
Research Paper
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir
Vol. 10, No. 2, 2022, pp. 372-395
DOI:10.22034/cmde.2021.39703.1739

Fractional study on heat and mass transfer of MHD Oldroyd-B fluid with ramped velocity
and temperature

Nazish Iftikhar1,∗, Syed Tauseef Saeed1, and Muhammad Bilal Riaz2,3

1Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore Campus, Pakistan.
2Department of Mathematics, University of Management and Technology, Pakistan.
3Institute of Grounderwater Studies, University of the Free State, South Africa.

Abstract
This study explores the time-dependent flow of MHD Oldroyd-B fluid under the effect of ramped wall velocity
and temperature. The flow is confined to an infinite vertical plate embedded in a permeable surface with the im-
pact of heat generation and thermal radiation. Solutions of velocity, temperature, and concentration are derived
symmetrically by applying non-dimensional parameters along with Laplace transformation (LT ) and numerical
inversion algorithm. Graphical results for different physical constraints are produced for the velocity, temper-
ature, and concentration profiles. Velocity and temperature profile decrease by increasing the effective Prandtl
number. The existence of an effective Prandtl number may reflect the control of the thickness of momentum
and enlargement of thermal conductivity. Velocity is decreasing for κ, M , Prreff, and Sc while increasing for
Gr and Gc. Temperature is an increasing function of the fractional parameter. Additionally, Atangana-Baleanu
(ABC) model is good to explain the dynamics of fluid with better memory effect as compared to other fractional
operators.
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1. Introduction

The theory of Newtonian and non-Newtonian fluid describes the mechanical behavior of different real fluids. The
motion of such real fluids has left a significant impact on the field of science, environmental engineering and industry.
The attributes of fluid flow trace the diversity of physical structure for non-Newtonian fluid flow. In such fluid, stress
and rate of strain have a non-linear relationship. Oldroyd-B fluids have become a significant model of rate type fluid.
This model is the special extension of upper viscoelastic Maxwell fluid with retardation time. The procedure for
the flow of rate type fluids was discussed by Oldroyd [24]. It describes the relaxation and retardation phenomena
of viscoelastic fluid [44]. In present days, the significance of such fluids with mixed convection flows under influence
of magnetohydrodynamic (MHD) force and thermal radiation have different applications in the power field, solar
collection, polymer fabrication, aerodynamic heating and chemical industry [9, 23, 38, 45].

In the literature, there is an insufficient study which deals with flows under ramped wall temperature and ramped
wall velocity conditions . Physically, the implementation of ramped wall velocity and temperature in real life prob-
lems has a significant role but mathematically it is difficult to handle such conditions. The diagnoses of prognosis,
establishing treatments, analysis of heart functions and blood vessels system [6, 17, 22, 39] are major applications of
ramp velocity. Firstly, authors [2] discussed the simultaneous use of ramped velocity and temperature. Seth et al.
[35–37] investigated heat and mass transfer phenomena with ramp temperature conditions. Recently, Tiwana et al.
[41] analyzed MHD Oldroyd-B fluid under threffect of ramped temperature and velocity.
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Table 1. Nomenclature

Symbol Quantity
κ, γ Fractional parameters
υ Kinematic viscosity
g Acceleration due to gravity
βT Thermal expansion coefficient
βC Volumetric expansion coefficient
ρ Fluid density
σ Electrical conductivity
Cp Specific heat
Dm Chemical molecular diffusivity
p Laplace parameter
Q Heat generation/absorption
R Dimensionless chemical reaction
ũ∗ Dimensional velocity
V Dimensionless velocity
T̃ ∗ Dimensional temperature
T Dimensionless temperature
C̃∗ Dimensional fluid concentration
C Dimensionless fluid concentration
K Porosity parameter
Gc Mass Grashof number
Gr Thermal Grashof number
Tw Temperature of the plate
T∞ Temperature of fluid far away from the plate
T ∗
∞ Temperature of fluid far away from the plate

Cw Concentration on the plate
C∞ Concentration of the fluid far away from the plate
λ Relaxation time
λr Retardation time
Preff Effective Prandtl number
Sc Schmidt number
B0 Magnetic field
M Hartmann number
k Thermal conductivity
qr Radiative heat flux
σ Electrical conductivity of the fluid
σ1 Stafan–Boltzman constant
K1 Absorption coefficient

