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Abstract

..

In this paper, a completely new statistical based approach is developed for solving the system of nonlinear

equations. The developed approach utilizes the characteristics of the normal distribution to search the solution
space. The normal distribution is generally introduced by two parameters, i.e., mean and standard deviation. In
the developed algorithm, large values of standard deviation enable the algorithm to escape from a local optimum,
and small values of standard deviation help the algorithm to find the global optimum. In the following, six

benchmark tests and thirteen benchmark case problems are investigated to evaluate the performance of the
Normal Distribution-based Algorithm (NDA). The obtained statistical results of NDA are compared with those
of PSO, ICA, CS, and ACO. Based on the obtained results, NDA is the least time-consuming algorithm that gets

high-quality solutions. Furthermore, few input parameters and simple structure introduce NDA as a user friendly
and easy-to-understand algorithm.
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2010 Mathematics Subject Classification. 90C30, 65H20, 65J15.

1. Introduction

A system of nonlinear equations consists of two or more equations with two or more variables, in which at least one
equation is not linear, that is being solved simultaneously. Various areas of pure and applied sciences such as chemistry,
physics, mechanics, robotics, aircraft control, engineering, statistics, management sciences, economics, biology, and
medicine are related to the system of nonlinear equations [29]. Because of the computational complexity of the system
of nonlinear equations, there are few methods for this system that the optimal solution often comes. A historic review
shows that various approaches have been employed to solve the systems of nonlinear equations, which some of them
are presented in Table 1. So far, several Evolutionary Algorithms (EAs), such as Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization (ACO), Imperialist Competitive
Algorithm (ICA), Cuckoo Search (CS), Firefly Algorithm (FA), and others have been used for solving systems of
nonlinear equations. EAs are known as population-based algorithms, in which a population of solutions is used in
each iteration of the optimization process that uses operators to modify the solutions aiming at gradually evolving the
solutions based on a fitness function. EAs resolve some of the major difficulties of exact methods and can effectively
replace them in solving optimization problems. These algorithms typically attempt to find a high-quality solution to
their optimization problems through an iterative trial-and-error procedure with reduced computational time. Some
of them, such as PSO, ICA, and CS, have attracted more attention due to their simplicity, speed, and capability of
global optimum search.

PSO was inspired by the behavior of social organisms in groups, such as birds and fishes. PSO has robust capability
in global search and has been extensively used for solving systems of nonlinear equations, alone or as a hybrid with
other methods, especially in recent years. Some research studies indicate that hybrids of PSO with other search
algorithms, such as cuckoo search [11], NelderMead simplex search [1], Grey Wolf Optimizer [32] and others, get more
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Table 1. List of approaches for solving the system of nonlinear equations.

Authors Approach
El-Emary and El-Kareem, 2008 [6] Genetic algorithm
Li and Zeng, 2008 [16] A neural-network algorithm
Hirsch et al., 2009 [8] GRASP
Jaberipour et al., 2011 [13] Particle swarm algorithm
Pourjafari and Mojallali, 2012 [27] Invasive weed optimization algorithm
Abdollahi et al., 2013 [3] Imperialist competitive algorithm
Oliveira and Petraglia, 2013 [25] Fuzzy adaptive simulated annealing
Sharma and Arora, 2013 [30] Weighted-Newton methods
Wang and Zhou, 2014 [35] Pattern search firefly algorithm
Abdollahi et al. 2016 [2] Cuckoo optimization algorithm
Raja et al., 2018 [28] Particle swarm optimization hybrid

with NelderMead method
Zhang et al., 2019 [37] Niche cuckoo search algorithm
Pei et al., 2019 [26] Continuous Variable Neighborhood

search
Chen and Kelley, 2019 [5] Energy Direct Inversion on the

Iterative Subspace

efficient algorithms in comparison with the PSO. ICA is another evolutionary algorithm that uses a mathematical
model of human social evolution. It was first represented by Atashpaz-Gargari and Lucas in 2007 and recently has
been broadly applied to solve nonlinear optimization problems [20]. In ICA, generally, it is evident that competition
among the empires will eventually lead to a global empire unless the algorithm terminates within a predetermined
number of iterations before arriving at a global empire [9]. ICA has been tested on various standard test problems,
which the obtained results demonstrate that ICA is a very efficient algorithm concerning both speed and accuracy
[21]. In operations research, the CS algorithm is a recently developed evolutionary optimization algorithm [36]. CS is
a nature-inspired algorithm, which is based on the brood parasitism of some cuckoo species laying their eggs in the
nests of other birds. The applications of CS into nonlinear optimization problems have displayed its efficiency [11, 37].
Moreover, CS has some benefits over the other evolutionary algorithms that include simplicity, fewer input parameters
compared with the other evolutionary algorithms, and ease of hybridization with other algorithms [31].

