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Abstract ( “
In the present work, first of all, a new numerical fractional differentiation formula (called the CF2 formula) to approximate the
Caputo-Fabrizio fractional derivative of order o, (0 < o < 1) is developed. It is established by means of the quadratic interpolation
approximation using three points (¢;_»,y(tj—2)), (tj—1,y(tj—1)), and (t;,y(¢;)) on each interval [t;_1,¢;] for (j > 2), while the linear
interpolation approximation are applied on the first interval [fp,#;]. As a result, the new formula can be formally viewed as a
modification of the classical CF1 formula, which is obtained by the piecewise linear approximation for y(z). Both the computational
efficiency and numerical accuracy of the new formula is superior to that of the CF1 formula. The coefficients and truncation
errors of this formula are discussed in detail. Two test examples show the numerical accuracy of the CF2 formula. The CF1
formula demonstrates that the new CF2 is much more effective and more accurate than the CF1 when solving fractional differential
equations. Detailed stability analysis and region stability of the CF2 are also carefully investigated.
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1. INTRODUCTION

Fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and
derivatives of arbitrary order. The term fractional is a misnomer, but it is retained following the prevailing use. The fractional
calculus may be considered an old and yet novel topic. It is an old topic since, starting from some speculations of Leibniz (1695,
1697) and Euler (1730). It has been developed up to nowadays [5]. Ross organized the first conference on fractional calculus and
its applications at the University of New Haven in June 1974 and edited the proceedings, see [12]. Gorenflo and Mainardi [6],
introduced the linear operators of fractional integration and fractional differentiation in the framework of the Riemann-Liouville
fractional calculus. Particular attention is devoted to the technique of Laplace transforms for treating these operators in a way
accessible to applied scientists, avoiding unproductive generalities and excessive mathematical rigor.

The authors [1] investigate the existence and uniqueness of solutions for a fractional boundary value problem involving
four-point nonlocal Riemann-Liouville integral boundary conditions of a different order. The authors of [11] proposed a new
fractional derivative without a singular kernel. Caputo and Fabrizio [4], proposed a new definition of the fractional derivative
with a smooth kernel which takes on two different representations for the temporal and spatial variables. In [8], recently a new
fractional differentiation was introduced to get rid of the singularity in the Riemann-Liouville and Caputo fractional derivative.
The new fractional derivative has then generated a new class of ordinary differential equations. This class of fractional ordinary
differential equations cannot be solved using a conventional Adams-Bashforth numerical scheme. In this paper, a new three-
step fractional Adams-Bashforth scheme with the Caputo-Fabrizio derivative is formulated for the solution linear and nonlinear
fractional differential equations.
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In [14], stability analysis of fractional-order nonlinear systems with delay is studied. The authors proposed the definition of
Mittag-Leffler stability of the time-delay system and introduced the fractional Lyapunov direct method by using the properties
of Mittag-Leffler function and Laplace transform. Then some new sufficient conditions ensuring asymptotical stability of the
fractional-order nonlinear systems with delay is proposed firstly. The application of Riemann-Liouville fractional-order systems
is extended by the fractional comparison principle and the Caputo fractional-order systems. The stability of linear fractional
differential systems with commensurate order 1 < & < 2 and the corresponding perturbed systems is investigated. By using the
Laplace transform, the asymptotic expansion of the Mittag-Leffler function, and the Gronwall inequality, some conditions on
stability and asymptotic stability are given in [14]. The authors of [3] investigate the chaotic behavior and stability of fractional
differential equations within a new generalized Caputo derivative. A semi-analytical method is proposed based on Adomian
polynomials and a fractional Taylor series. Furthermore, the chaotic behavior of a fractional Lorenz system is numerically dis-
cussed. Since the fractional derivative includes two fractional parameters, chaos becomes more complicated than the one in
Caputo fractional differential equations. Finally, Lyapunov stability is defined for the generalized fractional system. A sufficient
condition of asymptotic stability is given and numerical results support the theoretical analysis.

The plan for the remainder of the paper is as follows. In section 2, a new numerical fractional differentiation formula(CF2-
formula) for the Caputo-Fabrizio fractional derivative of order ¢ is derived. The coefficient properties together with truncation
error analysis of the formula are given. Section 3 deals with the stability analysis of the new formula(CF2-formula). The region
of stability of the presented method is given in section 4. Two test examples are used to confirm the accuracy of the approximate
solution of the new formula in section 5. Conclusions are given in the last Section.