In 1967, Caputo was the first mathematician to develop the fractional operator by using Laplace convolutions
production of power-law functions and fractional derivatives. This was the first fractional operator to fix the problem of
the Riemann–Liouville fractional operator. However, the kernel of these fractional operators is singular at t = τ , which
leads to some erroneous results. Fractional calculus was further developed in 2015, Caputo and Fabrizio presented the
Caputo-Fabrizio fractional operator with a nonsingular exponential kernel [7]. However, CF-operator has also been
criticized because the solution of CF-operator is an exponential equation, not an exponential function; the kernel of
CF-operator is nonsingular but local. To overcome these issues, a new approach of the fractional kernel has been
discussed in fractional differential operators due to their significant ability in the application of biological sciences.
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Atangana and Baleanu came up with a new approach by introducing the Atanagana-Baleanu fractional. Mittag
Leffler nonsingular kernel is considered as a new fractional operator which provides bounded solution and stabilizing
point [4]. As compared to the classical model, the memory effect is much stronger in fractional derivatives. Cancer
treatment and blood flow through veins via MHD and ultraslow diffusion are suitable applications of these definitions
in research [14, 16]. The convergence and its stability are controlled by a numerical approach. Recently, Riaz et al. [32]
investigate the role of local and nonlocal kernels on MHD Oldroyd-B fluid flow with slip conditions. Convective flow
with ramped wall temperature for non-singular kernel analyzed by Riaz et al. [27]. Furthermore, authors [29] discussed
the comprehensive report on MHD Oldroyd-B fluid with slip effect and time boundary conditions with integer order,
CF and ABC fractional derivative. In literature, many researcher worked on different problems regarding application
of fractional order derivatives [1, 5, 8, 10, 15, 18–20, 25, 26, 28, 30, 31, 33, 34, 43].

Talha et al. [3] investigate the solution of MHD Oldroyd-B fluid under the impact of heat consumption/generation
with ramped wall temperature and velocity. The main objective of this paper is to investigate MHD Oldroyd-B
fluid with definition of non-integer order derivatives. The solution of fluid velocity, temperature and concentration
are obtained by Caputo (C), Caputo-Fabrizio (CF ) and Atangana-Baleanu (ABC) fractional derivative models under
influence of ramped velocity and temperature. These non-integer order derivatives are good for handling mathematical
calculations. This article is well organized. Section 2 helps to drive the governing partial differential equations. The
solution of concentration, temperature and velocity gradient can be achieved through C, CF and ABC fractional
models with help of Laplace transformation and inversion algorithm in sections 3, 4, and 5 respectively. In section 6,
the influence of physical parameters discusses through graphically by MATHCAD-15 software. Finally, the conclusion
of the present article is given at the end.

2. Modeling of the Problem

We discuss unsteady magnetohydrodynamic (MHD) fractional Oldroyd-B fluid flow under Boussinesq approxima-
tions over an infinite plate. The presence of the concentration effect with chemical reaction is taken into consideration.
Figure (1) represents the flow geometry of magnetized Oldroyd-B fluid. Under these presumptions, the governing equa-
tion for Oldroyd-B fluid with appropriate conditions are defined below [3]:(
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∂ũ∗(ỹ∗, t̃∗)

∂t̃∗
= υ

(
1 + λ̃2

∂

∂t̃∗

)
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Figure 1. Geometrical presentation for Oldroyd-B Model

ũ∗ (ỹ∗, t̃∗)→ 0, T̃ ∗ (ỹ∗, t̃∗)→ T̃ ∗
∞, C̃∗ (ỹ∗, t̃∗)→ C̃∗

∞ as ỹ∗ → ∞. (2.7)

We introduce the dimensionless function and parameters in eqs. (2.1) to (2.7) as mentioned below:
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Applying (2.8) into eqs. (2.1) - (2.7), required set of dimensionless governing equations in form of PDE’s system have
been present as:(
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with corresponding conditions

V (ζ, 0) = T (ζ, 0) = C (ζ, 0) = 0, ut (y, 0) = uy (y, 0) = 0, for ζ ≥ 0, (2.12)

T (0, τ) = V (0, τ) =

{
τ 0 < τ ≤ τ0;

1, τ > τ0,
, C(ζ, τ) = 1, (2.13)