Although many EAs have been used to solve the system of nonlinear equations, each of them may fail to find the
optimal solution due to their weaknesses. Some of these weaknesses are as follows. PSO suffers from a significant
increase in search complexity with an increase in the dimension of the relevant problem. Besides the high number
of input parameters, it is difficult for PSO to define initial design parameters [14]. Concerning ICA, it has more
parameters than PSO, and thus it is more difficult to adjust the input parameters. Like many other EAs, ICA may
result in premature convergence and gets the local optimum, especially in the multimodal optimization problems [9].
Generally, the CS algorithm has fewer drawbacks in comparison to the previous algorithms. The determination of
CS input parameters is one of the drawbacks of the algorithm because the parameters should be changed with the
increase of iterations. Also, as we know, the locations of some nests may be out of the boundary of the optimization
problem. To cope with this problem, the CS algorithm replaces these unacceptable nests with the boundary values.
As a consequence, a lot of nests can be made at the same location on the boundary, which is inefficient [18].

Besides of many advantages, EAs suffer from some disadvantages. First, they do not guarantee an optimal solution
to specific optimization problems within predictable run time. Second, it may need much parameter tuning by trial-
and-error procedure, and at last, EAs usually need lots of computational resources. To overcome some of these
problems, we develop a new statistical-based approach, i.e., Normal Distribution-based Algorithm (NDA). To the best
of our knowledge, statistical approaches have not been used to solve the system of nonlinear equations previously. In
this research, the normal distribution is considered as the basis of the developed approach. NDA requires relatively
few parameters that help the user to tune the algorithms parameters easily. NDA is a simple structure algorithm
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that facilitates coding procedure and computation. Due to its simplicity, NDA is introduced as a high-speed approach
for solving large scale problems. Since NDA uses a contraction expansion coefficient, i.e., standard deviation, it can
balance the local and global searches during the optimization process. The rest of this paper is structured as follows:
In section 2, we describe the NDA in detail. In section 3, six test problems and thirteen well-known systems are used
to evaluate the efficiency of the developed algorithm in comparison with some other EAs. Finally, the discussion and
conclusion of this study are presented in sections 4 and 5, respectively.

2. Normal Distribution-based Algorithm (NDA)

In general, the system of nonlinear equations (2.1) is defined as:
f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0
...

fn(x1, x2, . . . , xn) = 0

(2.1)

Above system can be transformed into an optimization problem with a single objective function by using the
auxiliary function Eq. (2.2):

min f(x) =
n∑

i=1

f2
i (x), x = (x1, x2, . . . , xn) (2.2)

Since f2
i (x) ≥ 0, it is clear that f(x) ≥ 0. If x∗ : f(x∗) = 0, then x∗ is a global minimum of f and subsequently

f1(x
∗) = f2(x

∗) = · · · = fn(x
∗) = 0 and x∗ is a root for Eq. (2.1).

In this study, a new search algorithm is developed based on the characteristics of normal distribution. NDA is
applied to solve the system of nonlinear equations. The normal distribution, discovered by De Moivre in the 18th

century, is the most important and most widely known and used of all distributions in statistics. Many natural
phenomena follow a normal distribution, or bell curve, pattern. Some of these phenomena are given below [22]:

• Human characteristics such as height, blood pressure level, cholesterol, shoe size, reaction times, and lung
capacity

• Weight of products in continuous production lines such as food, steel, petroleum, and oil industry
• Weather patterns such as temperature and rainfall
• Delivery time in a shipping company
• Service time in cleaning companies

Normal distributions are introduced by two parameters, i.e., mean (µ) and standard deviation (σ). Because of the shape
of the probability density function (pdf), the normal distribution is often called the bell curve. These distributions
are symmetric about their mean. In other words, fifty percent of values are less than µ, and fifty percent of values are
greater than µ. Another important property of the normal distribution is that the mean is equal to mode and median
(Figure1). The pdf of the normal distribution is defined by Eq. (2.3). In this function, x is the random variable, µ is
the mean and, σ is the standard deviation of the distribution. In the normal distribution, there is approximately a 68%
probability that a value falls within one standard deviation from the mean, i.e., µ± σ. Also, there are approximately
95% and 99.7% chance that a value falls within 2 and 3 standard deviations from the mean, respectively (Figure2).