2. EXTRACTION OF THE NEW FRACTIONAL NUMERICAL DIFFERENTIATION FORMULA

In this section, we mainly explain the process of deriving the new numerical fractional differentiation formula for solving the
following initial value problem where SF DPy(t), denotes the Caputo-Fabrizio fractional derivative.

SEDXY(t) 1=y = f(t,3(1)), 0<t<T, n—1<a<n, @1

YW (1) =y k=0,1,....[a] — 1. 2.2)

Now define 7y = kAt, 1, 1= (fxa1 +1)/2, k > 0, wherever At is the time step duration. We present the following difference
operators:

y(te) = y(t—1)

(cstyk,7 = At )

1
2, _
Oy = Kt(6tyk+% - 5tyk,%)v k>1.

Assume y(t) € C'[0,], (k> 0). From the definition of the Caputo-Fabrizio fractional derivative, for any o, (0 < @ < 1), we
have

1 f —a(ty —x)
0" DIy (t) [i=, = o)y’ (x) exp(ﬁ)dx
1 K o —OC(Ik —)C)

j=1"71j-1

on each interval [t;_i,t;] for (1 < j <k), the piecewise Lagrange interpolation polynomial of degree one will be used to
approximate of y(r) as ITy ;y(z), i.e.,

ti—t t—1ti—q
I y(t) = y(tj—1)~ tj)—1—. 2.4
l,J)’() )’(J 1) Al "’Y(]) At 2.4)
It follows from the linear interpolation theory that (see theorem 2.1.4.1 in [11])
(1) —1II ), —tj i—1,8], 6 € (tj—1,1),1 < j <k 2.5
y l,j}’(t)_ ) (t tj*l)(t t]), re [t/flytj]aé‘]e (tjflatj)v SIS K (2.5)

(=)
BE
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For j > 2, we make a quadratic interpolation function IT, jy(r) of y(¢) using three points (#;_1,y(t;—1)),(tj—2,y(tj—2)) and
(tj,¥(tj)) and obtaining a constraint of the result onto interval [¢;_»,7;], we get

o 3(1) = (02 D) tg;)f D 4yt C t’zt)z(t’ D by L1 721);2 f-2)
2 2 t—ti; 1
=Y 01— =)+ 5y ) =) —17), 1€ tnt),
=0 li;(l) J=t i
where
, t—l]7% tj7% —t
(T (1)) —6tyj_l As +5zyj_% A7
=8y + (&Y —1,1), tE€n], (2.6)
and
¥(1) ~Th (1) =~ (gm(t—tjfz)(t—tjfl)(t—tj), 1€ ltj1,1l, 2.7

wherever 1; € (tj—2,tj), 2 < j < k. In (2.1), we use IT; 1y(¢) to approximate y(¢) on the first interval [to,;] and IT, jy() to
approximate y(r) on the interval [¢;_1,¢;] for (j > 2). Now, consider

g —o(tx —x) (1= (g .
/tjlexp(l_a)(x—tjé)dx— Tbkfﬂ 2<j<k, 2.8)
with
—a(m+ ) —oamAt
-« 7(1(m+ I)Al —omAt exp @ +exp
b(a) _ _ - s -0
Y <ex —a P 1—oc>+< 2 » m20,

By (2.2) and (2.4), we can take a new numerical approximation of the Caputo-Fabrizio fractional derivative of order o for
function y(¢) in the following form:

oty —x
0" DY) =y = —— Z 8 x)exp ( %a))dx
j— l

~ 1 |:/0t1(nl,1y(x)),exp(a(th))dx

-«

E /ztj Ik jy (x))/eXp(W)dx}

(X(tk—x) )dx

= &y1ex
|:l() ,yl p( - o

+ Z exp (
j=2"1j-1

_ 1 k 1j 7(X(tk7x)
—1_(1[;15%—;/ exp(— =)

—OC(tk —x)
ﬁ)(&yj,% + 5z2)’j—1(x_tj§)dx]

tj—1

+Z5,y] 1/j exp(%’c;x))(x—tj

tj—1

N\—

)dx]

At & )
:0CF1 Dtay(t) |t:tk +E Z b/(:i>j6t yj_l,
=2

BE
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wherever OF ID%y(t) is the classical CF1 operator which is derived from a piecewise linear interpolation approximation of y(¢)
on each interval [r;_1,7;] defined by

1 k
G100 = L 3 ol

=i
1 (@)
—@jzlak_,-(yj Yi-1)
1 () k—1 (@) (@) (@
= |0 v = Y@ = Z)y() - a1 y(w)| 2.9)
j=1

with

(a):< —ojAr —a(j+1)At

0<j<k-1.

