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Abstract

..

Medical ultrasound images are usually degraded by a specific type of noise, called ”speckle”. The presence of
speckle noise in medical ultrasound images will reduce the image quality and affect the effective information, which
can potentially cause a misdiagnosis. Therefore, medical image enhancement processing has been extensively
studied and several denoising approaches have been introduced and developed. In the current work, a robust

fractional partial differential equation (FPDE) model based on the anomalous diffusion theory is proposed and
used for medical ultrasound image enhancement. An efficient computational approach based on a combination of
a time integration scheme and localized meshless method in a domain decomposition framework is performed to
deal with the model. In order to evaluate the performance of the proposed de-speckling approach, it is used for

speckle noise reduction of a synthetic ultrasound image degraded by different levels of speckle noise. The results
indicate the superiority of the proposed approach in comparison with classical anisotropic diffusion denoising
model (Catté’s pde model).

Keywords. Medical ultrasound images, Images denoising, Fractional Perona-Malik equation, Localized meshfree method, Domain decomposition

method.
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1. Introduction

Ultrasonography is recognized as one of the most powerful techniques for imaging fine organs and tissues in clinical
diagnosis and therapeutic approaches. However, ultrasound images are often damaged by speckle noise during image
acquisition, which can complicate the correct diagnosis of lesions with low-intensity [20, 61]. Therefore, detecting
the speckle noise in the images and performing techniques to despeckle the corrupted images are important issues in
medical image analysis and diagnosis [38]. Several approaches have been proposed and developed for speckle reduction
and improving the quality of medical images for better human interpretation. Using despeckle filters is one of the
easiest, yet most common speckle noise reduction approach which have been widely applied to enhance medical images.
These filters are performed on spatial or frequency domain of an image. Some of the filters introduced in the spatial
domains are, noise filtering algorithms based on the local statistics of the image [35], median filter [40, 46], speckle
reducing anisotropic diffusion filter [21, 66], total-variation (TV) minimization algorithm [60], combination of diffusion
and total variation models [41], etc. Also, there are various approaches based on transform domain for speckle noise
reduction in medical images. Some denoising approaches based on the wavelet transformation have been introduced
and used to enhance medical ultrasound images [10, 23, 42]. Abazari and Lakestani have formulated a fourier based
discrete shearlet transform [1] and also a hybrid denoising algorithm based on combining of the shearlet transform
method with the Yaroslavsky’s filter [2] to reduce the noises of ultrasound medical images. Recently, a novel speckle
noise removal approach based on the combination of a log-transform method and a non-subsampled shearlet transform
technique has been successfully introduced by Abazari and Lakestani [3]. Partial Differential Equations (PDE)- based
image denoising approaches, are one of the important class of image enhancement and restoration techniques which
have been attracted attention and successfully used during the recent years (see [7] and references therein). One of
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the most fundamental PDE-based models in the field of image processing is the Perona-Malik (PM) equation which
has been proposed in 1990 [43]. The Perona-Malik model is a special case of anisotropic diffusion equations, which the
rate of diffusion is controlled by an edge stopping function depending on the local image gradient. The Perona-Malik
model is defined as follows:

∂u(x,t)
∂t = ∇ ·

[
g(| ∇u(x, t) |)∇u(x, t)

]
, (x, t) in Ω× I,

∂u(x,t)
∂n = 0, on I× ∂Ω,

u(x, 0) = u0(x), in Ω.