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 ; −∞ ≤ X ≤ +∞ (2.3)

This study aims to develop a new statistical method for solving a system of nonlinear equations. The developed
approach utilizes the properties of the normal distribution to solve the system. In the first step of the NDA, P
individuals are generated randomly as the initial population. All generated individuals are evaluated by a fitness
function, which corresponds to the objective function of the problem. After sorting the population, the top 100p% of
individuals are selected to produce a new generation based on the local search factor, k, and the rest of individuals
are used to produce a new generation based on the global search factor, σg. As said before, normal distributions are
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Figure 1. Shape of normal pdf.

Figure 2. Standard normal characteristics.

defined by two parameters, the mean and the standard deviation. The selected individuals are used as the mean value
of the normal distribution. Also, a predefined value is taken as the standard deviation of the normal distribution.
Then, new individuals are produced by using the pdf of the normal distribution. These steps are repeated until a
criterion is satisfied. Figure 3 shows the pseudo-code of NDA. The flowchart of the proposed algorithm is described
in Figure4. In the following, each step of the NDA will be discussed in detail.
Step 1. Initialization

In this step, P individuals are generated randomly in the interval on which the X is defined.
Step 2. Evaluation

In this step, the fitness function is calculated for each individual that was generated in the previous step. The
fitness function corresponds to the objective function of the relevant problem.
Step 3. Selection

All individuals are sorted in ascending/descending order of the values of their fitness function. Then, the top 100p%
of individuals are selected to produce a new generation based on the local search factor, k, and the rest of individuals
are used to produce a new generation based on the global search factor, σg. However, p plays an important role in
the quality of the final solution. As p increases, NDA pays more attention to the local search area and vice versa.
Also, σl is determined so that by increasing the number of iterations, NDA would be able to get closer to the optimal
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 Input: Number of populations,  
  Global search factor,   

  Local search factor,   
  Selection factor,  
 Output: The optimal solution,  
  The optimal value of fitness function,  

1: Initialize a population ; 
2: While termination conditions are not met do 
3: Calculate the fitness value of each individual; 
4: Sort top P individuals in a non-dominated order; 
5: Set  value for ; 
6: Select the top 100 % of individuals to generate new individuals as: 
7: for  to the number of decision variables  do 
8: ( . randn); where  is obtained by “Eq (2.4)” 
9: Select the rest of individuals to generate new individuals as: 

10: for  to the number of decision variables  do 
11: ( . randn);  

12: Combine new and old individuals into one population ; 
13: Set the best fitness function value  as the best solution . 

Figure 3. Pseudo-code of the NDA.

solution. Eq. (2.4) displays σl in terms of the number of iterations and k.

σl = 10−Iterations\k (2.4)

Step 4. Generation
As mentioned previously, the normal distribution is defined with two parameters, µ and σ. The notation X ∼

N(µ, σ) means that X is distributed as a normal random variable with the µ as its mean and the σ as its standard

deviation. If Z = (X−µ)
σ , then Z follows the standard normal distribution, i.e., Z ∼ N(0, 1). Also, we have:

X = µ+ Zσ. (2.5)

Based on Eq. (2.5). X is dependent on the mean, the standard deviation, and on the standard normal variable. In the
NDA, all individuals from the selection step (XOld) are considered as the mean, i.e., µ = XOld. Then, new individuals
(XNew) are obtained by Eq. (2.6).

XNew = XOld + Zσ. (2.6)

In Eq. (2.6), the standard deviation is defined according to the range of X. For small values of standard deviation
(σl), the obtained values of XNew are probably close to XOld. Also, this probability is reduced for large values of
standard deviation (σg). σl and σg, respectively, play the roles of crossover and mutation in the Genetic Algorithm
(GA). In each iteration of NDA, some new individuals are produced by using σl and some others by using σg. A
predefined portion of the population is selected to make new individuals by use of σl, we refer to as p, and the rest of
the population is used to generate new individuals by use of σg. As mentioned previously, Z ∼ N(0, 1), therefore:

f(z) =
1√
2π

e−
Z2

2 ; −∞ ≤ X ≤ +∞ (2.7)
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The cumulative distribution function of Z is given by Eq. (2.8).

