P (z)− b = 0; z = x+ iy. (4.54)

By using Eq. (4.53), the system of A(k)Hk = B(k), in iteration k is as the following form
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y


 h1

h2

 = −

 f1

f2

 (4.55)



CMDE Vol. 10, No. 1, 2022, pp. 77-92 87

the solution of the system (4.55) is

 h1

h2

 =

 f1.
∂f2
∂y − f2.

∂f1
∂y

−f1.∂f2∂x + f2.
∂f1
∂x


∂f1
∂x .

∂f2
∂y − ∂f1

∂y .
∂f2
∂x

. (4.56)

Therefore

zk+1 = zk −
f1(

∂f2
∂y − i∂f2∂x ) + f2(−∂f1

∂y + i∂f1∂x )
∂f1
∂x .

∂f2
∂y − ∂f1

∂y .
∂f2
∂x

. (4.57)

From (4.53), we have

∂F

∂x
=
∂f1
∂x

+ i
∂f2
∂x

, (4.58)

∂F

∂y
=
∂f1
∂y

+ i
∂f2
∂y

, (4.59)

From Eqs. (4.53) and (4.54) we have

F (x, y) = P (z)− b, z = x+ iy. (4.60)

Now, from Eq. (4.60) we can write

∂F
∂x = P

′
(z), ∂F

∂y = iP
′
(z), (4.61)

From (4.58), (4.59), and (4.61), we have

∂f2
∂x

+ i
∂f2
∂y

= −∂f1
∂y

+ i
∂f1
∂x

(4.62)

by substituting (4.62) in (4.57), we have

zk+1 = zk −
(P (z)− b)(∂f2∂y − i∂f2∂x )

∂f1
∂x .

∂f2
∂y − ∂f1

∂y .
∂f2
∂x

. (4.63)

Now by multiplying P
′
(z) = ∂f1

∂x + i∂f2∂x by ∂f2
∂y and by multiplying iP

′
(z) = ∂f1

∂y + i∂f2∂y by ∂f2
∂x , yield

∂f1
∂x

.
∂f2
∂y

=
∂f2
∂y

(P
′
(z)− i

∂f2
∂x

) (4.64)

∂f2
∂x

.
∂f1
∂y

= i
∂f2
∂x

(P
′
(z)− ∂f2

∂y
). (4.65)

By substituting (4.64) and (4.65) in (4.63), we have zk+1 = zk − P (zk)

P ′ (zk)
. �

5. Numerical Examples

This section contains some numerical results about our investigations that have been solved by software Matlab.
The numerical solutions of the following examples have not been provided up to now. They are not given by any
specific references. A sequence of iterative solutions is given for Example 5.3. The process for all examples is the same.
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Example 5.1. Suppose we want to solve the equation

5z̃ = (−10 + 10r + 2r2, 29− 35r + 8r2). (5.1)

For this equation we consider n = 1,m = 2 and l = 2. Taking z̃ = (1 + r2, 4− r) + i(2, 2), after one iteration we have

z̃∗ = (−2 + 2r +
2

5
r2,

29

5
− 7r +

8

5
r2). (5.2)

Example 5.2. Let we want to solve the equation z̃2 = −1. For this equation we have n = 2, l = 0.
We test our method for this equation with different values of m. Table 1 presents the results.

Table 1. The solved results of the equation in Example 5.2.

m z̃0 Number of iterations z̃∗

0
(3, 3) + i(−2,−2)

,
(4, 4) + i(3, 3)

6
,
6

i(−1,−1) = −i
,

i(1, 1) = i

1
(4 + r, 6− r) + i(3, 3)

,
(1 + r, 3− r) + i(−2,−2)

7
,
5

i(−1,−1) = −i
,

i(1, 1) = i

2
(−4 + r2,−1− 2r) + i(−4,−4)

,
(1, 1) + i(1 + r2, 3− r)

5
,
6

i(−1,−1) = −i
,

i(1, 1) = i

Example 5.3. We want to solve

z̃2 = (−4 + 4r − r2,−r2). (5.3)

For this equation we have n = 2, l = 2.
We examine the method for this equation with values of m = 1 and m = 2. More details are given in Tables 2 and 3.

Table 2. The iterative solutions of the equation in Example 5.3 for m = 1.

Initial guess (2 + r, 4− r) + i(1 + r, 3− r)

Iterative solutions

(0.2308 + 1.0327r, 2.0327− 0.2728r) + i
(0.8927 + 0.4450r, 1.5466− 0.8054r)

(0.5273 + 0.4499r, 0.4814 + 0.0369) + i
(−0.1012 + 0.7001r, 1.5506− 0.7971r)

(−0.0697 + 0.1009r,−0.0971 + 0.0361r) + i
(−0.0417 + 0.8638r, 1.9719− 1.1541r)

(0.0084− 0.0136r,−0.0002 + 0.0061r) + i
(0.0061 + 1.0063r, 1.9981− 0.9966r)

(−0.0000− 0.0001r,−0.0000− 0.0000r) + i
(0.0000 + 1.0000r, 2.0000− 0.9999r)

(−0.0000 + 0.0000r,−0.0000− 0.0000r) + i
(−0.0000 + 1.0000r, 2.0000− 1.0000r)

Number of iterations 7
Final solution i(r, 2− r)
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Table 3. The iterative solutions of the equation in Example 5.3 for m = 2.

