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Abstract

..

This paper deals with the numerical solution of nonlinear fractional stochastic integro-differential equations with

the n-dimensional Wiener process. A new computational method is employed to approximate the solution of the
considered problem. This technique is based on the modified hat functions, the Caputo derivative, and a suitable
numerical integration rule. Error estimate of the method is investigated in detail. In the end, illustrative examples
are included to demonstrate the validity and effectiveness of the presented approach.
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1. Introduction

Fractional integro-differential equations are nowadays extremely popular, due to wide range of their applications in
real-life problems [13, 29, 30]. In natural dynamical processes, the next states of a system are usually dependent on its
all past states. The fractional order operators can preserve the hereditary properties of a considered function. Thus,
using these operators helps researchers to provide a more complete picture of real applications. Many theoretical and
numerical methods have been presented in the literature for solving fractional order equations, like hybrid collocation
method [19], least squares method [10], perturbation iteration algorithm [32], Taylor expansion approach [9], Sinc-
collocation method [1] and so on.

Stochastic differential equations (SDEs) are basically differential equations with an additional stochastic term. The
deterministic term, which is common to ordinary differential equations, describes behavior of the phenomenon and the
stochastic term describes the ’noise’, a random perturbation that influences the phenomenon. SDEs have considerable
applications in basic fields of science and technology especially when we need to consider random perturbations in
environmental conditions. In fact, for accurately describing different phenomena with random perturbations, for
example in physics, finance, medicine, biology, and so on, researchers have applied stochastic differential equations
or stochastic integro-differential equations [7, 21, 28]. With the advancement of SDEs theory, there have been many
attempts to construct numerical methods for solving this range of equations. A computational scheme based on
B-spline interpolation method [24], spectral method for stochastic fractional differential equations [2], Haar wavelet
method for two dimensional stochastic integrals [6], Legendre wavelet collocation method [23], Galerkin method based
on orthogonal polynomials [11], operational matrix of the Chebyshev wavelets [25], expansion method [12], a direct
method based on stochastic operational matrix [27], a superconvergence Euler-Maruyama method [18], some implicit
methods based on a backward approach along with some suitable discretization schemes [17], a split-step theta method
[16] and the Euler method for Volterra integro-differential equations with fractional Brownian motions [34] are some
of these approaches.
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In this investigation, we consider a nonlinear fractional stochastic integro-differential equation with n-dimensional
Wiener process in the following form:

0D
α
t u(t) = f(t) + ζ

∫ T

0

H(t, s, u(s))ds+

∫ t

0

F (t, s, u(s))ds

+

n∑
j=1

∫ t

0

Gj(t, s, u(s))dBj(s), t ∈ Ω,

with the initial condition

u(0) = u0, (1.1)

where ζ is a real constant, Ω := [0, T] and the operator 0D
α
t (·) denotes the Caputo fractional derivative defined as [30]:

0D
α
t u(t) =

1

Γ(1− α)

∫ t

0

u′(s)

(t− s)α
ds, α ∈ (0, 1). (1.2)

Γ(·) represents the Gamma function. Let (Ω,F ,P) is a probability space with a normal filtration (Ft)t∈Ω. Moreover,
u(t) is an unknown process, while f(t) ∈ C3(Ω) and the kernels H(t, s, u), F (t, s, u) and Gj(t, s, u), j = 1, ..., n, are
known processes, defined on the same probability space and satisfy the Lipschitz condition with respect to u. Also,
Bj(t), j = 1, ..., n, are the Brownian motions adapted to the filtration (Ft)t∈Ω.

Eq. (1.1) covers a wide range of fractional stochastic integro-differential equations. Many dynamical systems in real-
world applications are modeled by integro-differential equations. These problems are often dependent on one or several
independent noise sources. Thus, using stochastic integro-differential equations to describe the behaviors of these
systems have found considerable attention in recent decades. For example, in physics, the fractional Fokker-Planck
equation is a special case of Eq. (1.1) [5, 33]. The exponential population growth models in biology are explained
by the It-Volterra integral equations with multidimensional Wiener process [20]. Also, finding the wealth process
of the consumption-investment problem in financial mathematics can be described by a nonlinear multidimensional
stochastic integral equation [3, 31]. To our knowledge, it seems that the more general Eq. (1.1) is little considered in
the literature. Hence, our purpose in the present work is to propose an effective numerical approach for the solution
of this type of fractional order stochastic equations.