F (z) = P (Z ≤ z) =

∫ z

−∞

1

2π
e−

z2

2 dz (2.8)

For ease of computation, F (z) can be calculated using the standard normal table. Since F (z) is the cumulative
probability of Z, then 0 ≤ F (z) ≤ 1. In Eq. (2.6), Z should be replaced by a random number, which has been
generated by the standard normal distribution. It is done as follows. First, a random number is generated between 0
and 1. This number is considered as the cumulative probability of Z, i.e., F (z). At last, the relevant Z is obtained
by using the standard normal table. The following numerical example shows how it works in practice. Example: Let
us assume, 0.95 was generated as a random number between 0 and 1. Therefore, F (z) = 0.95. Based on Eq. (2.8),
P (Z ≤ z) = 0.95. By using the standard normal table, we have P (Z ≤ 1.65) = 0.95. Therefore, Eq. (2.6) can be
rewritten as, XNew = XOld + 1.65σ.
Step 5. Termination

The maximum number of iterations or running time can be considered as stop criteria. Also, no improvement in
the best solution for a predefined number of iterations can be used as another stop criterion.

START

Initialize populations 

Evaluate fitness value 
for each individual 

Sort top P individuals

Set best of solutions

Generate new Individuals based on 
the local and global search factors

Stop criteria STOPYes

No

Figure 4. NDA flowchart.

3. Experiments and results

In this section, six tests functions and thirteen systems are used to demonstrate the performance of the NDA.
The obtained results of the NDA are compared with those obtained by the well-known evolutionary algorithms, i.e.,
Particle Swarm Optimization (PSO), Imperialist Competitive Algorithm (ICA), Cuckoo search (CS) and Ant Colony
Optimization (ACO). All algorithms were coded in MATLAB 8.5 and simulations were run on a laptop with Intel(R)
Core (TM) i5-2450M CPU with the speed of 2.50GHz and the installed memory of 4 GB. The used parameters for
solving the benchmark problems are listed in Table 2.
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Table 2. Parameters setting for algorithms.

Algorithm Parameters

PSO Personal weight (w) = 1, reduction factor of personal weight (wrf ) =
0.99, personal best learning coefficient (c1) = 2, global best learning
coefficient (c2) = 2, lower bound of velocity (lbv) = −0.8, upper bound
of velocity (ubv) = 0.8, number of populations (P ) = 20 and, maximum
number of iterations (Itr) = 8000.

ICA Number of empires/imperialists (nemp) = 10, selection pressure (α) = 1,
assimilation coefficient (β) = 1.5, revolution probability (pr) = 0.05,
revolution rate (µ) = 0.1, colonies mean cost coefficient (ζ) = 0.2, number
of populations (P ) = 20 and, maximum number of iterations (Itr) =
8000.

CS Discovery rate of alien eggs/solutions (pa) = 0.25, step size (α) = 1,
number of populations (P ) = 20 and, maximum number of iterations
(Itr) = 8000.

ACO Sample size (ns) = 40, intensification factor (q) = 0.5, deviation-distance
ratio (ζ) = 1, number of populations (P ) = 20 and, maximum number of
iterations (Itr) = 8000.

NDA Local search factor (σg) = 1, global search factor (k) = 500, selection
factor (p) = 0.95, number of populations (P ) = 20 and, maximum number
of iterations (Itr) = 8000.

3.1. Simulation results on six benchmark test functions. Here, six benchmark test functions are used to
evaluate the performance of the NDA. Table 3 represents the details of these functions, including mathematical
formulation, dimension, range, and optimal solution. Benchmark functions include 20-dimension Rastrigin function
[24], Hartmans function [23], Six-Hump camelback [19], a 30-dimension function of [13], 30-dimension Ackley function,
and 30-dimension sphere function, respectively. The obtained results are compared with PSO, ICA, CS, and ACO
(Table 4). As shown in this table, some statistical data such as mean, standard deviation, and rank are computed
for all algorithms. The average ranks determined by Friedman test [17] are also used to assess the success of each
algorithm. In other words, the performance of an algorithm increases as rank decreases. Best results are highlighted
in bold font. Based on the obtained results, NDA reaches the best solution in 3 out of 6 functions, i.e., f2, f3, andf4. In
all tests, NDA converges the optimal solution in the shortest time. As indicated in Table 4, NDA has the best average
rank, i.e., 2.29. For further investigation, the convergence history of all mentioned algorithms is illustrated in Fig.5.
The convergence curves indicate that NDA has strong and steady convergence in terms of the number of iterations.