V (ζ, τ) → 0, T (ζ, τ) → 0, C (ζ, τ) → 0, as ζ → ∞. (2.14)

2.1. Development of Governing Equations in terms of Singular & Non-Singular Kernel. Before developing
the governing equations in terms of fractional differential operator, we define Caputo time derivative with its Laplace
transform defined below [12].
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The (ABC) fractional derivative with its (LT ) are defined as:
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3. Optimal Concentration Field via Fractional Operators

3.1. Concentration Field via Integer order Approach. By applying Laplace transformation to Eq. (2.11) with
the help of initial condition on concentration results are given by Iftikhar et al. [11]

Sc (q +R)C (ζ, p) =
∂2C (ζ, p)

∂ζ2
, (3.1)

and solution is given as
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1

p
e−ζ

√
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√
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3.2. Concentration Field Via Caputo Approach. Solving Eq. (2.11) using C definition (2.15) and (2.16), we
have results present in Riaz et al. [27].

∂2C̄c(ζ, p)

∂ζ2
− Sc (P

κ +R) C̄c(ζ, p) = 0, (3.3)

the solution of above second order differential equation is given by
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ζ
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√
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in order to find the values of constants c1 and c2, we use corresponding boundary conditions for concentration and
after some simplifications, we have
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1

p
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√
Sc(pκ+R). (3.5)

3.3. Concentration Field Via Caputo-Fabrizio Approach. Concentration field with Caputo-Fabrizio time-
fractional is given as follow after using (2.17) and (2.18) with (2.11) Riaz et al. [27].
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where c1 = 0 and c2 = 1
p .

3.4. Concentration Field Via Atangana-Baleanu Approach. Concentration field with Atangana-Baleanu time-
fractional derivative is given by applying (2.19) and (2.20) on (2.11), we obtained results present in Riaz et al. [27].
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by using boundary conditions on concentration, we have following simplified form
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1

p
e
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√
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+R). (3.11)

4. Optimal Temperature Field via Fractional Operators

4.1. Temperature Field via Caputo Approach. We utilize integral transformation to acquire the solutions of
temperature given by Eq. (2.10) using (2.13). We exchange the partial derivative with fractional derivative of order
κ, and Eq. (2.10) can be written as:

CDκ
τ T (ζ, τ) =

1

Preff

∂2T (ζ, τ)

∂ζ2
−QT (ζ, τ). (4.1)

We prefer to apply Laplace transform given in (2.16) on Eq. (4.1). The resultant form of above expression is,
∂2T̄ (ζ, p)

∂ζ2
= Preff (p

κ +Q) T̄ (ζ, p) . (4.2)

The solution of homogenous part of second order partial differential equation say (4.2) is,

T̄ (ζ, p) = c1e
−ζ

√
Preff (pκ+Q) + c2e

ζ
√

Preff (pκ+Q). (4.3)
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With the help of (2.12)-(2.14), we find out the values of constants c1 and c2, we have

T̄ (ζ, p) =

(
1− e−p

p2

)
× e−ζ

√
Preff (pκ+Q). (4.4)

4.2. Temperature Field via Caputo-Fabrizio Approach. We utilize integral transformation to acquire the so-
lutions of temperature given by Eq. (2.10) using (2.13). We prefer to apply Laplace transform given in (2.18) on Eq.
(2.10). The resultant form of above expression is,

∂2T̄ (ζ, p)

∂ζ2
= Preff

(
b1p+ b2
b3p+ b4

)
T̄ (ζ, p) . (4.5)

The solution of homogenous part of second order partial differential equation say (4.5) is,

T̄ (ζ, p) = c1e
−ζ

√√√√Preff
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)
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)
. (4.6)

With the help of (2.12)-(2.14), we find out the values of constants c1 and c2, we have

T̄ (ζ, p) =

(
1− e−p

p2

)
× e

−ζ

√√√√Preff

(
b1p+b2
b3p+b4

)
. (4.7)

4.3. Temperature Field via Atangana-Baleanu Approach. We utilize integral transformation to acquire the
solutions of temperature given by Eq. (2.10) using (2.13). We prefer to apply Laplace transform given in (2.20) on
Eq. (2.10). The resultant form of above expression is,

∂2T̄ (ζ, p)

∂ζ2
= Preff

(
b1p

κ + b2
b3pκ + b4

)
T̄ (ζ, p) . (4.8)

The solution of homogenous part of second order partial differential equation say (4.8) is,

T̄ (ζ, p) = c1e
−ζ

√√√√Preff

(
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)
+ c2e
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)
. (4.9)

With the help of (2.12)-(2.14), we find out the values of constants c1 and c2, we have

T̄ (ζ, p) =

(
1− e−p

p2

)
× e

−ζ

√√√√Preff

(
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)
, (4.10)

where b1 = 1−Q+ κQ, b2 = κQ, b3 = 1− κ, b4 = κ.