The rest of this paper is organized as follows. In section 2, some basic definitions of fractional calculus, the
definition of modified hat functions (MHFs), their properties, operational matrix of integration based on the modified
hat functions and Legendre-Gauss integration method are reviewed. The numerical technique is described in section
3. Error estimate of the proposed method is investigated in section 4. Some numerical experiments are presented in
section 5 to illustrate the accuracy of our method. Finally, the conclusion of this work is included in section 6.

2. Preliminary concepts

In this section, some useful concepts and tools have been introduced that will be used during this paper.

2.1. Fractional calculus.

Definition 2.1. [30] The Riemann-Liouville fractional integral operator of order α ≥ 0, is defined as

0I
α
t g(t) =

1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t > 0. (2.1)

Lemma 2.2. [30] Assume that r ∈ N, r − 1 < α ≤ r and g ∈ Cr−1[0, b] where b is a positive real constant. Then

0I
α
t (0I

β
t g(t)) = 0I

β
t (0I

α
t g(t)) = 0I

α+β
t g(t),

0I
α
t (0D

α
t g(t)) = g(t)−

r−1∑
k=0

g(k)(t)
∣∣∣
t=0

tk

Γ(k + 1)
,

0D
α
t (0D

r
t g(t)) = 0D

r
t (0D

α
t g(t)) = 0D

r+α
t g(t).

(2.2)
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2.2. Properties of modified hat functions. Let the interval Ω is divided into N subintervals with equidistant size
h = T

N . Hat functions are defined as [22]

ψ0(t) =


1− t

h , t ∈ [0, h],

0, otherwise,

ψi(t) =



t
h − (i− 1), t ∈ [(i− 1)h, ih],

(i+ 1)− t
h , t ∈ [ih, (i+ 1)h], i = 1, 2, . . . , N − 1,

0, otherwise,

ψN (t) =


t−T
h + 1, t ∈ [T− h, T],

0, otherwise.

Definition 2.3. When h = T
N and N ≥ 2 is an even integer, MHFs are defined on Ω as follows [26]

θ0(t) =


1

2h2 (t− h)(t− 2h), t ∈ [0, 2h],

0, otherwise,

when i be odd and i = 1, 3, ..., N − 1,

θi(t) =


−1
h2 (t− (i− 1)h)(t− (i+ 1)h), t ∈ [(i− 1)h, (i+ 1)h],

0, otherwise,

when i be even and i = 2, 4, ..., N − 2,

θi(t) =



1
2h2 (t− (i− 1)h)(t− (i− 2)h), t ∈ [(i− 2)h, ih],

1
2h2 (t− (i+ 1)h)(t− (i+ 2)h), t ∈ [ih, (i+ 2)h],

0, otherwise,

and

θN (t) =


1

2h2 (t− (T− h))(t− (T− 2h)), t ∈ [T− 2h, T],

0, otherwise.

According to the definition of MHFs, we have

θi(jh) =


1, i = j,

0, i ̸= j,

(2.3)
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θi(t)θj(t) =


0, i is even and |i− j| ≥ 3,

0, i is odd and |i− j| ≥ 2.

(2.4)

and

N∑
i=0

θi(t) = 1. (2.5)

An arbitrary function g(t) ∈ L2(Ω) can be expanded in terms of MHFs as

g(t) ≃ gN (t) =
N∑
i=0

ciθi(t) = CTΘ(t) = ΘT (t)C, (2.6)

where Θ(t) is defined as follows:

Θ(t) = [θ0(t), . . . , θi(t), . . . , θN (t)]T , (2.7)

and

C = [c0, . . . , ci, . . . , cN ]T ,

in which ci = g(ih), i = 0, 1, . . . , N .
Now, we review the operational matrix based on MHFs that will be used in our proposed method.

