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Abstract

..

In this article, we will implement the(G′/G)-expansion method which is used for the first time to obtain new
optical soliton solutions of the thin-film ferroelectric materials equation (TFFME). Also, the numerical solutions

of the suggested equation according to the variational iteration method (VIM) are demonstrated effectively. A
comparison between the achieved exact and numerical solutions has been established successfully.
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1. Introduction

Recently, the propagation of waves in thin-film ferroelectric materials plays a vital role in many branches of physics
and hydrodynamics. The equation that represents these phenomena with the aid of soliton science can be written as
[2, 15].

(
mdc

2

Q2
d

−K

)
φ

′′
+

[
(g2 − 2β)φ+ g4φ

3 + g6φ
5
]
= 0, (1.1)

where g2, g4,and g6 are the unknowns that classified the temperature and the pressure, while md is the charge density.
There are three principal axes to get the exact solutions to NLPDEs, namely the reduction methods, Lie symmetry

group, and the ansatze approaches methods. The well-known ansatze approaches methods are the (G′/G)-expansion
method, the extended Jacobian Elliptic function expansion method, the Modified Decomposition Method, the Riccati-
Bernoulli Sub-ODE Method, The Modified Extended Tanh-Function Method, The Modified Simple Equation Method,
The Exp(−φ (ζ))-Method, The Modified Exp (−φ (ζ))-Expansion Method, The Extended Trial Equation Method, The
First Integral Method [4–6, 8, 12, 13, 19–22, 24, 26, 31–33]. The majority of these methods is built on the balance rule
in its preparing. One of these methods which is effective and realized the accurate solutions for the many nonlinear
physical problems is (G′/G)−expansion method. Recently the application of the (G′/G)-expansion method have been
established, sea for example Younis [28] who studied the dynamics of optical solitons in (n+1)−dimensional nonlinear
Schrödinger equation with Kerr and power law nonlinearities that describe the propagation of light pulses in optical
fibers using (G′/G)−expansion method, Farah et al [11] who studied multiple soliton interactions with the help of
Hirota bilinear method and also they study dromions for MTs model with the help of the extended (G′/G)−expansion
method.
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Furthermore, recently several trials are implemented through other authoress to construct soliton solution of im-
portant models in NLPDE, sea for example Younis et al [29] who constructed new families of exact traveling wave
solutions with the modified nonlinear Schrödinger equation using the extended Fan sub-equation method with five
parameters, Younis et al [30] who studied the optical solitons with coupled nonlinear Schrödinger system (CNLSS)
that describes the propagation of waves in birefringence polarization-preserving fibers with four-wave mixing effect, Ali
and Younis [1] who studied the propagation of rogue waves with a nonautonomous NLSE in the presence of external
potential, Younas and Younis [27] who studied the extraction of chirped soliton to Chen–Lee–Liu equation (CLLE)
with the group velocity dispersion (GVD) and self-steeping coefficients that describe pulse transmission through opti-
cal monomode fibres, Baskonus and Eskitascioglu [3] who applied the sine-Gordon expansion method to extract some
complex optical soliton solutions to the (2 + 1)−dimensional extended shallow water wave model, Demiray and Bulut
[7] who applied the extended trial equation method to find the exact solutions of (1+ 1) dimensional nonlinear Ostro-

vsky equation and Manafian and Lakestani [16] who used the improved tan
(

φ(ζ)
2

)
−expansion method to construct

different types of solutions to Gerdjikov–Ivanov model.
Moreover, a series of numerical methods are invited to find the approximate solutions for the nonlinear phenomena

arising in physics and mathematics such as the Abdominal Decomposition Method, Badi- Approximation Method,
Finite Element Method, Boundary Element Method and the VIM,. . . etc., to achieve the approximate solutions of
these problems.

2. Technique description of the (G
′
/G)-expansion method [3,4]

To propose the general formalism of the nonlinear evolution equation, let us introduce R as a function of H(x, t)
and its partial derivatives as,

R (H,Hx,Hxx,Htt, ...) = 0, (2.1)

that involves the highest order derivatives and nonlinear terms.
By using the transformation H(x, t) = H(ζ), ζ = x− Ct Equation (2.1) can be reduced to the following ODE:

S
(
H,H

′
,H

′′
,H

′′′
, ...

)
= 0, (2.2)

where S is a function in H(ζ) and its total derivatives, while ′ = d
dζ .