5. Optimal Velocity Field via Fractional Operators

5.1. Velocity Field via Caputo Approach. We utilize integral transformation to acquire the solutions of temper-
ature given by Eq. (2.9). We exchange the partial derivative with fractional derivative of order α, and Eq. (2.9) can
be written as:(

a1 + λCDκ
τ

) ∂V
∂τ

=
(
1 + λC

r D
γ
τ

) ∂2V

∂ζ2
+Gr

(
1 + λCDκ

τ
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(
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τ

)
C − a2V. (5.1)

We prefer to apply Laplace transform given in (2.16) on equation (2.9). The resultant form of above expression is

(a1 + λpκ) p V̄ (ζ, p) = (1 + λrp
γ)

∂2V̄ (ζ, p)

∂ζ2
+Gr (1 + λpκ) T̄ (ζ, p) +Gc (1 + λpκ) C̄(ζ, p)− a2V̄ (ζ, p). (5.2)

The solution of homogeneous part of (5.2) is,

V̄ (ζ, p) = c1e
−ζ
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1+λr pγ

)
+ c2e

ζ

√√√√( (a1+λ pκ)p+a2
1+λr pγ

)
. (5.3)
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The general solution can be give as follow after making use of T̄ (ζ, τ) and C̄(ζ, τ),

V̄ (ζ, p) = c1e
−ζ

√√√√( (a1+λ pκ)p+a2
1+λr pγ

)
+ c2e

ζ

√√√√( (a1+λ pκ)p+a2
1+λr pγ

)

− Gr(1 + λpκ)(1− e−p)

p2
[(

Preff (pκ +Q)

)
(1 + λrpγ)−

(
(a1 + λpκ)p+ a2

)]e−ζ
√

Preff (pκ+Q)

− Gc(1 + λpκ)

p

[
(Sc(pκ +R))(1 + λrpγ)− ((a1 + λpκ)p+ a2)

]e−ζ
√

Sc(pκ+R), (5.4)

with the help of Eqs. (2.12)-(2.14), we find out the values of constants c1 and c2 for velocity equation:

V̄ (ζ, p) =

(
1− e−p

p2

)
e
−ζ

√√√√( (a1+λ pκ)p+a2
1+λr pγ

)

+
Gr(1 + λpκ)(1− e−p)

p2
[(

Preff (pκ +Q)

)
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(a1 + λpκ)p+ a2

)] ×

{
e
−ζ

√√√√( (a1+λ pκ)p+a2
1+λr pγ
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− e−ζ

√
Preff (pκ+Q)

}

+
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p

[
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] ×
{
e
−ζ

√√√√( (a1+λ pκ)p+a2
1+λr pγ

)
− e−ζ

√
Sc(pκ+R)

}
. (5.5)

5.2. Velocity Field via Caputo-Fabrizio Approach. We utilize integral transformation to acquire the solutions
of temperature given by Eq. (2.9) using (2.13). We prefer to apply Laplace transform given in (2.18) on Eq. (2.9).
The resultant form of the above expression is,

(
a1 + λ

(
p

(1− κ)p+ κ

))
p V̄ =

(
1 + λr

(
p

(1− γ)p+ γ

))
∂2V̄

∂ζ2
+Gr

(
1 + λ

(
p

(1− κ)p+ κ

))
T̄

+Gc

(
1 + λ

(
p

(1− κ)p+ κ

))
C̄ − a2V̄ . (5.6)
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The general solution can be given as follow after making use of T̄ (ζ, p) and C̄(ζ, p),

V̄ (ζ, p) = c1e

−ζ

√√√√√√√√√√
(p+a6)

(
(a1p+a8)p+a2

)
(

(p+a4)(a7p+a6)

)
+ c2e

ζ

√√√√√√√√√√
(p+a6)