Theorem 2.4. Let Θ(t) is the MHFs vector given by Eq. (2.7). Then

0I
α
t Θ(t) ≃ LαΘ(t), (2.8)

Lα is the (N + 1)× (N + 1) operational matrix of fractional integration of order α from Θ(t) which is defined as

Lα =



0 ϕ1 ϕ2 ϕ3 ϕ4 . . . ϕN−1 ϕN
0 ϑ0 ϑ1 ϑ2 ϑ3 . . . ϑN−2 ϑN−1

0 η−1 η0 η1 η2 . . . ηN−3 ηN−2

0 0 0 ϑ0 ϑ1 . . . ϑN−4 ϑN−3

0 0 0 η−1 η0 . . . ηN−5 ηN−4

...
...

...
...

...
...

...
0 0 0 0 0 . . . ϑ0 ϑ1
0 0 0 0 0 . . . η−1 η0


,

in which

ϕ1 =
hαα(3 + 2α)

2Γ(α+ 3)
, ϑ0 =

2hα(1 + α)

Γ(α+ 3)
,

η−1 = − hαα

2Γ(α+ 3)
, η0 =

hα2α+1(2− α)

2Γ(α+ 3)
,

η1 =
hα

2Γ(α+ 3)

(
3α+1(4− α)− 6(2 + α)

)
,

ϕk =
hα

2Γ(α+ 3)

(
kα+1(2k − 6− 3α) + 2jα(1 + α)(2 + α)

−(k − 2)(α+1)(2k − 2 + α)
)
, k = 2, 3, . . . , N,
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ϑk =
2hα

Γ(α+ 3)

(
(k − 1)α+1(k + 1 + α)

−(k + 1)α+1(k − 1− α)
)
, k = 1, 2, . . . , N − 1,

and

ηk =
hα

2Γ(α+ 3)

(
(k + 2)α+1(2k + 2− α)− 6kα+1(2 + α)

−(k − 2)α+1(2k − 2 + α)
)
, k = 2, 3, . . . , N − 2.

Proof. See [26]. �

2.3. Legendre-Gauss integration rule. The Legendre-Gauss rule is one of the mostly used methods for computing
numerical integration. Suppose Lp+1(t) is Legendre polynomial of order p + 1 on [−1, 1]. For any function g(t) ∈
C2p[a, b], the Legendre-Gauss quadrature formula is as:∫ b

a

g(t)dt =
b− a

2

p∑
τ=0

ωτg(
b− a

2
στ +

b+ a

2
) + Ep

Gauss(g), (2.9)

in which distinct nodes {στ}pτ=0 are the zeros of Lp+1(t) and {ωτ}pτ=0 are the corresponding weights [15]

ωτ =
2

(1− σ2
τ )[L

′
p+1(στ )]

2
, τ = 0, 1, . . . , p, (2.10)

and

Ep
Gauss(g) =

(b− a)2p+1(p!)4

(2p!)3(2p+ 1)
g(2p)(ς), (2.11)

for some ς ∈ (a, b).

2.4. Itô approximation. If a stochastic process {g(t)}t∈Ω is measurable on the filtration {Ft} for any t ∈ Ω, then
the Itô integral of this process is defined by [4]:∫ b

a

g(t)dB(t) = lim
p−→∞

p−1∑
i=0

g(ti)(B(ti+1)−B(ti)), (2.12)

where ti = a+ b−a
p i, i = 0, 1, . . . , p, and B(t) is Wiener process on the filtered probability space (Ω,F ,P). The limit

of relation (2.12) is defined on L2(Ω,P) space and the approximation of this relation is calculated at the left end point
of interval [ti, ti+1]. In the other words,

E

[∣∣∣ ∫ b

a

g(t)dB(t)−
p−1∑
i=0

g(ti) (B(ti+1)−B(ti))
∣∣∣2] −→ 0,

as p −→ ∞.