3.2. Benchmark cases and simulation results. In this section, the performance of NDA is studied on 13 bench-
marks of nonlinear systems (as seen in Tables 5 and 6). To investigate the performance of the NDA, 50 consecutive
runs are performed on each system for each of the above-mentioned algorithms, i.e., NDA, PSO, ICA, CS, and ACO.
As said above, the maximum number of iterations and population size for all algorithms are set to 8000 and 20, re-
spectively, as in [33]. The obtained statistical results, including best, average and worst solutions, standard deviation
and solution time are listed for each system in Tables 7-17, 19, and 20. The best values are shown in bold font in all
tables. The obtained results indicate that the NDA is efficient in most of the benchmark systems. In addition, Fig.7
displays the convergence history of all mentioned algorithms. It is noted that the values for parameters used in the
algorithms are as shown in Table 2. In the following, each case is investigated in detail.

Case1 is known as the Geometry size of the thin wall rectangle girder section [33]. In this case, x1 is the width, x2

is the height and x3 is the thickness of the section. Table 7 represents the obtained results from the NDA and other
algorithms. As can be seen, CS gets the optimal solutions among all algorithms. However, NDA has the minimum
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Table 3. Benchmark test function.

Function Dim Range Optimal solution
f1(x) =

∑n
i=1[x

2
i − 10 cos (2πxi + 10] 20 [-5.2,5.2] x∗ = (0, . . . , 0)T

f(x∗) = 0
f2(x) = −

∑n
i=1 ci exp[−

∑6
j=1 aij(xj − pij)

2] 4 [0,1] 0.14 < x∗
i < 0.66

f(x∗) = −3.3220
c=[1 1.2 3 3.2]

pij =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1415 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381


aij =


10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14


f3(x) = 4x2

1 − 2.1x4
1 +

1
3x

6
1 + x1x2 − 4x2

2 + 4x4
2 2 [-3,3] x∗ = (0.089842012773979,−0.712656402251958)T

f(x∗) = −1.031628453489878

f4(x) =
∑n

i=1[sin (xi + sin ( (2xi)
3 ] 30 [3,13] 5.361 < x∗

i < 5.364
f(x∗) = −1.21598n

f5(x) = −20 exp(−0.2
√
( 1n

∑n
i=1 x

2
i )− exp( 1n

∑
i = 1n cos 2πxi) 30 [-32,32] x∗ = (0, . . . , 0)T

f(x∗) = 0
+20 + exp (1)
f6(x) =

∑n
i=1 x

2
i 30 [-100,100] x∗ = (0, . . . , 0)T

f(x∗) = 0

average, standard division, and worst solution. For Case2 [3], the optimal solution is (4, 3, 1). As shown in Table
8, all the algorithms except the ICA succeed to reach the optimal solution. Moreover, NDA and CS meet the global
optimum in all 50 runs. In other words, for NDA and CS, average solution, standard division, and worst solution equal
zero. The next case, Case3, is minimized at (-0.2905146, 1.0842151) or (1.0842151, -0.2905146). Based on Table 9, all
algorithms can find the optimal solution. Besides, CS acts better than the other ones and gets the optimal solution
in all 50 runs. It can be seen easily that NDA tracks the optimal solution almost as well as the other algorithms.

Case4 is known as Neurophysiology application [25]. As indicated in Table 10, this case has more than one optimal
solution. All the algorithms except the CS succeed to reach one of the optimal solutions. In terms of the other
factors, i.e., minimum average, standard division, and worst solution, PSO displays the best efficiency among these
algorithms. According to the obtained results, NDA is ranked as the second-best algorithm. Table 11 depicts the
statistically obtained results for Case5 [34]. All algorithms get the optimal solution, i.e., (0.5, 3.141592654). By
considering all factors, CS and NDA are ranked as best and second-best algorithms, respectively. It is observed that
the results obtained by NDA are so close to those obtained by CS, where the difference is less than 5.0E-34. For Case6,
the minimum value of the objective function is approximately 3.0967E-33 that is obtained by NDA and CS. Based
on Table 12, NDA performs the best among all five algorithms. As shown in this table, ACO gets solutions that are
relatively close to those of NDA. Also, there are large differences between results from PSO, ICA, and CS and those
from NDA.