(1.1)

Where Ω is typically a rectangular shaped bounded domain in R2 which denotes the entire image region, ∂u
∂n is the

outward unit normal to the image boundary, ∂Ω, I = [0, T ] is a scaling time interval, g(.) is a smooth non-increasing
function, g(s) ≥ 0, g(0) = 1 and g(s) −→ 0 as s −→ ∞. The behaviour of solutions of the Perona-Malik problem
have been investigated in several literature [9, 27, 34, 44]. Unfortunately, it has been shown that the classical Perona-
Malik equation behaves locally like backward diffusion process which is an ill-posed evolution problem [9, 34, 63]. To
overcome this drawback, Catté et al. introduced a development approach to regularize the nonlinearity term in the
equation (1.1) [9]. They proposed replacing the diffusivity g(| ∇u |) of the Perona-Malik model by a little change
g(| ∇uσ |) with uσ = Gσ ∗ u, where Gσ is a smooth kernel Gaussian of variance σ. According to their suggestion, the
governing equation in (1.1) is considered as follows [6, 9]:

ut −∇ · (g(| ∇Gσ ∗ u |)∇u) = f(u0 − u), in Ω× I, (1.2)

where f(.) is a Lipschitz continuous, nondecreasing function, f(0) = 0, and u0 ∈ L∞(Ω).
The typical choices of diffusivities are:

g(s) =
1

1 + (s/k)2
, and g(s) = exp(−(s/k)2). (1.3)

Here k is a given threshold that controls the pixels that should be preserved or enhanced during the diffusion process
[62].
In recent decades fractional calculus has attracted the great attention as an expansion of the classical calculus [59]
and widely used to describe many complex systems [11, 15, 24–26, 39, 45]. Recently, theory of fractional calculus is
widely developed and successfully applied to many image processing applications such as image enhancement, image
denoising, image edge detection, image segmentation, image registration, image recognition, image compression and
etc [65].
Compared with integer-order partial differential equation filters for image denoising, the fractional ones have better
performances to satisfy the requirements of a proper image enhancement [65]. Due to high capability and potential
of fractional calculus for image enhancement, several image denoising algorithms based on it, have been proposed in
recent years. Bai and Feng [8] have proposed an anisotropic diffusion model with space-fractional derivatives for image
denoising. Zhang et al. [67, 68] generalized the TV model based on the Grünwald-Letnikov fractional derivative and
proposed an efficient TV filter for enhancing digital images. A fully fractional anisotropic diffusion with spatial and
time fractional derivatives has been introduced and performed for noise removal [28]. Thier results show that the model
can preserve edges more efficiently than the classical diffusion models. In order to achieve the optimal balance between
performance of the diffusion model and the preservation of image feature in ultrasound medical image despeckling
process, in this manuscript an anomalous sub-diffusion model with time-fractional derivative in sense of Caputo’s
definition has been proposed as follows:

c
0D

α
t u(x, t) = ∇ · (g(| ∇Gσ ∗ u |)∇u), in Ω× I,

∂u
∂n = 0, on I× ∂Ω,
u(x, 0) = u0(x), in Ω,

(1.4)

where c
0D

α
t u denotes the Caputo fractional derivative of order α,

c
0D

α
t u(x, t) =

1

Γ(1− α)

∫ t

0

∂u(x, τ)

∂τ

dτ

(t− τ)α
, 0 < α < 1. (1.5)
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Concurrent with the development and improvement of pde-based models for image enhuncement, extensive efforts
have been made to develop and introduce new computational approaches for dealing with image denoising techniques
based on partial differential equations.
Here, an advanced computational approach based on meshless method will be formulated and used to solve the model
(1.4) numerically. Meshless methods are an advanced class of techniques used in applied mathematics and scientific
computing to numerically investigate and simulate the behavior of complicated practical models [13, 37]. The meshless
methods are very powerful computational tools to deal with high-dimensional practical problems with complicated
geometry domains. They are categorized into two main categories: 1- Those that are based on the strong forms of the
governing model [4, 12, 30, 31, 36, 47, 48, 53, 55] and 2- Those that are based on the weak forms of the governing problem
[16–19, 51, 52, 56]. To overcome some drawbacks of classical meshless methods, some straightforward approaches for
the development of meshless methods based on thier localized formulation have been introduced. The local methods
lead to a sparse and well-conditioned system of algebraic equations and are more stable than their global counterparts
[5, 49, 50, 54, 58]. Recently, some meshless approaches have been used for dealing with pde-based image denoising
[29, 32, 33].
In the current work, an efficient computational technique based on the combination of a semi-implicit time integration
scheme and a localized meshless method in a domain decomposition framework would be performed to solve the
time-fractional anisotropic difussion model (1.4).