3. Description of the proposed method

In this section, to present a numerical method for the problem (1.1)-(1.1). We consider an approximation of the
fractional derivative of the unknown function as follow:

0D
α
t u(t) = CTΘ(t), (3.1)

where C is the coefficients vector with the unknown elements ci, i = 1, 2 . . . , N ,

C = [c0, c1, . . . , cN ]
T
, (3.2)
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and Θ(t) is correspond to the MHFs basis functions. By the relation (2.8) and the initial condition (1.1), we can write

u(t) = CTLαΘ(t) + u0. (3.3)

Also, let f(t) = fTΘ(t), now substituting (3.1) and (3.3) in Eq. (1.1), results

CTΘ(t) = fTΘ(t) + ζ

∫ T

0

H(t, s,CTLαΘ(s) + u0)ds

+

∫ t

0

F (t, s,CTLαΘ(s) + u0)ds

+
n∑

j=1

∫ t

0

Gj(t, s,C
TLαΘ(s) + u0)dBj(s), (3.4)

Then, by setting t = ih, i = 0, 1, . . . , N , (3.4) change to

CTΘ(ih) = fTΘ(ih) + ζ

∫ T

0

H(ih, s,CTLαΘ(s) + u0)ds︸ ︷︷ ︸
I0

+

∫ ih

0

F (ih, s,CTLαΘ(s) + u0)ds︸ ︷︷ ︸
I1

+

n∑
j=1

∫ ih

0

Gj(ih, s,C
TLαΘ(s) + u0)dBj(s)︸ ︷︷ ︸

I2

. (3.5)

Due to (2.9), I0, and I1 can be approximated as

I0 =

∫ T

0

H(ih, s,CTLαΘ(s) + u0)ds

≃ T

2

p∑
τ=0

ωτH(ih, κτ ,C
TLαΘ(κτ ) + u0), (3.6)

and

I1 =

∫ ih

0

F (ih, s,CTLαΘ(s) + u0)ds

≃ ih

2

p∑
τ=0

ωτF (ih, στ,i,C
TLαΘ(στ,i) + u0), (3.7)

where

στ,i =
ih

2
στ +

ih

2
, κτ =

T

2
στ +

T

2
, (3.8)

ωτ =
2

(1− σ2
τ )[L

′
p+1(στ )]

2
.
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Also, due to (2.12)

I2 =

∫ ih

0

Gj(ih, s,C
TLαΘ(s) + u0)dBj(s)

≃
M∑
k=0

Gj(ih, si,k,C
TLαΘ(si,k) + u0)(Bj(si,k+1)−Bj(si,k)), (3.9)

where

si,k =
ih

M
k, k = 0, . . . ,M. (3.10)

So, the second part of (3.5) can be written as

n∑
j=1

∫ ih

0

Gj(ih, s,C
TLαΘ(s) + u0)dBj(s) =

n∑
j=1

( M∑
k=0

Gj(ih, si,k,C
TLαΘ(si,k) + u0) (Bj(si,k+1)−Bj(si,k))

)
. (3.11)

Now, by using Eqs. (3.7) and (3.11), Eq. (3.4) truns into

CTΘ(ih) = fTΘ(ih) +
T

2

p∑
τ=0

ωτH(ih, κτ ,C
TLαΘ(κτ ) + u0)

+
ih

2

p∑
τ=0

ωτF (ih, στ,i,C
TLαΘ(στ,i) + u0)

+
n∑

j=1

( M∑
k=0

Gj(ih, si,k,C
TLαΘ(si,k) + u0) (Bj(si,k+1)−Bj(si,k))

)
.

(3.12)

Solving this nonlinear system, leads to an approximate solution for (1.1)-(1.1).

4. Error estimate

In this section, error estimate of the proposed method have been discussed. Here we consider the norm

∥g∥ = E[sup
t∈Ω

|g(t)|], (4.1)

where E[.] is the mathematical expectation.

Theorem 4.1. Suppose g(t) ∈ C3(Ω) and gN (t) is the MHFs expansion of g(t) that defined in (2.6). Then we have

sup
t∈Ω

|g(t)− gN (t)| ≤ ch3, (4.2)

in which c is a constant value.