Now we define
CF2 ot CF1 A S (@) o
o Dy() li=y =" DiV(t) li=, o Y 58—t (2.10)
=

The operator CF2D%y(¢) is just the new numerical fractional differentiation operator for the Caputo-Fabrizio fractional derivative
§FD%y(t) and we call it CF2 operator. Observing (2.9) and (2.10), we find that at # = f;, the new CF2 operator §72D%y(t) is

actually a modification CF 1 operator §7!'D%y(t) |,—,, by adding a correction term £ Z 2bk % §2 yj—1 for k > 2. The following

jt
(o)

Lemma states the properties of coefficients b, in the correction term.

Lemma 2.1. Forany o, (0 < o < 1), let

. . —a(j+1)At —ajAt

-« —o(j+1)Ar —ojAt exp —1- +exp - .
b(a) _ _ a @ > 0.
J anr \ & 11—« KPIT g + » J=

It holds
(1) % >0,
(2) b< ) > b( ) > g > e bga) is strictly monotone decreasing for j(j > 0).

chAt

Proof. From the definition of bﬁa) and the error representation of the trapezoidal formula for function y(x) = —exp 5%5" on the

interval [j, j + 1], it gives

(@ [/t —oxAr 1 —a(j+1)A —ajAt
b; —/j exXp dx—i[—expﬁ—ex l—a}
1 —OxAL 1, oAt , —oliAt
*ﬁ(*expl_ ) = &= (l—a) P

where j < {; < j+ 1. Itis easy to see that b(.a) 0 for j > 0. Besides, the second deduction of this Lemma can be seen from the
monotone decreasing property of the functlon exp "“A’

concerning x on [0,c0). O

(=)
BE



16 L. MOGHADAM DIZAJ HERIK, M. JAVIDI, AND M. SHAFIEE

In addition, by (2.9), the new obtained fractional numerical differentiation formula (2.10), can be rewritten as

Ar &
672 DPY(t) li=r =" Dffy(1) li=, o Y b;(ﬁ)j@z}’j—l
=2

Ly @ A @) s
= a ;ak_j&y]_% + E ;bk—jat Vj-1
j= j=
fl . (O‘)a (o) S s
7& Zakij lyj,%+2bk7j ly171 ij 3
Jj=1 j=2
Ly @ o @) C (@)
= | Y aldy 1+ Y050y, 1 - ) B8y
o J=1 Jj=2 j=
L\ @, @ (@
:a_z:l(ak j+bk /_bk f 1)6tyj_l
]:
Iy @
= aj;ldkij6ty]7%7
CF2 o o L d(a) _kfl d(a) _d(O!) ) _d(zx) 511
o DIy() == aAs |40 ¥ () _Z( b1 — & )y(tj) —di1)y(t) |, @2.11)

Jj=1

wherever d(()a) = a(()a) =1fork=1and fork > 2,

a(()a) —&—béo‘)7 j=0,
A" = $a® 4\ b 1< j<k-2, @12
d® b\ j=k—1

5 le‘;(l) d'% = —exp S8 4 Lexp 7_055]:;)At + Lexp 7_‘155_;)& +1.

(@ () () 1—a 1 —aAt
dy =ay +by = (=) exp—— 1D+
(@) _ (@) (@ _,@_ Jd-a 1 —aht
d\”’ =a;"  +b by _(aAt 2)(exp1_a 1)°.
Let f(x) = (5F = 3)(exp £ — 1%, then
-1 —xAt 2At —xAt —xAt 1—x 1
! _ B 27 B 1
f(x) szt(eXpl—x 1) (1_x)2exp1_x(exp1_x 1)(xAt 2)<o, xe (0,1).