2. Mathematical formulation

This section is devoted to formulate and implement a computational approach for solving the anisotropic sub-
diffusion model (1.4). Firstly, a semi-implicit time discretization scheme is performed to discretize the model in
the time direction. Then, a local meshless technique in the domain decomposition framework is formulated to fully
discretize the model.

2.1. Time discretization. In order to perform an efficient semi-implicit time integration scheme to discretize the gov-

erning equation (1.4) in the time direction, the time interval [0, T ] is divided into L equal sub-intervals,
∪L−1

k=0 [tk, tk+1]
uniformly, where tk = k∆t, k = 0, · · · , L and ∆t = T/L (∆t denotes the time step size). Using the backward Euler
method, the Caputo time-fractional derivative at time level t = tk+1 and for all 0 ≤ k ≤ L− 1, can be approximated
as follows:

c
0D

α
t u(x, tk+1) =

1

Γ(1− α)

∫ tk+1

0

uτ (x, τ)

(tk+1 − τ)α
dτ

=
1

Γ(1− α)

k∑
s=0

u(x, ts+1)− u(x, ts)

∆t

∫ ts+1

ts

(tk+1 − τ)−αdτ +Rk+1

=
(∆t)−α

Γ(2− α)

k∑
s=0

ws(u
k−s+1 − uk−s) +Rk+1, (2.1)

where ws = (s+1)1−α − s1−α, s = 0, 1, ..., k, uk = u(x, tk) and Rk+1 denotes the truncation error of the discretization
scheme, which satisfies for any u(x, t) ∈ C2(Ω× [0,∞)) in the following relation [57]:

| Rk+1 |≤ 1

Γ(2− α)
[
1− α

12
+

22−α

2− α
− (1 + 2−α)] max

0≤t≤tk+1

|∂
2u(x, t)

∂t2
|(∆t)2−α.

Now, by rearranging (2.1), we obtain:

c
0D

α
t u(x, tk+1) ≈

(∆t)−α

Γ(2− α)
(uk+1 +

k∑
s=1

(wk−s+1 − wk−s)u
s − wku

0). (2.2)
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Substituting the approximation (2.2) for c
0D

α
t u(x, tk+1) into the governing fractional model (1.4), the following semi-

implicit scheme at time level tk+1 is obtained:

(∆t)−α

Γ(2− α)
(uk+1 +

k∑
s=1

(wk−s+1 − wk−s)u
s − wku

0) = ∇ · (g(| ∇Gσ ∗ uk |)∇uk+1). (2.3)

The semi-implicit discretization (2.3) treats g(| ∇Gσ ∗ uk |) explicitly, to avoid the nonlinearity of the diffusion
coefficient that does not result in nonlinear algebraic problems. Moreover, the convolution term, Gσ ∗ uk can be
alternatively approximated by solving the homogeneous diffusion equation with the initial condition uk. This linear
equation can be solved numerically at the same domain by just one implicit step with length σ. In our implementation
the convolution term in (2.3), is approximated by a function uℓ, that is a solution of the diffusion equation discretized
in the time direction by the backward Euler method with step σ, as follows [22]:

uℓ − uk−1

σ
= ∆uℓ, (2.4)

where ∆ represents the 2D Laplace operator. Therefore, Equation (2.3) can be simplified as:

(∆t)−α

Γ(2− α)
(uk+1 +

k∑
s=1

(wk−s+1 − wk−s)u
s − wku

0) = ∇ · (g(| ∇uℓ |)∇uk+1). (2.5)

The resulting equation at each time step can be rewritten as

Luk+1 = F(uk), in Ω, (2.6)

∂uk+1

∂n
= 0, on ∂Ω,

wherein

Luk+1 = uk+1 − (∆t)αΓ(2− α)
[
g(| ∇uℓ |)∆uk+1 +

∂g(| ∇uℓ |)
∂x

∂uk+1

∂x
+

∂g(| ∇uℓ |)
∂y

∂uk+1

∂y

]
,

F(uk) =
k∑

s=1

(wk−s − wk−s+1)u
s + wku

0. (2.7)

Now our interest is to study the time-independent problem (2.6).