According to the constructed method [2], the solution is,

H(ζ) = A0 +
m∑

k=0

Ak

[
G

′
/G

]k
, Am ̸= 0, (2.3)

where the positive integer m in Eq. (2.3) can be calculated by balancing the highest order derivative term and the
nonlinear term, while G(ζ) satisfies the second order different equation G′′ + µG′ + λG = 0. The solution of this
equation admits three forms of solutions according to these three cases µ2 − 4λ ≻ 0, µ2 − 4λ ≺ 0, and µ2 − 4λ = 0.

2.1. Cas 1. When µ2 − 4λ ≻ 0, the solution is

(G
′
/G) =

2
√
µ2 − 4λ

2

 l1 sinh

(
2
√

µ2−4λ

2

)
ζ + l2 cosh

(
2
√

µ2−4λ

2

)
ζ

l2 sinh

(
2
√

µ2−4λ

2

)
ζ + l1 cosh

(
2
√

µ2−4λ

2

)
ζ

− µ

2
. (2.4)

2.2. Cas 2. When µ2 − 4λ ≺ 0, the solution is

(G
′
/G) =

2
√
µ2 − 4λ

2

−l1 sin

(
2
√

µ2−4λ

2

)
ζ + l2 cos

(
2
√

µ2−4λ

2

)
ζ

l2 sin

(
2
√

µ2−4λ

2

)
ζ + l1 cos

(
2
√

µ2−4λ

2

)
ζ

− µ

2
. (2.5)
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2.3. Cas 3. When µ2 − 4λ = 0, the solution is

(G
′
/G) =

(
l2

l1 + l2ζ

)
− µ

2
. (2.6)

By Substituting the function H(ζ) and its partial derivative in the given problem we get a polynomial of (G
′
/G)k,

(k = 0, 1, 2, ...) .In this polynomial, by collecting all terms of the same power of (G
′
/G)k and equating the coefficients of

different exponential of (G
′
/G)k to zero, we get a system of algebraic equations which can be solved by any computer

program to find the constants Ak.

3. Application

In this section, we will apply the (G′/G)-expansion as a new technique to achieve the exact solutions for the TFFME
in terms of some variables. Hence, when these variables take specific values, the traveling wave solutions could be
constructed. By applying the homogeneous balance rule between φ′′, φ5 for the suggested problem equation (1.1)

we get m = 1
2nwhich is a fraction. Consequently take the transformation φ = 2

√
H which will transform the given

equation to,

ρ1

(
−1

4
H ′2 +

1

2
HH ′′

)
− ρ2H

2 − g4H
3 − g6H

4 = 0, (3.1)

where ρ1 =
(

mdc
2

Q2
d

−K
)
, ρ2 = (g2 − 2β) .

Now, by applying the balance rule between HH ′′, H4 ⇒ m = 1, hence according to the proposed method the
solution is,

H (ζ) = A0 +A1(G
′/G). (3.2)

By substituting about the functions H,H2,H3, H4, and H ′′ at Eq. (3.1) and equating the coefficients of different
powers of G−k to zero, we will obtain this system of equations,

(G′/G)4 ⇒ 3

4

(
mdc

2

Q2
d

−K

)
− g6A

2
1 = 0,

(G′/G)3 ⇒ (λA1 +A0)

(
mdc

2

Q2
d

−K

)
−A2

1 (g4 + 4g6A0) = 0,

(G′/G)2 ⇒
(
−λ2

4
+

3λA0

2
+

A1λ
2

2
+

A1µ

2

)(
mdc

2

Q2
d

−K

)
−A1

(
g2 − 2β − 3g4A0 − 6g6A

2
0

)
= 0,

(G′/G) ⇒
(
λ2

2
+ µ

)(
mdc

2

Q2
d

−K

)
− 2 (g2 − 2β)− 3g4A0 − 3g6A

2
0 = 0,

constant ⇒
(
−A2

1µ
2

4
+

λA1A0µ

2

)(
mdc

2

Q2
d

−K

)
−A2

0

(
g2 − 2β − g4A0 − g6A

2
0

)
= 0. (3.3)

By solving this system of equations using any computer program, we will get the following results,

A1 = ±
2

√√√√3
(

mdc2

Q2
d

−K
)

4g6
,

A0 =

(
g4
g6

)
± 2

√(
g4
g6

)2

+ 4(g2−2β)
g6

2
. (3.4)
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By substituting at equation (3.2) we obtain,