[E)E
(=
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Therefore f(x) is monotone decreasing on (0,1) and then —0.5 = df” < dfa) < df ) = 0, thus, dO > |d | i.e. (1) holds.
Furtheremore for2 < j <k—2

4 = & 4 5 _ 5l

—ojAr —o(j+1)Ar l—a[ —a(j+1)Ar —Ot]At]
=ex -
P I—a ar -« -
1 —ojAt —a(j+1)Ar, 1-a —ojAt —a(j—1)At
M A i g ey vl e
1 —a(j—1)At —ojAt
Tplew T e
—a(j+)Aar 1—a —a(j+1)Ar —ajAr
={- [exp —exp ]
l-—o oAt - l-—o
1 —a(j+1)Ar —ojAt —ajAt 11—« —0ojAr —a(j—1)Ar
+2[exp - +exp— 1} exp— T oA [exp - ex - ]
1 —ojAt —o(j—1)Ar
Falep Ty rep—
a —(X(j+1)A —ajAr, 1 —a(j+1)Ar —ajAt
{ A | —a Pl Tl e
a —a]At —a(j—1Ar, 1 —ojAr —o(j—1)Ar
—exp— I N - ]
ocAt - -« 2 11— -«
=1 -1,
with
J l—a[ —a(j+1)Ar —Ocht] 1[ —a(j+1)Ar —OtjAt}
i = €X —€X — —|€X —€X
1T aar P T g l—a” 2 -« -«
-« —a(j+1)Ar 1 —a(j+1)Ar -« —ojAr 1 — 0o jAL )
_ ! _ _ - > 1.
[am T T 2Ty art P 1—a 2P|

Let g(x) = (L% — Dexp %2, x>1,then; =h(j+ 1) —h(j). Forx > 1, it follows

oAt —OLxAt
"(x) = —1 <0
l—o 1., aAt? —oxAr
"
=(—— —— 0
g"(x) (aAt 2)(1705 exp7—o >0,
1 1-a. aAt3 —axAr

n
=(z— 0.
¢ ) (2 oAt )(l—a P a <
Consequently,

A\ =1~ =g(j+ 1)~ 2(j) +8(j 1)
=g"(§;)>0, j-1<§i<j+l,
d\¥ —d\¥) = —g(j+2)+3g(j+1) ~3g()) +8(i —1)
=—¢"(6;)>0, j-1<§<j+2.
So, it leads to déa) > d§a> > > d,@z and d,@z > a,@l + b,(ﬁ)l — b,(ﬁ)z > a,@l — b,@z = d,g)l, where is used, i.e. (2) and (3) of
this theorem are valid. Noticing that
déa) =hL-1=g(3)—232)+g(1)=¢"(&) <g' (1) < do , (4) is also apparent. The validity of (5) can be directly derived

from the definition (2.12) of d;a). The proof is completed. ]
ey )
EBE
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Now, truncation errors of the new CF2 formula (2.11) are illustrated in the following theorem.

Theorem 2.3.
N 1
RO(0))] < 5 maxi<i<n [y (1)[Ar, (2.13)
and
. o 1 1
[R(y(1))] < (1—a)? {zmaxto<t<tl |y//(t)|At3 + gmaxtogtgtk|y//(l)|(k— 2)At4
1 /" -« 3
+gmaxt0§,§lk|y (H)|(1 —Z(T))At k> 2. (2.14)

Proof. We have

RO) = [0 - Tyt exp — 20T gy

170( o 17
b _ —ah—x), [ _« —a(n-x),
— o b - Ml =52 [ e =AU ) o)
_ LYy, _ —alti—=x),  [MYy'E) a _ —a(t —x)
_l—a{ 5 (x—10)(x t1)expﬁto /to 2 m(x f0)(x tl)expl_adx}
:_ﬁy (2171) /tl(x—to)(x—tl)l aaexp _O;(tl;x)dx
- to — _
= 1_] : (an) [(X—fo)(x_tl)eXP_(xl(t_I;X)—(2X—(to+t1))l;aexp —Oi(f;x)
l—o, —afg—x)]""
+2( p ) exp I L:to
1 i 1— At 1—o —aA
- (2”1)[( aa)A(1+ exp T2 421 0P —ep T2
_ 1 Y'(m) -« >
=1-a 2 ( o Art3ar +...)
1 Z
:_Ey (nl)Ata
where 1 € (f9,11). Hence, (2.13) holds. For k > 2, from (2.3) and (2.8), we get
- — Ly , _ _
R(y(r {/ y(x) —IT; 1y(x)] eXp%dx—O— Z/ v(x) =TI jy(x)] exp %d}c}
j=2"1j-1
- ﬁ{w) My wlep S [ e Uy
+ ; [ _ . (fk x) B i o —a(t; —x) . (2.15)
()~ T ylexp — e = [ e = ()~ T ()
j=2 lj-1
- (1:(2)2{_/,: "XP%](;X)M) M1y dx+Z tr,l _7_)0@() I jy(x ]dX}
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where (2.3), (2.5) and