Initial guess of solution (1 + r2, 4− 2r) + i(2 + r, 4− r2)

Iterative solutions

(0.0622 + 0.2809r + 0.3379r2, 1.9903− 0.7550r − 0.0463r2)+
i(1.2007 + 0.7334r − 0.1418r2, 2.1673− 0.2783r − 0.5398r2)
(0.0430 + 0.2506r + 0.0133r2, 0.5355 + 0.0999r − 0.1264r2)+
i(0.0293 + 1.5130r − 0.5707r2, 1.7655− 0.6945r − 0.1632r2)

(0.0172 + 0.0644r − 0.0298r2,−0.0414 + 0.0802r + 0.0148r2)+
i(−0.0036 + 1.1290r − 0.1573r2, 2.0051− 1.0394r + 0.0266r2)
(0.0018 + 0.0055r − 0.0103r2,−0.0003 + 0.0007r − 0.0018r2)+
i(0.0036 + 1.0071r − 0.0184r2, 1.9995− 1.0012r − 0.0010r2)

(0.0001− 0.0000r − 0.0002r2,−0.0000− 0.0000r − 0.0000r2)+
i(0.0000 + 1.0000r − 0.0001r2, 2.0000− 1.0000r − 0.0000r2)

(−0.0000− 0.0000r + 0.0000r2,−0.0000− 0.0000r − 0.0000r2)+
i(−0.0000 + 1.0000r + 0.0000r2, 2.0000− 1.0000r + 0.0000r2)

Number of iterations 7
Final solution i(r, 2− r)

Example 5.4. Let we want to solve the equation

z̃2 = (r2 − 1, r2 − 4r + 3) + 2i(r, 2− r). (5.4)

For this equation we have n = 2 and l = 2. We solve this equation with values of m = 1, 3. Table 4 shows the results.

Table 4. The solved results of the equation in Example 5.4.

m z̃0 Number of iterations z̃∗

1 (2 + r, 4− r) + i(1 + r, 3− r) 6 (r, 2− r) + i(1, 1)
3 (r2 + r3, 3− r) + i(r2 + r3, 3− r) 6 (r, 2− r) + i(1, 1)

Example 5.5. We consider the equation

z̃2 − z̃ = (7r − 6,−r4 + r2 − 7r + 8) + i(2r3 + 2r2 + r − 2, r2 − 10r + 12) (5.5)

for n = 2 and l = 4. We solve this equation for m = 2, 3. The results of solving the equation are given in table 5.

Table 5. The solved results of the equation in Example 5.5.

m z̃0 Number of iterations z̃∗

2 (1, 1) + i(0, 0) 5 (1 + r, 3− r) + i(r2, 2− r)
3 (1, 1) + i(0, 0) 7 (1 + r, 3− r) + i(r2, 2− r)

Example 5.6. We solve the equation

z̃3 = ((r + 1)3, (4− 2r)3); n = 3, l = 3. (5.6)

We examine the method for this equation with two values of m. Table 6 presents the results.
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Table 6. The solved results of the equation in Example 5.6.

m z̃0 Number of iterations z̃∗

1 (1 + r, 3− r) + i(3r, 5− 2r) 22 (1 + r, 4− 2r)
2 (1 + r + r2, 4− r2) + i(3r, 5− 2r) 18 (1 + r, 4− 2r)

Example 5.7. Suppose that we want to solve the following equation for n = 3 and l = 3.

z̃3 + z̃2 − z̃ = (−r3 + 3r2 + 4r − 9,−r3 + 7r2 − 18r + 9) +

i(3r2 + 2r − 2, 3r2 − 14r + 6). (5.7)

Table 7 presents the results of solving the equation by the method with the different values of m.

Table 7. The solved results of the equation in Example 5.7.

m z̃0 Number of iterations z̃∗

1 (1, 1) + i(2, 2) 6 (r, 2− r) + i(1, 1)
2 (4 + r, 6− r) + i(3, 3) 8 (r, 2− r) + i(1, 1)

Example 5.8. Suppose that we want to solve the following equation

z̃2 + z̃ = (e2r + er − 1, e4−2r + e2−r − 1) + i(−2e2−r − 1, −2er − 1), (5.8)

by taking x̃ as nonnegative fuzzy number and ỹ as non-positive fuzzy number. Considering the nearest 18-degree
polynomial form for the real and imaginary parts of the right hand side [1], z̃0 = (r, 2 − r) and m = 9, after 7
iterations we have z̃∗ = (x, x) + i(y, y) where

x = 1.0000 + 1.0000r + 0.5000r2 + 0.1667r3 + 0.0417r4 + 0.0083r5+ (5.9)

0.0014r6 + 0.0002r7 + 0.0000r8 + 0.0000r9,

x = 7.3891− 7.3891r + 3.6945r2 − 1.2315r3 + 0.3079r4 − 0.0616r5+ (5.10)

0.0103r6 − 0.0015r7 + 0.0002r8 − 0.0000r9,

y = −1.0000, y = −1.0000 (5.11)

For this solution the infinity norm of the error functions for left and right sides of real part are 2.135× 10−5, 4.366×
10−5. The infinity norm of both the left and right sides of the imaginary part is 0 and 0, respectively.

6. Conclusion

Up to now, there is not any analytically and numerically method for solving the algebraic fuzzy complex equation
of degree n. In this article, the research has been done related to gain the roots of a particular algebraic fuzzy complex
equation of degree n, by a numerical method. We plan to consider the solutions of another algebraic fuzzy complex
equation, shortly.
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