Proof. See [22].

Theorem 4.2. Suppose u(t) be the exact solution and uN (t) is the numerical solution of (1.1)-(1.1). Also, let
H(t, s, u(s)), F (t, s, u(s)) and Gj(t, s, u(s)) are sufficiently continuously differentiable on Ω and satisfy the following
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Lipschitz conditions as ∥∥∥H(t, s, u1)−H(t, s, u2)
∥∥∥ ≤ LH

∥∥∥u1 − u2

∥∥∥, (4.3)∥∥∥F (t, s, u1)− F (t, s, u2)
∥∥∥ ≤ LF

∥∥∥u1 − u2

∥∥∥, (4.4)∥∥∥Gj(t, s, u1)−Gj(t, s, u2)
∥∥∥ ≤ LGj

∥∥∥u1 − u2

∥∥∥, j = 1, ..., n, (4.5)

where LH , LF and LGj
are some positive constants. Also, assume that µ̂η̂ < 1, where µ̂ := Tα

Γ(α+1) , η̂ := σ1(LH +

LF ) + δL̄ and L̄ = max{LGj
, j = 1, . . . , n}. Then

∥u− uN∥ ≤ µ̂

1− µ̂η̂

(
ch3 + Ep

Gauss

)
,

where Ep
Gauss = max{Ep

Gauss(H),Ep
Gauss(F )}.

Proof. First, by employing Riemann-Liouville fractional integrating, Eq. (1.1) changes into

u(t) = u0 +

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds+

∫ t

0

(t− s)α−1

Γ(α)

(∫ T

0

H(s, r, u(r))dr

)
ds

+

∫ t

0

(t− s)α−1

Γ(α)

(∫ s

0

F (s, r, u(r))dr

)
ds

+

∫ t

0

(t− s)α−1

Γ(α)

 n∑
j=1

∫ s

0

Gj(s, r, u(r))dBj(r)

 ds. (4.6)

Also, uN (t) satisfies the equation

uN (t) = u0 +

∫ t

0

(t− s)α−1

Γ(α)
fN (s)ds+

∫ t

0

(t− s)α−1

Γ(α)

(∫ T

0

H(s, r, uN (r))dr

)
ds

+

∫ t

0

(t− s)α−1

Γ(α)

(∫ s

0

F (s, r, uN (r))dr

)
ds

+

∫ t

0

(t− s)α−1

Γ(α)

(
n∑

j=1

∫ s

0

Gj(s, r, uN (r))dBj(r)

)
ds, (4.7)

where fN (t) is the MHFs expansion of f(t) in the form (2.6). Let

JH(t) =

∫ T

0

(
H(t, s, u(s))−H(t, s, uN (s))

)
ds, (4.8)

JF (t) =

∫ t

0

(
F (t, s, u(s))− F (t, s, uN (s))

)
ds, (4.9)

JG(t) =
n∑

j=1

∫ t

0

(
Gj(t, s, u(s))−Gj(t, s, uN (s))

)
dBj(s). (4.10)

Now, we define

eN (t) = u(t)− uN (t), (4.11)

ef (t) =

∫ t

0

(t− s)α−1

Γ(α)
(f(s)− fN (s)) ds, (4.12)

eH(t) =

∫ t

0

(t− s)α−1

Γ(α)
JH(s)ds, (4.13)

eF (t) =

∫ t

0

(t− s)α−1

Γ(α)
JF (s)ds, (4.14)
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and

eG(t) =

∫ t

0

(t− s)α−1

Γ(α)
JG(s)ds. (4.15)

By these definitions, subtracting (4.7) from (4.6) yields

eN (t) = ef (t) + eH(t) + eF (t) + eG(t), (4.16)

From Theorem 4.1, we get

∥ef∥ ≤
supt∈Ω |f(t)− fN (t)|

Γ(α)

∫ t

0

(t− s)α−1ds ≤ Tα

Γ(α+ 1)
ch3. (4.17)

From (4.13)