— oty —x) y'(&1) —a(t; —x)
b’<x)_nl,l)’(x)]expﬁ ;' 0 (2 (X—fo)(x—fl)expﬁ ;1 10— =0,
—o /// ,rl
)~ Tapy(oexp 28Dy ) (e ) ey =0
are used.By (2.5), it follows
h —oU( h -0ty —x
[0~ avlen =58y = [" ) (i nyep 48Dy
0 —a
/! 1 — —
:|y (znl)/l(xfto)(xftl)CXPMdﬂ
1o -
1 g —Oc(tk—x)
< Z 1y AZ/ _ VK Mg
<3 mjart [ exp =
1 1—a —o(ty—x
< Sl D at ey 2B
(I—a\, 5y —o(t—1) —a(t — 1)
< _
< (g Ay (m)ly exp——— &
l—o 5 —a(k—1)Ar —akAt
< _
< (el (m)l{ e~ ok
1
< W (m)lar,
where 1 € (f,t;) and
k=1 rt; tj y’// —o(ty—x
¥ [ ) Ty ep =2y |7 (et )ty ) exp — D g
j=2"1j-1 j=2"1j-1 -
" —a(t—x
f|zy o) [ (et ) )t exp — T D
Jj—1
t — _
y( /, xX—tj_2) tj,l)(x—tj)expde
1 -
j — tk—x)
/// At3 /] e o d
)| Z g &
1 li-1 —a(f —x)
< /// A / d
<3 )8 [ exp D
- - —a(k—1)At
" A _ o
< S EW()ar exp e
1
< ()| (k—2)Art

(2.16)

(2.17)
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where ¥ € (tj_2,tj) ,2< j<k—1,0 € (to,tx—1). In addition,

1k —o(t, —x iy —O(ly—Xx
/ [y(x) — I xy(x)] exp de = / () (x—tr_2)(x —t_1)(x — 1) exp de
1 11—« 1 6 11—«
1 Tk —o(ty —x
= Ey”/(ﬁk)/ (x—tr—n)(x —tx—1)(x —tx) exp %dx
Tr—1 -
1 ! _ _
< fy’”(ﬁk)At/ ‘ (x—t5_2)(x—1;)exp de
6 1 11—«
1 -
< g @0a{ (L 02t
—(2x— (tr2+1))( o )~ +2( p ) ) XP Xty
1 1-—
= " (B)(1 -2 )Ar, 2.18)
o
Oy € (tk—2, ). The substitution of (2.16), (2.17) and (2.18) into (2.15) will lead to (2.14). The proof ends. O

3. STABILITY ANALYSIS OF CF, NEW FORMULA

Stability analysis of the new formula considering the fact that, a numerical method is stable if small change in the initial
conditions results only small changes in the computed solution [2], we deal with the stability analysis of the new scheme.
Assume that y; and %, (k=1,2,---,N)

are two solutions of the formula (2.11) with different initial values yg) and o (i = 0,1,---,[a] — 1) respectively. Then the
presented method is stable if there exists a positive constant Cy 7 independent of 4 and k, such that [7]

[n]-1 )
=Y <Car ¥ P =50, k=0, N
0

=l

Theorem 3.1. Let yy | and y\ are numerical solutions for (2.1), which the initial conditions are given by y(()i)

respectively. Then

and Yy (@)

Vi1 — 1] < Carllyo = Yo!|es (CRY)
i.e. the new CF2 (2.11) is numerically stable.

To prove this theorem, we need the following Lemma.