2.2. Spatial discretization. In this section a localized version of RBF-based meshless method within a domain
decomposition framework will be performed to study the time-independent equation (2.6).

2.2.1. The overlapping domain decomposition method. In PDE-based image processing and analysis, because of high
computational cost required by numerical techniques, particularly for high-resolution images, some robust approaches
have been proposed to reduce the complexity of the methods. Image-domain decomposition method is an efficient
approach to reduce the complexity and computational cost associated with PDE-based image processing [14]. So in
our implementation, a domain decomposition method is performed to reduce the computational costs of the large-
scale image denoising problems. In this approach, the main computational domain, Ω, is decomposed into several
overlapping subdomains, Ω =

∪
Ωi, as depicted in Figure 1. Then, by considering the artificial boundaries, Γi, for

each subdomain, the image denoising problem (2.6) can be implemented independently on each subdomain as follows:

Luk+1
i = F(uk

i ), in Ωi,

∂uk+1
i

∂n
= 0, on Γi,

u0 = u0(x), in Ωi.

After reaching the desirable results by solving the image denoising problem on each subdomain, data exchange is done
in order to match the inner pixels data. It is a good strategy that significantly reduces the computational cost per
iteration and can be used for parallel processing purpose. In the next sub-section, two different numerical approaches
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Figure 1. An image-domain decomposition scheme with overlapping subdomains, Ωi, and artificial
boundaries, Γi.

are performed to fully discretize the proposed model.

2.2.2. Explicit Finite Difference Approach. As the first approach, the fractional model (1.4) is fully discretized by
using an explicit finite difference method [64]

gki±1/2,j = g
((uk

i±1,j − uk
i,j

∆x

)2)
, gki,j±1/2 = g

((uk
i,j±1 − uk

i,j

∆y

)2)
, (2.8)

Lα
t u

k+1
i,j =

1

2(∆x)2)

(
gki+1/2,j(u

k
i+1,j − uk

i,j)− gki−1/2,j(u
k
i,j − uk

i−1,j

)
+

1

2(∆y)2)

(
gki+1/2,j(u

k
i,j+1 − uk

i,j)− gki,j−1/2(u
k
i,j − uk

i,j−1

)
,

where Lα
t u(x, tk+1) ∼=c

0 Dα
t u(x, tk+1) as given in (2.2).

2.2.3. Localized RBF Meshless Method. In this subsection, an efficient meshless computational procedure based on the
localized RBF collocation approach is proposed to fully discretize the semi-discretized equation (2.6). In our approach,
a set of regularly distributed field nodes, {xj}Nj=1, in each sub-domain is considered. For locally approximating,
corresponding to each point, xj , a local support domain, Ωxj contains n(n ≪ N) nearest neighbor points of xj is

considered. So the function uk(x) is locally approximated as follows:

uk(x) =
n∑

i=1

λk
i ϕi(x), x ∈ Ωxj , (2.9)

where ϕi(x) = Φ(∥x− xi∥) denotes a radial basis function centered at xi, ∥x− xi∥ is the Euclidean distance between
point of interest x and center point xi and the coefficients {λk

i }ni=1 are unknown real constants should be determined.
These unknown coefficients are determined by interpolating uk(x) at n scattered nodes in the surrounding domain of
x as follows:

uk(xl) =
n∑

i=1

λk
i ϕi(xl), l = 1, 2, . . . , n. (2.10)

The linear system of algebraic equations (2.10) can be represented as follows:

Uk = Φλk, (2.11)

where λk = [λk
1 , λ

k
2 , ..., λ

k
n]

T
, and Φ is the interpolation matrix:

Φ =

ϕ1(x1) ϕ2(x1) · · · ϕn(x1)
...