H (ζ) =
1

2


(
g4
g6

)
±

 2

√(
g4
g6

)2

+
4 (g2 − 2β)

g6
+ (G′/G)

2

√√√√3
(

mdc2

Q2
d

−K
)

4g6


 . (3.5)

Hence according to the proposed method the solutions are;

3.1. Case 1. µ2 − 4λ ≻ 0, the solution is

H (ζ) =


(

g4
2g6

)
±


1
2

2

√(
g4
g6

)2

+ 4(g2−2β)
g6

+
2
√

µ2−4λ

4

2

√
3

(
mdc2

Q2
d

−K

)
4g6

−l1 sinh

(
2
√

µ2−4λ
2

)
ζ+l2 cosh

(
2
√

µ2−4λ
2

)
ζ

l2 sinh

(
2
√

µ2−4λ
2

)
ζ+l1 cosh

(
2
√

µ2−4λ
2

)
ζ

− µ
2 .




(3.6)

φ (ζ) =


(

g4
2g6

)
±


1
2

2

√(
g4
g6

)2

+ 4(g2−2β)
g6

+
2
√

µ2−4λ

4

2

√
3

(
mdc2

Q2
d

−K

)
4g6

−l1 sinh

(
2
√

µ2−4λ
2

)
ζ+l2 cosh

(
2
√

µ2−4λ
2

)
ζ

l2 sinh

(
2
√

µ2−4λ
2

)
ζ+l1 cosh

(
2
√

µ2−4λ
2

)
ζ

− µ
4

2

√
3

(
mdc2

Q2
d

−K

)
4g6

.





1
2

(3.7)

Figure 1. The plot of Eq.(3.7) in 2D and 3D with values: l1 = 2, l2 = 3, ρ1 = 1, ρ2 = 1.5, λ = 2, µ =
3, w = 2, c = 0.1, Tc = 369, T = Tc + 10−8, Qd = 2 × 105,md = 6.02 × 10−3, α0 = 10.48 × 104, g2 =
α0 (T − Tc) , g4 = 4× 10−3, g6 = 6× 10−3

3.2. Case 2. When µ2 − 4λ ≺ 0, the solution is

H (ζ) =
1

2


(
g4
g6

)
±


2

√(
g4
g6

)2

+ 4(g2−2β)
g6

+
2
√

µ2−4λ

2

2

√
3

(
mdc2

Q2
d

−K

)
g6

−l1 sin

(
2
√

µ2−4λ
2

)
ζ+l2 cos

(
2
√

µ2−4λ
2

)
ζ

l1 sin

(
2
√

µ2−4λ
2

)
ζ+l2 cos

(
2
√

µ2−4λ
2

)
ζ

− µ
2 .




(3.8)
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Figure 2. The plot of Eq.(3.9) in 2D and 3D with values: l1 = 2, l2 = 3, ρ1 = 1, ρ2 = 1.5, λ = 2, µ =
3, w = 2, c = 0.1, Tc = 369, T = Tc + 10−8, Qd = 2 × 105,md = 6.02 × 10−3, α0 = 10.48 × 104, g2 =
α0 (T − Tc) , g4 = 4× 10−3, g6 = 6× 10−3

φ (ζ) =


(

g4
2g6

)
±


1
2

2

√(
g4
g6

)2

+ 4(g2−2β)
g6

+
2
√

µ2−4λ

4

2

√
3

(
mdc2

Q2
d

−K

)
g6

−l1 sin

(
2
√

µ2−4λ
2

)
ζ+l2 cos

(
2
√

µ2−4λ
2

)
ζ

l1 sin

(
2
√

µ2−4λ
2

)
ζ+l2 cos

(
2
√

µ2−4λ
2

)
ζ

− µ
4

2

√
3

(
mdc2

Q2
d

−K

)
g6





1
2

. (3.9)

3.3. Cas 3. When µ2 − 4λ = 0, the solution is

H (ζ) =
1

2


(
g4
g6

)
±


2

√(
g4
g6

)2

+ 4(g2−2β)
g6

+

(
l2

l1+l2ζ
− µ

4

) 2

√
3

(
mdc2

Q2
d

−K

)
g6


 (3.10)

φ (ζ) =


(

g4
2g6

)
±


1
2

2

√(
g4
g6

)2

+ 4(g2−2β)
g6

+

(
l2

l1+l2ζ
− µ

4

) 2

√
3

(
mdc2

Q2
d

−K

)
g6




1
2

. (3.11)