Lemma 3.2. Set d](w be introduced in (2.11), then there is a constant C such that
k+1
Y ld\¥ <cT. (3.2)
j=0

Proof. We first derive the estimate for |dp|

gl -ty 1 —7) Tt i Aty 1—7T), T—1H T—t
\d(()"‘)|:|/ exp (tkt1 )( Dzt [ exp (1 —7) 1Tl
1o 11—« fh—1 f 11—« fo—t to—1n
n —(tg 1 —7T 1 2 —o(ty1—7) (T—t T—t
1 [Mexp (tkt1 —17) de+ [ exp (i1 —7) (T—12) + ( 1)dr|.
to 1—«a o —1 f l—«a (t()—t1)(t()—t2)

BE
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By utilizing the integral mean value theorem, for £; € [tj,l N j] Jj = 1,2, the above equation can be rewritten as follows

—t 2 —aft
\do|<|*\/ k+1 )d—I—\( iz 1|/ k+1 )d
(to—t1 to—t2 -

11 (tk+1—fl) —0(tir1 —1o) - (tk+1—tz) —0(tir1 —1)
< = P S . VA, I S S . A
“h a [(CXP l—«a -« )+ (exp -« cxp 11—« )]

11—a — Oty — Ol
< Z _
~h o« [ex l—-a X l—oc]
< lt
>~ h2~

In a similar way, we can derive |d§a)| < CT,|dka)| < CT and |d,£z)1\ < CT, where C have dissimilar values at different formulae.

For j=2,--- ,k—1, we have

fl_tj 2 T — f, 1 Otk — T)
d < 7511
A [ et
TH—ti_1THh—t Tj+1 —oct -7
+|2 -1 — J+1|/ (k+1 —ote =)
/

T —tji—11 T —ljt2 /tj+2 —Oc(tk+] —T)
exp ——d71|,
T o U, P T ]

where 7] € [tj_1,t}], T € [tj,tj+1] and T3 € [tj;1,1j42]. Hence, above equation has the simple form

Z i) < 2Z§|k21 Lo e = lis 1)y b 1)y
f}‘; ‘kzl [1 - a(f/i+_1;fj+1) ~exp *a(ltki-la*tj)]
th;'kzl l—a a(l];+i;tj+2) —eXpW]
! ; [(exp (tfitl;’kfl) ~exp _a(ltkjla— n,
+2(exp _a(ltkila_ t) —exp _O‘(lfkila— n) )+ %(1 —exp%)]

1 7 7
<t + 2+ —tpo=—tr_o=—T.
-2+ k2+21<2 Fih-2=5

Due to the values of d; and dj in (2.12), it is obvious that
dy <CT, dyi <CT.

In summary, combining all the above results, by choosing sufficiently large C one can reach the estimate of (3.2). (]
4. STABILITY REGION
Consider the following test problem to investigate stability region of the proposed numerical method:
4.1)

6 DYY(t) = = A¥(1),  y(t0) =yo, O<a<l.
The new method gives the following new numerical fractional differentiation the formulae for solving the test problem:

SD%y(n) = Ay(n),
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L[ @ Y0 @ (@
oh do )’(tk) - Z (dkqu - dkfj)Y(tj) - dkfl)Y(tO) = l)’(tk)a
j=1
@, N @ (@, _
dy "y — Z (dkfjfl - dkfj)yj - dk,ly() = aAhyy, 4.2)
j=1

Assume that z = Ah. Then we have

Zj 0 7’1 )’/ 4.3)
ayk
where
—d%, j=0,
1 =@ —a”). 1<j<k-1,
d\®, =k
Let y; = EX, then by assuming & =€ with 0 < 0 < 27 we get the stability region
S ] =0 }/] 51
S={z:z= aEF } (4.4)

In Fig. 4, we present stability region (the gray areas) of the new method (2.11) at @ = 0.1,0.3,0.5,0.7 for N = 160. In this
figures, we can observe that, as increases «, the stability region of the new method (2.11) increases.
5. NUMERICAL RESULTS AND DISCUSSION

Now, with some examples, let’s examine the accuracy of the obtained formulas. Take a positive integer N, let 7o = 1, At =
To/N = 1/N and denote

EN(CFI) = ‘OCFDIay<t) |l:tk _DltOCY(t) |l:[k |7O S k SN)
EN(CFZ) = SFD?y(t) |l‘:tk _DZ;XY(t) |t=tk |7O S k S N

Example 5.1. Suppose 0 < & < 1. Consider the following fractional differential equation of order

2 <exp (&) —exp (ZI))

o—2
The exact solution is given by y(t) = exp (2¢). Taking different temporal stepsizes Ar = 1/10,1/20,1/40,1/80,1/160,1/320,
1/640,1/1280, we compute the example by the formulae (2.9) and (2.11) respectively. Table (1) lists the computational results

at ty = Tp = 1 with different parameters @ = 0.9,0.5,0.1. From the results presented in Table (1), we find that the computational
errors by the formula (2.11) are much smaller than that by the formula (2.9).