∥eH∥ ≤ 1

Γ(α)

(∫ t

0

(t− s)α−1∥JH∥ds
)

≤ Tα

Γ(α+ 1)
∥JH∥. (4.18)

Now, by using Legendre-Gauss quadrature formula (2.9)

JH(t) =
T

2

p∑
τ=0

ωτ (H(t, κτ , u(κτ ))−H(t, κτ , uN (κτ ))) + Ep
Gauss(H),

Moreover, the function H satisfies the Lipschitz condition (4.3), hence

∥JH∥ ≤ T

2

p∑
τ=0

ωτ∥H(t, κτ , u(κτ ))−H(t, κτ , uN (κτ ))∥+ Ep
Gauss(H)

≤ σ1LH∥u− uN∥+ Ep
Gauss(H), (4.19)

where σ1 = T
2

∑p
τ=0 ωτ . So, we obtain

∥eH∥ ≤ Tα

Γ(α+ 1)

(
σ1LH∥u− uN∥+ Ep

Gauss(H)
)
. (4.20)

In a similar manner, we have

∥eF ∥ ≤ 1

Γ(α)

(∫ t

0

(t− s)α−1∥JF ∥ds
)

≤ Tα

Γ(α+ 1)
∥JF ∥. (4.21)

Since t ≤ T and the function F satisfies the Lipschitz condition (4.4), using Legendre-Gauss quadrature formula (2.9)
yields

∥JF ∥ ≤ σ1LF ∥u− uN∥+ Ep
Gauss(F ). (4.22)

Thus

∥eF ∥ ≤ Tα

Γ(α+ 1)

(
σ1LF ∥u− uN∥+ Ep

Gauss(F )
)
. (4.23)

Also, we have

∥eG∥ ≤ ∥JG∥
Γ(α)

(∫ t

0

(t− s)α−1ds

)
≤ Tα

Γ(α+ 1)
∥JG∥. (4.24)

Since the functions Gj , j = 1, ..., n, satisfy the Lipschitz conditions (4.5), for all 0 ≤ s ≤ t ≤ T, we have

∥JG∥ ≤
( n∑

j=1

M∑
k=0

∥Gj(t, st,k, u(st,k))−Gj(t, st,k, uN (si,k))∥ × ∥Bj(st,k+1)−Bj(st,k)∥
)

≤
n∑

j=1

M∑
k=0

LGj∥u− uN∥ × ∥Bj(st,k+1)−Bj(st,k)∥,
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where st,k = t
M k. Moreover, B(t), 0 ≤ t ≤ T, is a continuous bounded function, thus we can let

δ = max
j=1,...,n

{
sup

0≤t≤T

{ M∑
k=0

∥Bj(st,k+1)−Bj(st,k)∥
}}

,

then, we have

∥JG∥ ≤ δL̄∥u− uN∥, (4.25)

where L̄ = max{LGj , j = 1, . . . , n}. Thus, we obtain

∥eG∥ ≤ Tα

Γ(α+ 1)
δL̄∥u− uN∥. (4.26)

Thus, according to Eq. (4.16) and the relations (4.17), (4.20), (4.23) and (4.26), it can be concluded that

∥eN∥ ≤ µ̂

1− µ̂η̂

(
ch3 + Ep

Gauss

)
, (4.27)

�

So, from the above theorem, it is clear that E∥u− uN∥ tends to zero, when h→ 0 (or N → ∞) and p→ ∞.

Algorithm
Input: T ∈ R+, ζ ∈ R, n,N, p ∈ Z+, α ∈ (0, 1), functions f , H, F , Gj , j = 1, ..., n u0 and Brownian motion processes
Bj(t), j = 1, ..., n. Let h = T