Figure 3. The plot of Eq.(3.11) in 2D and 3D with values: l1 = 2, l2 = 3, ρ1 = 1, ρ2 = 1.5, λ =
2, µ = 3, w = 2, c = 0.1, Tc = 369, T = Tc+10−8, Qd = 2×105,md = 6.02×10−3, α0 = 10.48×104, g2 =
α0 (T − Tc) , g4 = 4× 10−3, g6 = 6× 10−3
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4. The Variational iteration method

Consider the differential equation with inhomogeneous term f (ζ) and R,S the linear and the nonlinear operators
respectively as:

LH +NH = f (ζ) . (4.1)

The VIM [25] proposes a correction functional for equation (4.1) to be

Hm+1 (ζ) = Hm (ζ) +

∫ ζ

0

λ (t)
(
LHm (t) +NH̃ (t)− g (t)

)
dt. (4.2)

where λ is a general Lagrange’s multiplier, which can be identified optimally via the variational theory, and H̃m as

a restricted variation which meansδ H̃m. The Lagrange multiplier λ is crucial and critical in the method, and it can
be a constant or a function. Having λ determined, an iteration formula should be used for the determination of the
successive approximations Hm+1 (ζ) ;n ≥ 0 of the solution H (ζ). The zeros approximation H0 can be any selective
function. However, using the initial values H0; H

′
0 are preferably used for the selective zeros approximation u0 as will

be seen later. Consequently, the solution is given by

H (ζ) = lim
ζ→∞

Hm (ζ) .

It is interesting to point out that we formally derived the distinct forms of the Lagrange multipliers in [4.2], hence we
skip details. We only set a summary of the obtained results.

It is important to give briefly the significant forms of Eq. (20) according to the Lagrange multipliers λ in these
results.

For the 1-st order ODE in the form,

H ′ + q (ζ)H = P (ζ) ,H (0) = ρ, (4.3)

we find that λ = −1, and the correction function give the iteration formula;

Hm+1 (ζ) = Hm (ζ)−
∫ ζ

0

(H ′
m (t) + q (t)Hm (t)− P (t)) dt. (4.4)

For the 2-nd order ODE in the form,

H ′′ (ζ) + CH ′ (ζ) + dH (ζ) = g (ζ) ,H (0) = ρ,H ′ (0) = η, (4.5)

we find that λ = t− x, and the correction function give the iteration formula

Hm+1 (ζ) = Hm (ζ) +

∫ ζ

0

(t− x) (H ′′
m (t) + cH ′

m (t) + dHm (t)− g (t)) dt. (4.6)

For the 3−th order ODE in the form,

H ′′′ (ζ) + cH ′′ (ζ) + dH ′ (ζ) + eH (ζ) = g (ζ) ,H (0) = ρ,H ′ (0) = η,H ′′ (0) = σ, (4.7)

we find that λ = −1
2! (t− x)

2
, and the correction function give the iteration formula

Hm+1 (ζ) = Hm (ζ)− 1

2!

∫ ζ

0

(t− x)
2
(H ′′′

m (t) + cH ′′
m (t) + dH ′

m (t) + eHm − g (t)) dt. (4.8)

Consecountly, for the general form of ODE

H(m) + f
(
H ′,H ′′, H ′′′, ..., H(m−1)

)
= g (ζ) , (4.9)

H (0) = ρ0,H
′ (0) = ρ1, (4.10)

H ′′ (0) = ρ2, ...,H
(m−1) (0) = ρm−1, (4.11)
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the lagrange multiplier take the general form λ = (−1)m

(m−1)! (t− x)
m−1

, while the general form of iteration rule become,

Hm+1 (ζ) = Hm (ζ) +
(−1)

m

(m− 1)!

∫ ζ

0

(t− x)
m−1

(
Hm (t) + f

(
H ′, H ′′, H ′′′, ..., H(m−1)

)
− g (t)

)
dt. (4.12)

Furthermore the zeros approximation h0 (ζ) can be selected perfectly to be,

H0 (ζ) = H0 (0) +H ′ (0) ζ +
1

2!
H ′′ (0) ζ2 +

1

3!
H ′′′ (0) ζ3...+

1

(m− 1)
H(m−1) (0) ζ(m−1) (4.13)

where m is the order of the ODE.