§FDYy(1) =

Example 5.2. Consider the following initial value problem for 0 < ot < 1:

6 DPy(1) —y(t) = —exp 45, t€[0,1]
y(0)=1.
The exact solution to this initial value problem is y(#) = exp(¢). The interval [0, 1] is divided into N + 1 equi-spaced nodes #,

given by #, = kAr, k=0,1,2,...,N, in which Ar = 1/N denotes the time step size, where y; is the numerical approximation to
¥(#). For these points we have the above initial value problem:

CFDayk_)’k—_eXpa 1 tke[ovlL
yo—l.

B

EE
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By setting the approximation obtained by formula (2.11) for the Caputo-Fabrizio, a system of linear equations with unknown
values y; achieved. By solving this linear equation, the approximate values for the problem at node points #; was achieved.
In Table 1, we list the absolute error of the proposed method (2.11) at some node points #; for various values of a. From the
results presented in Table (2), the accuracy of the approximate solution increases by increasing the number of nodes points #.
We compared the results of the presented formula (CF2) with the errors of the numerical approximation reported in [9] in the
examples 3-5 listed below with their numerical simulations recorded in Tables 3-5. (The absolute errors of the CF2 formula and
the scheme of [13] in the examples 3-5 are shown in Tables 3-5 and they are compared for different values of # and o for r = 1)
Consider the following fractional order differential equations for 0 < o0 < 1 :

Example 5.3.
—aexp (gEyt)+acos(r)+(1—a)sin(r)
{SFD:’y<r>= e teo]
¥(0) =0,

The exact solution to this initial value problem is y(z) = sin(t).

Example 5.4.
SFDEY(1) = exp (&)~ + (a+Dexp(rg)],  1€[0,1]
¥(0) =0,
The exact solution to this initial value problem is y(¢) = texp(t).
Example 5.5.
—ovexp (g7 1)+oacos(2t)—2(o—1)sin(2t)
{SFDf‘ym = e (o,
¥(0) =0,

The exact solution to this initial value problem is y(¢) = sin(t)cos(t).
It is note worthy that the error of the presented scheme is always smaller than the error of literature in all given cases. So the
new formula is more accurate.

6. CONCLUSION

A new fractional numerical differentiation formula (called the CF2 formula) to approximate the Caputo-Fabrizio fractional
derivative of order « is established. The new formula is obtained by a piecewise quadratic interpolation approximation for the
integrand y(r), in detail, by the constraint on to the small interval [¢;_;,¢;] of the quadratic interpolation approximation using
the three points (¢j_2,¥(tj—2)), (tj—1,¥(tj—1)) and (¢;,¥(;)), j > 2. As a result, the new CF2 formula can be viewed formally
as the modification of the CF1 formula by adding some correction terms when k > 2. We then make some analysis for the
coefficient features and truncation errors of the resulting CF2 formula. Two test examples are carried out to effectively confirm the
computational validity and numerical accuracy of the CF2 formula. Stability analysis of the presented new fractional numerical
differentiation formula (called the CF2 formula) to approximate the Caputo-Fabrizio fractional derivative is investigated. The
stability region of the new formula for different values of N is achieved. Numerical simulations are carried out for a hypothetical
set of parameter values to validate the new numerical scheme and substantiate our analytical findings.
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TABLE 1. The absolute errors whit different temporal stepsizes for example (5.1).
a At EN(CF) EN(CR)
09| 1/10 0.196395 0.0188106
1/20 0.0500519 0.00244953
1/40 0.0125742 0.000311033
1/80 0.00314741 3.91377e — 005
1/160 0.00087093 4.90696¢ — 006
1/320 0.000196788 | 6.14246e — 007
1/640 | 4.9198¢—005 | 7.68341e —008
1/1280 | 1.22996e —005 | 9.60755¢ — 009
0.5 1/10 0.0155689 0.00171214
1/20 0.00389854 0.000219741
1/40 0.000975031 | 2.78359¢ — 005
1/80 0.000243783 | 3.50283e — 006
1/160 | 6.09472¢ —005 | 4.39323¢ —007
1/320 | 1.52369¢ —005 | 5.50076e — 008
1/640 | 3.80923¢ —006 | 6.88171e —009
1/1280 | 9.52308¢ — 007 | 8.60569¢ — 010
0.1 1/10 0.0012649 0.000154894
1/20 0.000316418 | 1.98788e — 005
1/40 | 7.91165¢ —005 | 2.51862¢ — 006
1/80 1.97799¢ — 005 | 3.16986¢ — 007
1/160 | 4.94502¢ — 006 | 3.97595¢ — 008
1/320 | 1.23626e — 006 | 4.9785¢ —009
1/640 | 3.09065¢ — 007 | 6.22866¢ —010
1/1280 | 7.72662¢ —008 | 7.79181e — 011