...
. . .

...
ϕ1(xn) ϕ2(xn) · · · ϕn(xn)

 . (2.12)
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It has been proved that for any set of n-distinct points and strictly positive definite RBFs, ϕ(x), the multivariate
interpolation matrix, Φ, is non-singular [13]. So, the coefficient vector λk can be calculated as follows:

λk = Φ−1Uk. (2.13)

The value of function uk(x) at each interesting point x̄ ∈ Ωxj can be approximated as follows:

uk(x̄) = pT(x̄)Φ−1Uk = ΨT(x̄)Uk =
n∑

i=1

Ψi(x̄)u
k
i , (2.14)

where p(x̄) = [ϕ1(x̄), ϕ2(x̄), ..., ϕn(x̄)]
T , Ψ(x̄) = pT(x̄)Φ−1 = [Ψ1,Ψ2, ...,Ψn]

T . The data dependent shape functions,
Ψi, i = 1, ..., n are compactly supported shape functions. The partial derivatives of first and higher orders of shape
function Ψ are obtained as follows:

∂Ψ

∂x
= [

∂Ψ1

∂x
,
∂Ψ2

∂x
, ...,

∂Ψn

∂x
]
T

=
∂PT(x)

∂x
(Φ)−1, (2.15)

where

∂P

∂x
= [

∂ϕ1

∂x
,
∂ϕ2

∂x
, ...,

∂ϕn

∂x
]
T

. (2.16)

Also,

∂mΨ

∂xm
=

∂mPT(x)

∂xm
(Φ)−1. (2.17)

Therefore, we have:

∂muk(x)

∂xm
=

(∂mΨ

∂xm

)T

Uk. (2.18)

Derivative with respect to y (first derivatives or higher) can be calculated in the same way. Substituting the represen-
tation (2.10) into the relations (2.7) and collocating these equations at collocation points {xj}nj=1, we have:

n∑
i=1

Ψi(xj)u
k+1
i − (∆t)αΓ(2− α)

(
g(| ∇uℓ |)

n∑
i=1

∆Ψi(xj)u
k+1
i +

∂g(| ∇uℓ |)
∂x

n∑
i=1

∂Ψi(xj)

∂x
uk+1
i

+
∂g(| ∇uℓ |)

∂y

n∑
i=1

∂Ψi(xj)

∂y
uk+1
i

)
= ωk

n∑
i=1

Ψi(xj)u
0
i +

k∑
s=1

n∑
i=1

[(ωk−s − ωk−s+1)Ψi(xj)u
s
i ], xj ∈ Ωm, (2.19)

and
n∑

i=1

∂Ψi(xj)

∂n
uk+1
i = 0, xj ∈ ∂Ωm.

For each subdomain, the above relations lead to a linear system of algebraic equations with a well-conditioned and
sparse coefficient matrix. The process will be repeated for each time level until a desirable result is achieved.

3. Numerical results

This section is devoted to investigate the performance of the proposed mathematical model and formulated com-
putational procedure for reducing the speckle noise from the medical ultrasound image. In order to illustrate the
effectiveness of the proposed methods, a real ultrasound image (240 × 240 pixels) (see Fig. (2-a)) which has been
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corrupted by speckle noise with variance of 0.12 (see Fig. (2-b)), is considered. To test the proposed algorithms and
assess their performance, we use the signal-to-noise ratio (SNR):

SNR = 10 · log10
σ2
u⋆

σ2
uk−u⋆

, (3.1)

where u⋆ denotes the uncorrupted image and σ2 is the variance corresponds to the signals. The proposed computational
techniques have been performed to deal with the corrupted medical image. Firstly, the formulated explicit finite
difference approach, Eq (2.8), is used to enhance the quality of image. The result is presented as Fig. (2-c). This
result is obtained by considering ∆t = 0.01, k = 1/2, α = 0.38 and after 30 iterations. Also, the proposed localized RBF
collocation method is used for noise reduction of the image. In our implementation, to reduce the computational cost
of the method, the suggested domain decomposition strategy is used to divide the image into thirty six overlapping
subdomains with the same number of pixels (see Fig 1). Also, to reduce the influence of boundary conditions on
the inner pixels near the artificial boundaries, some segments with overlapping of width 10 pixels are considered.