Table 13 compares the obtained results of the five algorithms for Case7 [10]. As indicated in this table, CS reaches
the optimal solution, i.e., (0.5000000, 0.0000000, -0.5235988), in all runs. Besides, the obtained results of the other
four algorithms are relatively close to each other. Case8 is known as Browns almost linear system [33]. Table 14
shows that NDA and CS obtain the optimal solution, i.e., (0.9163546, 0.9163546, 0.9163546, 0.9163546, 1.4182271),
in all runs. ACO acts best among the other algorithms. Similar to Case8, both NDA and CS are ranked as the best
ones, and ACO is ranked as the second-best for solving Case9 [15]. For this case, as indicated in Table 15, the optimal
solution is (-1, 1, -1, 1, -1, 1). Table 16 displays the obtained results of the algorithms for Case10 [15]. According
to this table, NDA is accepted as the best algorithm for solving Case10. Here, the optimal solution is (0.5149333,
0.5149333, 0.5149333, 0.5149333), which has been obtained by all the algorithms.
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Table 4. Statistical results of test functions.

Function Algorithm NDA PSO ICA CS ACO
f1 min 9.6820E-01 6.0393E+02 3.5527E-14 1.0001E+01 1.8439E+02

mean 2.9286E+00 1.4277E+03 1.7251E+00 1.6540E+01 2.0645E+02
std 1.3147E+00 4.2638E+02 1.0877E+00 4.8124E+00 1.0720E+01
max 6.2574E+00 2.3817E+03 4.9749E+00 2.8935E+01 2.2615E+02
Time(s) 2.622 6.642 7.513 5.811 65.959
Rank 1.73 5.00 1.27 3.00 4.00

f2 min -3.3220E+00 -3.3220E+00 -3.3220E+00 -3.3220E+00 -3.3220E+00
mean -3.3220E+00 -3.2327E+00 -3.3022E+00 -3.3220E+00 -3.2863E+00
std 1.3323E-15 1.1084E-01 4.4309E-02 1.3323E-15 5.4487E-02
max -3.3220E+00 -2.8685E+00 -3.2031E+00 -3.3220E+00 -3.2031E+00
Time(s) 1.427 6.727 7.985 5.016 16.230
Rank 2.88 4.10 3.17 2.88 1.97

f3 min -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00
mean -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00
std 0.0000E+00 6.6613E-16 0.0000E+00 0.0000E+00 6.6613E-16
max -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00
Time(s) 2.885 6.007 8.271 4.482 7.910
Rank 2.00 4.50 2.00 2.00 4.50

f4 min -3.6479E+01 -3.1516E+01 -3.3502E+01 -3.6479E+01 -2.8405E+01
mean -3.6479E+01 -2.7182E+01 -2.9376E+01 -3.6248E+01 -2.5622E+01
std 6.7092E-04 2.4648E+00 2.7347E+00 4.1984E-01 1.3776E+00
max -3.6477E+01 -2.2582E+01 -2.1590E+01 -3.5487E+01 -2.2976E+01
Time(s) 3.903 6.603 7.464 5.845 62.752
Rank 1.77 4.08 3.32 1.23 4.60

f5 min 7.9936E-15 1.1546E-14 3.2863E-14 4.4409E-15 4.4409E-15
mean 1.3678E-14 1.6234E+00 4.9679E-14 8.4632E-01 6.9278E-15
std 3.3829E-15 1.5368E+00 9.0313E-15 6.5488E-01 1.6281E-15
max 2.2204E-14 5.5623E+00 6.8390E-14 2.0119E+00 7.9936E-15
Time(s) 4.196 6.899 8.608 6.332 68.225
Rank 2.23 4.37 3.70 3.33 1.37

f6 min 2.3756E-43 1.7487E-81 8.1800E-36 7.4433E-51 2.0992E-62
mean 3.2182E-43 1.1905E+01 3.4483E-32 7.0278E-49 1.9500E-58
std 5.2928E-44 4.5465E+01 1.3111E-31 1.3154E-48 5.4424E-58
max 4.3573E-43 2.1429E+02 7.0443E-31 6.6005E-48 2.6311E-57
Time(s) 2.193 6.813 7.823 5.369 68.225
Rank 3.10 4.57 4.20 2.10 1.03