(
(a1p+a8)p+a2

)
(

(p+a4)(a7p+a6)

)

− Gr(a9p+ a4)(p+ a6)(1− e−p)

p2
[
Preff

(
(a3 +Q)p+Qa4

)(
a7p+ a6

)
− (p+ a6)

(
(a1p+ a8)p+ a2

)] × e

−ζ

√√√√√√√√√√
Preff

(
(a3+Q)p+Qa4

)
(

p+a4

)

− Gc(a9p+ a4)(p+ a6)

p

[
Sc

(
(a3 +R)p+Ra4

)(
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)
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)] × e
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√√√√√√√√√√
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(
(a3+R)p+Ra4

)
(

p+a4

)
, (5.7)

with the help of Eqs. (2.12)-(2.14), we find out the values of constants c1 and c2 for velocity equation:
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, (5.8)

where a1 = 1 + λM + λr

K , a2 = 1 + M
K , a3 = 1

1−κ , a4 = κ
1−κ , a5 = 1

1−γ , a6 = γ
1−γ ,

a7 = 1 + λra5, a8 = a1a4 + λa3, a9 = 1 + λa3.
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5.3. Velocity Field via Atangana-Baleanu Approach. We utilize integral transformation to acquire the solutions
of temperature given by Eq. (2.9) using (2.13). We prefer to apply Laplace transform given in (2.20) on Eq. (2.9).
The resultant form of the above expression is,

(
a1 + λ

(
pκ
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))
p V̄ =
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T̄

+Gc

(
1 + λ

(
pκ
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))
C̄ − a2V̄ . (5.9)

The general solution can be give as follow after making use of T̄ (ζ, p) and C̄(ζ, p),

V̄ (ζ, τ) = c1e
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, (5.10)
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with the help of Eqs. (2.12)-(2.14), we find out the values of constants c1 and c2 for velocity equation:
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As κ → 1, the non-integer fractional models are reduced into the classical model. Further, if we neglect mass Grahsof
number (Gc = 0) in Eq. (2.9), the results are identical which was obtained by Anwar et al. [3].
In our fluid models, we use the classical computational technique to solve the fluid models using definitions of fractional
derivatives. There are many numerical algorithms which are used to calculate their inverses like Stehfest’s and Tzou’s
algorithms for semi-analytical solutions [40, 42]. Recently, Riaz et al. [13] and Madeeha et al. [21] analyzed the
numerical Laplace method to show the accuracy of inversion algorithms by solving fractional differential equations
effectively and reliably way. Tzou’s calculation for our numerical inverse Laplace

v(r, t) =
e4.7

t

[
1

2
v̄

(
r,
4.7

t

)
+Re

{
N1∑
k=1

(−1)kv̄

(
r,
4.7 + kπi

t

)}]
,

where Re(.) is the real part, i is the imaginary unit and N1 is a natural number [42].

6. Results and discussion

This section is dedicated to present physical interpretation of the obtained results via CF and AB differential oper-
ators under heat generation, ramp velocity and ramp temperature on MHD Oldroyd-B fluid. Results are investigated
via Laplace transformation with inversion algorithm for velocity, energy and shear stress based on singular verses
non-singular and local versus non-local kernels. The graphical representations are depicted for showing the influences
of different physical parameters such as fractional parameters κ, magnetic effect M , Grashof number Gr and Gc,
effective Prandtl number Preff , Schmidth number Sc, relaxation time λ and retardation time λr on velocity and
energy profile using the package of MATHCAD-15.

6.1. Velocity profile for κ. The influence of fraction parameter κ on velocity can be seen in Figure 2. By increasing
the value of κ, fluid velocity decreases for variation of time. Further, it can be easily seen that ABC is good to
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explain the memory effect of velocity profile as compared to C and CF. As the kernel of ABC, possess the property of
non-singularity and non-local due to which it is more effective as compared to C and CF.

6.2. Velocity profile for M . The influence of M is shown in Figure 3. By increasing the value of M , the resultant
velocity the decrease. Physically, the reason behind decrease in velocity is Lorentz force produced by the magnetic
field whose direction is opposite to the direction of flow which slows down the velocity. The behavior of non-integer
order models in velocity for M is the same at different time.