TABLE 2. The absolute errors of example (5.2) by the proposed method (2.11) at some node points 7, for @ = 0.1

o=0.1] N=10 N =20 N =40
I () =yl | () =yl | y(e) — il
0 0.00 x 10° | 0.00 x 10° | 0.00 x 10°
0.1 1.02x107% [ 256 x 107 | 6.40 x 10~°
0.2 227x107%[5.66x 107> | 1.41 x 1072
03 |376x10°%[9.38x107°[2.34x107°
0.4 553x 1077 [ 1.38x107% [ 3.45%x 107
0.5 7.65x107% | 1.91x107* | 4.77x 107>
0.6 1.0Ix103[253%x107%]6.33x107°
0.7 1.31x1073[326x107%]8.16 x 10~
0.8 1.65x 1073 [ 4.12%x107% [ 1.03x 1077
0.9 205x1073 [5.13x107% [ 1.28x 1077
1 2.52%x1073 [ 6.30x107% [ 1.57x 1077

TABLE 3. Absolute errors of the present scheme (CF2) and the numerical method of [9] for Example 5.3.

a=0.25 a=0.5 a=0.75
h E(CF2) E[9] E(CF2) E[9] E(CF2) E[9]
1072 1.30747¢—08 4.1345¢—03 4.23617¢—08 7.4921e—04 1.16139¢ — 07 6.0877¢ —03
1073 1.30472¢—11 4.0793¢—04 4.2256e—11 6.7530e — 05 1.157¢e—10  6.1385¢ — 04

BE
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TABLE 4. Absolute errors of the present scheme (CF?2) and the numerical method of [9] for Example 5.4.

a=0.25 a=0.5 a=0.75
h E(CF2) E9] E(CF2) E[9] E(CF2) E[9]

1072 1.53017¢ —07 6.1334e — 02 4.79786e —07 6.9383¢ —02 1.35355¢—06 7.5564e¢ —02
1073 1.53342¢—10 6.1716e—03 4.80629¢ — 10  6.9755¢ — 03 1.35635¢ —09 7.5842¢ — 03

TABLE 5. Absolute errors of the present scheme (CF?2) and the numerical method of [12] for Example 5.5.

a=0.25 a=0.5 a=0.75
h E(CF2) E[9] E(CF2) E[9] E(CF2) E[9]

1072 2.63062¢ —08 7.0012¢ —03 7.02057¢ —08 1.2357¢—02 6.8956¢ — 08  2.0529¢ — 02
1073 2.59975¢ — 11 7.0960e — 04 6.90947¢ —11 1.2451e—03 6.51574e—11 2.0530e — 03

$10° Error curves «10% Error curves
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FIGURE 1. The absolute errors with o¢ = 0.5, N =40 ((a): example5.1; (b): example5.2).
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FIGURE 2. The absolute errors with (o = 0.1 by the scheme (a) and ¢ = 0.9 by the scheme (b) )for different
N for example (5.2).
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exact solution for f(t)=exp(2t), N=20

“ Numerical solution for f(t)=exp(2t), N=20

14 T

a=0.1 =05
15 - . 25 —
2l
10
15+
1t
5
05+
T T
H £ 0
05+
5
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A5+
-10
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45 . . 25 R
E 10 5 0 5 10 15 25 2 45 4 05 0 05 1 15 2 25
Re(z) Re(2)
(@ ©
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FIGURE 4. Stability regions of the new method CF2 to approximate the Caputo-Fabrizio derivative with o = 0.1,0.3,0.5,0.7.
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