N .
Step 1: Compute the MHFs θi(t), i = 0, ..., N, from Definition 2.3.
Step 2: Compute the vector of MHFs Θ(t) from Eq. (2.7) and let the coefficients vector C from Eq. (3.2).
Step 3: Compute the vector f = [f0, ..., fN ]T where fi = f(ih), i = 0, ..., N .
Step 4: Compute the operational matrix of fractional order Lα, from Theorem 2.4.
Step 5: Compute the Legendre polynomial Lp+1 on the interval [−1, 1].
Step 6: Let {στ}pτ=0 the zeros of Lp+1(t) and Compute the weights {ωτ}pτ=0 from Eq. (2.10).
Step 7: Compute στ,i and κτ from Eq. (3.8) and si,k from Eq. (3.10).
Step 8: Assign I0, I1 and I2 at collocation points t = ih, by using Eqs. (3.6), (3.7) and (3.9), respectively.
Step 9: Solve the nonlinear system (3.12) by applying Step 3 and Step 8. Then, obtain the unknown vector C.
Output: The approximate solution: u(t) ≃ CTLαθ(t) + u0 from (3.3).

5. Numerical implementation

In this section, we assess the applicability of our proposed approach to solve nonlinear fractional stochastic integro-
differential equations with the n-dimensional Wiener process.

To simulate the Brownian motion B(t), we employ the approach described in [8]. To this aim, we consider a
discretization of B(t). We set t0 = 0 and tj = jh, j = 1, ..., N , where ti < tj for i < j. Also, let Bj = B(tj) and

∆j = tj − tj−1, j = 1, ..., N. (5.1)

From the definition of Brownian motion B(t) on (Ω,F ,P), we know that B(0) = 0 with the probability 1 and
B(τ)−B(r) ∼

√
τ − rN (0, 1), for 0 ≤ r < τ ≤ T , where N (0, 1) is a normally distributed random variable with zero

mean and unit variance. Also, B(τ2) − B(τ1) and B(ν2) − B(ν1) are independent for 0 ≤ τ1 < τ2 < ν1 < ν2 ≤ T .
Thus, we let B0 = t0 with the probability 1, and

Bj = Bj−1 + dBj , j = 1, ...,M, (5.2)

where each dBj is an independent random variable of the form
√
∆jN (0, 1). For testing the presented approach, we

run our algorithm for p̂ different iterations. Then, the arithmetic mean of these obtained approximate solutions will
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be considered as the numerical solution of the problem. The computations have been executed on a personal computer
using a 2.20 GHz processor and the codes are written in Matlab software 2017.

Example 5.1. Consider the fractional stochastic integro-differential equation

0D
α
t u(t) = f(t) +

∫ 1

0

tu(s)ds+

∫ t

0

t cos(πs)u(s)ds

+

∫ t

0

tu(s)dB1(s) +

∫ t

0

et−u(s)dB2(s) +

∫ t

0

sin(t)su2(s)dB3(s),

where

f(t) =
2t2−α

Γ(3− α)
− t

3
− t

π3

(
2πt cos(πt) + (π2t2 − 2) sin(πt)

)
−t3B1(t)− et−t2B2(t)− t5 sin(t)B3(t) + 2t

∫ t

0

sB1(s)ds

−2

∫ t

0

ses−s2B2(s)ds+ 5 sin(t)

∫ t

0

s4B3(s)ds,

with the initial condition u(0) = 0. The exact solution of this problem is u(t) = t2.

Figure 1 shows the approximate solutions over p̂ = 50 different discretized Brownian paths (blue) with α = 0.5,
N = 32 and p = 8 and their arithmetic mean (red). Table 1 displays the absolute errors of the numerical solution for
u(t), when α = 0.6, p = 8 and p̂ = 80. Figure 2 indicates the behaviour of the obtained approximate solutions with
different values of p̂, when α = 0.5, N = 32 and p = 10. Also, Figure 3 displays the exact and numerical solutions and
the absolute errors of u(t), when α = 0.45, N = 48, p = 10 and p̂ = 200.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

-0.5

0

0.5

1

1.5

2
Numerical solution

Figure 1. The obtained numerical solutions over p̂ = 50 different discretized Brownian paths (blue) and their mean (red)

in Example 5.1 with α = 0.5.