6.3. Velocity profile for Gr. Figure 4 shows the impact on Gr for velocity field versus time. It is observed that as Gr

increases, velocity becomes high because of enhancement in buoyancy force due to temperature gradient. Physically,
there is a relation between thermal buoyancy forces and viscous hydrodynamic force which is related to Gr. As Gr

increases, there is an increase in temperature gradient due to which the buoyancy effect dominates and hence rise in
velocity is observed

6.4. Velocity profile for Prreff . Figure 5 depicted the influence of Prreff on velocity. Enhancement in Prreff
reduces velocity. As we increase Prreff , the thermal conductivity decreases due to which viscosity increases which
causes a decrease in velocity. Furthermore, with the increase in Prreff the boundary layer thickness decreases.

6.5. Velocity profile for Sc. Figure 6 analyzed the impact on Sc for velocity field versus time. It is defined as the
ratio between viscous diffusion rate and mass diffusion rate. Physically, Schmidt number is used to characterize fluid
motion and it relates the thickness of hydro-dynamic layers and mass transfer boundary layers. It is observed that
with larger value of Sc, the velocity becomes decreases.

6.6. Velocity profile for Gc. Figure 7 discusses the behavior of velocity curves for Gc. Clearly, with the increase
in Gc, velocity rises due to an increase in buoyancy force and buoyancy force increases due to concentration gradient.
Physically, there is a relationship between concentration buoyancy forces and the viscous hydrodynamic force affected
by Gc. Buoyancy effect is enhanced because of an increase in concentration gradient which increases as Gc increases;
as a result, velocity decreases. The impact of Gc on fluid velocity is similar to Gr. The velocity for the ABC model is
good as compared to other fractional models.

6.7. Velocity profile for λr. Figure 8 shows the behavior of velocity curves for λr. It is observed that velocity
enhance with the increase in λr for all fractional models. The velocity behavior is also observed for variation of time.
Clearly, ABC model achieved maximum velocity as compared to other fractional models.

6.8. Velocity profile for λ. Effect of velocity profile for retardation time parameter is illustrated in Figure 9. With
the increase in λ, velocity decreases which is quite opposite behavior as compare to λr.

6.9. Temperature profile for κ. Figures 10 highlights the effect of fractional parameter on temperature profile
for fractional models. Increase in κ, the resultant temperature decreases. Temperature for CF and ABC is more as
compared to C in all cases. Moreover, as κ tends to 1, temperature curves for non-integer order approach integer
order.



384 N. IFTIKHAR, S. T. SAEED, AND M. B. RIAZ

Figure 2. Plot via C, CF and AB-approaches for velocity with different values of κ.
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Figure 3. Plot via C, CF and AB-approaches for velocity with different values of M .
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Figure 4. Plot via C, CF and AB-approaches for velocity with different values of Gr.
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Figure 5. Plot via C, CF and AB-approaches for velocity with different values of Preff .
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Figure 6. Plot via C, CF and AB-approaches for velocity with different values of Sc.
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Figure 7. Plot via C, CF and AB-approaches for velocity with different values of Gc.
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Figure 8. Plot via C, CF and AB-approaches for velocity with different values of λr.
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Figure 9. Plot via C, CF and AB-approaches for velocity with different values of λ.
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Figure 10. Plot via C, CF and AB-approaches for temperature profile with different values of κ.
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7. Conclusion

The study of MHD Oldroyd-B fluid flow with ramped wall temperature and velocity under the influence thermal
radiation in a porous medium has been discussed via non-integer models. The inversion algorithm and Laplace trans-
form are used to find the velocity, temperature, and concentration. A comparison is made for all models. Some results
from the literature can be recovered from our general results. Some significant remarks for this problem are:
• Velocity curves are showing decreasing behavior for fractional parameter κ and M .
• Velocity increases as Gr and Gc increase for C, CF and ABC.
• Velocity is an decreasing function of Prreff and Sc for all fractional models.
• Velocity showing opposite behavior for λ and λr for C, CF and ABC.
• Temperature decreases by magnify the value of fractional parameter.

Our present study includes analysis of Oldroyd-B fluid with ramped velocity and ramped temperature using frac-
tional order derivatives. This work can be extend with different boundary conditions. In future we considering a more
complex models like Jeffery fluid and some rotational models with different conditions. Moreover, new 3D graphical
analysis for possible emerging parameters can also be taken into account.
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