Average rank 2.29 4.44 2.94 2.43 2.91

Tables 17, 19, and 20 represent the statistical results of the five algorithms for case11 [10], case12 [7], and case13
[25], respectively. NDA reaches the minimum best value of the objective function in case11 and case12. In case11,
both NDA and ICA can be determined as the best algorithms that converge to 2.2720E-33 in all 50 runs. Besides,
CS is ranked as the second-best algorithm, with an insignificant difference in standard deviation. Given the Table
17, NDA and CS get similar results. Here, it is difficult to identify the top-ranked one. PSO and ICA find weakest
solutions among all the five algorithms. Based on Table 20, in case13, like many other cases, CS performs efficiently
and gets the best values of all factors. Here, NDA can be introduced as the third-best algorithm for solving the case13.
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Figure 5. Comparision of the convergence of PSO, ICA, CS, ACO, and NDA for tests functions 1-6.

As shown in Tables 7-17, 19, and 20, for all cases, NDA has the least run time. For NDA, PSO, ICA, CS, and
ACO, average solution times (in terms of second) are 2.06, 6.46, 7.78, 5.14, and 14.84, respectively. These data show
that NDA and ACO are the fastest and slowest algorithms, respectively. Fig.6 depicts the mean ranks of thirteen
of nonlinear systems with 50 independent runs. According to this figure, NDA has the minimum average rank in 5
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Table 5. Benchmark cases (1-7).

Case

Case 1


x1x2 − (x1 − 2x3)− 165 = 0

(x1x
3
2/12)− [(x1 − 2x3)(x2 − 2x3)

3/12]− 9369 = 0

2t(x2 − x3)
2(x1 − x3)

2/(x2 + x1 − 2x3)− 6835 = 0

xi ∈ [−30, 30]

Case 2


xx2
1 + xx1

2 − 5x1x2x3 − 85 = 0

x3
1 − xx3

2 − xx2
3 − 60 = 0

xx3
1 + xx1

3 − x2 − 2 = 0

x1 ∈ [3, 5], x2 ∈ [2, 4], x3 ∈ [0.5, 2]

Case 3

{
x3
1 − 3x1x

2
2 − 1 = 0

3x2
1x2 − x3

2 + 1 = 0

xi ∈ [−10, 10]

Case 4



x2
1 + x2

3 − 1 = 0

x2
2 + x2

4 − 1 = 0

x5x
3
3 + x6x

3
4 = 0

x5x
3
1 + x6x

3
2 = 0

x5x1x
2
3 + x6x2x

2
4 = 0

x5x3x
2
1 + x6x4x

2
2 = 0

xi ∈ [−10, 10]

Case 5

{
0.5 sin (x1x2)− 0.25x2π − 0.5x1 = 0

(1− 0.25/π)(exp (2x1)− e) + ex2/π − 2ex1 = 0

x1 ∈ [0.25, 1], x2 ∈ [1.5, 2π]

Case 6



4.731× 10−3x1x3 − 0.3578x2x3 − 0.1238x1 + x7 − 1.637× 10−3x2

−0.9338x4 − 0.3571 = 0
0.2238x1x3 + 0.7623x2x3 + 0.2638x1 − x7 − 0.07745x2 − 0.6734x4

−0.6022 = 0
x6x8 + 0.3578x1 + 4.731× 10( − 3)x2 = 0

−0.7623x1 + 0.2238x2 + 0.3461 = 0

x2
1 + x2

2 − 1 = 0

x2
3 + x2

4 − 1 = 0

x2
5 + x2

6 − 1 = 0

x2
7 + x2

8 − 1 = 0

xi ∈ [−1, 1]

Case 7


3x1 − cos (x2x3)− 0.5 = 0

x2
1 − 625x2

2 − 0.25 = 0

exp (−x1x2) + 20x3 + (10π − 3)/3 = 0

xi ∈ [−10, 10]

cases, i.e., case2, case6, case8, case9, and case10. Fig.7 displays the convergence history of all mentioned algorithms.
The convergence curves indicate that NDA has strong and steady convergence in terms of the number of iterations.
According to this figure, the convergence trend of NDA follows a uniform pattern in all cases. It ensures that NDA
combines local and global search in a reasonable manner.
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Figure 6. The mean ranks of nonlinear systems with 50 runs.