Moreover, the Gaussian radial basis function, ϕ(x) = e−ϵ2∥x∥2

is used as the shape function. Fig (2-d) illustrates the
result obtained by using the approach. This result is obtained by choosing σ = 0.0001, ∆t = 0.01, n = 9 (stencil
points), k = 1/2, α = 0.59 and after 30 iterations. Also, the results are compared with the result obtained by using
the classical Catté’s pde model (1.2 ) and speckle reducing anisotropic diffusion filter [66], as shown in Fig (2-e) and
Fig (2-f), respectively.
In order to investigate the effect of fractional-order, α, on the efficiency of the fractional diffusion model and accuracy
of the results, SNR values versus the values of fractional-order, α, are illustrated in the figures 3 and 4. The results
demonstrate that the optimal values of fractional-order for the proposed explicit finite difference approach and localized
RBF collocation method are α = 0.38 and α = 0.59, respectively. Finally, the SNR values of results computed from
the proposed approaches for some values of fractional-order and two types of noisy images are presented and compared
with the classical Catté’s pde model and speckle reducing anisotropic diffusion filter [66], in Table (1). The results
confirm the efficiency of the proposed fractional model compared to the classical Catté’s model.

Figure 2. Numerical results of the restoration a noisy image with 30 iterations. (a) Original image.
(b) noisy image. (c) Results of the method-1 with α = 0.38 (d) Results of the method-2 with α = 0.59
(e) Result of Catté’s model (f) Result of the speckle reducing anisotropic diffusion filter [66].
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Figure 3. SNR values as function of α for method 1.

Figure 4. SNR values as function of α for method 2.

Table 1. SNR obtained for different values of α with 30 iterations.

α 0.38 0.59 0.8 1(Catté’s model)
Speckle noise

Method 1 16.4849 16.3893 15.9356 15.0606
variance = 0.12 Method 2 16.4738 16.5235 16.4083 15.9765

[66] 16.2031

Method 1 14.3311 14.2113 14.1551 13.8021
variance = 0.20 Method 2 14.3092 14.4928 14.2112 13.9823

[66] 14.1805

4. Conclusions

The primary purpose of this study was to improve a nonlinear anisotropic diffusion filter for ultrasound image
speckle reduction in both modelling and solution approaches. In terms of modelling, an interesting, time-fractional
anisotropic diffusion filter based on fractional calculus theory has been proposed. The suggested time-fractional
anisotropic diffusion model is used to reduce the speckle noise and enhance the quality of the medical ultrasound image.
The diffusion process is controlled by adaptively setting the fractional-order, α. In terms of numerical procedure, two
efficient computational schemes are formulated and used to solve the fractional model. Especially, an interesting and
powerful localized meshless technique within a domain decomposition framework is performed to solve the problem.
The proposed approach significantly reduce the computational cost and leads to a well-conditioned and sparse linear
system of algebraic equations. The performance of the proposed de-speckling procedure was examined on ultrasound
image. The de-speckling results obtained with the proposed fractional model were compared with the classical Catté’s
model. From the numerical results, we can conclude that the proposed approach is superior to the classical Catté’s
model. Besides, the fractional calculus theory can be used to extend and propose a more general time-space fractional
Catté’s model. Moreover, the localized meshless method in the domain decomposition framework can be implemented
on parallel multiprocessor machines, which is promising in developing approaches for large-scale pde-based image
processing.
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