5. Application

For simplicity, we will implement the numerical solution corresponding to the third exact solution only. From the
second order differential equation (3.1) and the third case of the constructed method mentioned above, we get

H (ζ) = A0 +A1

[
l2

l1 + l2ζ
− µ

2

]
, (5.1)

H (ζ) =
g4
2g6

± 1

2
2

√(
g4
g6

)2

+
4 (g2 − 2β)

g6
+

2

√√√√3
(

mdc2

Q2
d

−K
)

4g6

[
l2

l1 + l2ζ
− µ

2

]
, (5.2)

with the initial condition tends to

H (0) =
g4
2g6

± 1

2
2

√(
g4
g6

)2

+
4 (g2 − 2β)

g6
+

2

√√√√3
(

mdc2

Q2
d

−K
)

4g6

[
l2
l1

− µ

2

]
. (5.3)

H ′ (ζ) =
2

√√√√3
(

mdc2

Q2
d

−K
)

4g6

[
−l22

l1 + l2ζ

]
, (5.4)

H ′ (0) =
2

√√√√3
(

mdc2

Q2
d

−K
)

4g6

[
−l22
l1

]
, (5.5)

H0 (ζ) = H (0) + ζH ′ (0) , (5.6)

According to the VIM, the first iteration is,

H0 (ζ) = 1.326− 0.141ζ, (5.7)

H1 (ζ) = H0 (ζ)−
∫ ζ

0

(
−0.25H ′2

0 (t) + 0.5H0 (t)H
′′
0 (t)− 1.5H2

0 (t)
−
(
4× 10−3

)
H3

0 (t)−
(
6× 10−3

)
H4

0 (t)

)
dt,

H1 = 1.326− 0141ζ +
(
4.97× 10−3

)
ζ − 1.5

0.423
(1.326− 0.141ζ)

3

− 1

141
(1.326− 0.141ζ)− 6

705
(1.326− 0.141ζ)

5
,

H2 (ζ) = H (ζ)−
∫ ζ

0

(
−0.25H ′2

1 (t) + 0.5H1 (t)H
′′
1 (t)− 1.5H2

1 (t)
−
(
4× 10−3

)
H3

1 (t)−
(
6× 10−3

)
H4

1 (t)

)
dt,

H3 (ζ) = H (ζ)−
∫ ζ

0

(
−0.25H ′2

2 (t) + 0.5H2 (t)H
′′
2 (t)− 1.5H2

2 (t)
−
(
4× 10−3

)
H3

2 (t)−
(
6× 10−3

)
H4

2 (t)

)
dt,

...........................................................
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Hm+1 (ζ) = Hm (ζ)−
∫ ζ

0

(
−0.25H ′2

m (t) + 0.5Hm (t)H ′′
m (t)− 1.5H2

m (t)
−
(
4× 10−3

)
H3

m (t)−
(
6× 10−3

)
H4

m (t)

)
dt. (5.8)

Using the fact that the exact solution is obtained by using h (ζ) = lim
ζ→∞

hm (ζ), and we can easily obtained the solution

in terms of the original function according to the fact that φ = 2
√
H.

Figure 4. The plot of Eq.(5.8) in 2D and 3D with values: l1 = 2, l2 = 3, ρ1 = 1, ρ2 = 1.5, λ = 2, µ =
3, w = 2, c = 0.1, Tc = 369, T = Tc + 10−8, Qd = 2 × 105,md = 6.02 × 10−3, α0 = 10.48 × 104, g2 =
α0 (T − Tc) , g4 = 4× 10−3, g6 = 6× 10−3

By the same steps, we can construct the numerical solutions corresponding to the other two forms of the achieved
exact solutions.

6. Conclusion

In this work, the (G′/G)-expansion method has been applied successfully to achieve new exact and hence new
solitary wave solutions for the thin-film ferroelectric materials equation in Figures 1, 2 and 3 with high accuracy
compared with that realized by previous work [23]. Some of the obtained solutions are approximately isomorphic
with that achieved by [23] and the others are new. Consequently, stretch positive forward studies of this equation
are implemented. Also, the numerical solution corresponding to the achieved exact solution of this equation has been
constructed only for the third exact solution using the VIM in Figure 4. Furthermore, a comparison between one of
these new exact solutions with the numerical solution obtained by the VIM has been demonstrated. It is clear that
there exista an agreement between the exact and the numerical solutions.
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