Example 5.2. Consider the fractional stochastic integro-differential equation

0D
α
t u(t) = f(t) +

∫ t

0

su2(s)ds+

∫ t

0

et−u(s)dB1(s) +

∫ t

0

sin(u(s))dB2(s)
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Table 1. Absolute errors of the numerical solution of Example 5.1 for several values of N .

t N = 24 N = 36 N = 48

0.1 6.2471× 10−2 3.2113× 10−2 7.2741× 10−3

0.2 5.1044× 10−2 2.0016× 10−2 2.1541× 10−3

0.3 2.5102× 10−2 8.4452× 10−3 4.2636× 10−3

0.4 4.2677× 10−2 2.1378× 10−2 2.2741× 10−3

0.5 2.5103× 10−2 9.9194× 10−3 4.0113× 10−3

0.6 4.2812× 10−2 1.2631× 10−2 6.1760× 10−3

0.7 5.2331× 10−2 2.4134× 10−2 2.4579× 10−3

0.8 4.1359× 10−2 2.8891× 10−2 3.3215× 10−3

0.9 3.2261× 10−2 7.3101× 10−3 3.1103× 10−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Exact and Numerical solution

 path =2
 path=10
 path=40
 path=80
 Exact

Figure 2. The exact and numerical solution in Example 5.1 for different values of p̂.
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Figure 3. The exact and numerical solutions of Example 5.1 (left) and the absolute errors (right) when p̂ = 200.

with the initial condition u(0) = 0, and

f(t) =
Γ(4)t3−α

Γ(4− α)
− Γ(5)t4−α

Γ(5− α)
− t8

360

(
36t2 − 80t+ 45

)
+

∫ t

0

(
s3 − 3s2(1− s)

)[
et−s3(1−s)B1(s)− cos(s3(1− s))B2(s)

]
ds

−et−t3(1−t)B1(t)− sin(t3(1− t))B2(t)

The exact solution of this problem is u(t) = t3(1− t).
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Table 2. Absolute errors of the numerical solution of Example 5.2 for several values of N .

t N = 12 N = 24 N = 36 N = 48

0.1 3.2113× 10−2 7.2231× 10−3 2.4101× 10−3 7.2544× 10−4

0.3 5.4023× 10−2 1.2434× 10−2 5.3324× 10−3 2.2001× 10−3

0.5 6.2774× 10−2 3.5302× 10−2 1.4452× 10−3 5.6117× 10−4

0.7 3.6314× 10−2 4.2417× 10−3 4.5278× 10−3 1.2976× 10−3

0.9 5.1224× 10−2 2.8132× 10−2 2.0114× 10−3 6.3566× 10−4

Figure 4 shows the approximate solution over p̂ = 100 discretized Brownian paths (blue) and their arithmetic mean
(red) when α = 0.3, N = 32 and p = 10. Also, Figure 5 displays the behaviour of the approximate solutions for
different values of p̂, when α = 0.5, N = 32 and p = 7. Table 2 indicates the absolute errors of the obtained numerical
solution when α = 0.6, p = 10 and p̂ = 150. Figure 6 displays the absolute errors when α = 0.5, N = 40 p = 10 and
p̂ = 200. Finally, Figure 7 shows the logarithm of absolute error when N = 20, 30, 40, α = 0.6, p = 8 and p̂ = 100.

Figure 4. The numerical solutions of Example 5.2 over p̂ = 100 different discretized Brownian paths (blue) and the

obtained mean solution (red) when α = 0.3.
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Figure 5. The exact and numerical solutions in Example 5.2 for different values of p̂.
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Figure 6. The absolute error of uN (t) in Example 5.2 with p̂ = 200.
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Figure 7. The logarithm of absolute errors for several values of N in Example 5.2.

6. Conclusion

In this work, by using the properties of modified hat functions and some suitable numerical integration rules, a
numerical scheme is introduced for solving a class of nonlinear fractional stochastic integro-differential equations with
n-dimensional Wiener process. Error estimate of the method was discussed. Furthermore, two numerical examples
have been prepared to illustrate the effectiveness and ability of this algorithm. The obtained results confirm the good
accuracy and reliability of the proposed method.
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