4. Discussion

In the previous section, we considered six benchmark test functions and thirteen benchmark systems of nonlinear
equations for evaluating the performance of NDA. The obtained statistical results of the five algorithms, i.e., NDA,
PSO, ICA, CS, and ACO, including the best minimum, maximum and average values of the objective functions,
standard deviation, solution time, and ranks have been listed in the relevant tables. Convergence curves illustrate the
behavior of each algorithm to reach the optimal solution in terms of the number of iterations. It can be concluded
from the benchmark tests functions that NDA gets the optimal solution in half of the tests. In the rest half, NDA
obtains solutions that are very close to the best ones. Regarding the cases, NDA finds the optimal solutions in 7 out
of 13 cases (i.e., 54% of them), and similar to the tests, for the rest 46%, the obtained solutions are very close to
the best ones. Analyzing the mean of standard deviations, it is observed that NDA has the lowest mean value for
both benchmark tests and cases, i.e., 0.2192 and 6.7658E-05, respectively. It indicates that the obtained solutions of
NDA are more likely to be close to the best ones than those of the other four algorithms. Moreover, we compared
the solution times of the algorithms for all tests and case problems. As a result, it can be seen easily that NDA
consumes less time in comparison with the other algorithms. As another result, the outcomes of NDA indicate that
the solution times are very stable across the tests and case problems. As another important factor, ranks could be
used to evaluate the performance of NDA. As mentioned previously, the average ranks of NDA, 2.29 for tests and 2.51
for case problems, ensure that it can be introduced as an efficient algorithm in solving the benchmark problems.
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Table 6. Benchmark cases (8-13).

Case

Case 8



2x1 + x2 + x3 + x4 + x5 − 6 = 0

x1 + 2x2 + x3 + x4 + x5 − 6 = 0

x1 + x2 + 2x3 + x4 + x5 − 6 = 0

x1 + x2 + x3 + 2x4 + x5 − 6 = 0

x1x2x3x4x5 = 1

xi ∈ [−2, 2]

Case 9



x1 + 0.25x2
2x4x6 + 0.75 = 0

x2 + 0.405exp(1 + x1x2)− 1.405 = 0

x3 − 0.5x4x6 + 1.5 = 0

x4 − 0.605exp(1− x2
3)− 0.395 = 0

x5 − 0.5x2x6 + 1.5 = 0

x6 − x1x5 = 0

xi ∈ [−2, 2]

Case 10
{
xi − cos (2xi −

∑
( j = 1)4xj) = 0; 1 ≤ i ≤ 4

xi ∈ [0, 2π

Case 11



x1 − 0.25428722− 0.18324757x3x4x9 = 0

x2 − 0.37842197− 0.16275449x1x6x10 = 0

x3 − 0.27162577− 0.16955071x1x2x10 = 0

x4 − 0.19807914− 0.15585316x1x6x7 = 0

x5 − 0.44166728− 0.19950920x3x6x7 = 0

x6 − 0.14654113− 0.18922793x5x8x10 = 0

x7 − 0.42937161− 0.21180486x2x5x8 = 0

x8 − 0.07056438− 0.17081208x1x6x7 = 0

x9 − 0.34504906− 0.19612740x6x8x10 = 0

x10− 0.42651102− 0.21466544x1x4x8 = 0

xi ∈ [−2, 2]

Case 12


x2
i + x2

i+1 − 1 = 0

a1ix1x3+a2ix1x4+a3ix2x3+a4ix2x4+a5ix2x7+a6ix5x8+a7ix6x7+
a8ix6x8 + a9ix1 + a10ix2 + a11ix3 + a12ix4 + a13ix5

+a14ix6 + a15ix7 + a16ix8 + a17i = 0; 1 ≤ i ≤ 4
xi ∈ [−10, 10]

Case 13



x2 + 2x6 + x9 + 2x10− 10( − 5) = 0

x3 + x8 − 3× 10( − 5) = 0

x1 + x3 + 2x5 + 2x8 + x9 + x10− 5× 10( − 5) = 0

x4 + 2x7 − 10( − 5) = 0

0.5140437× 10( − 7)x5 − x2
1 = 0

0.1006932× 10( − 6)x6 − 2x2
2 = 0

0.7816278× 10( − 15)x7 − x2
4 = 0

0.1496236× 10( − 6)x8 − x1x3 = 0

0.6194411× 10( − 7)x9 − x1x2 = 0

0.2089296× 10( − 14)x10− x1x
2
2 = 0

xi ∈ [−20, 20]
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Table 7. Optimum results for Case 1.

Function NDA PSO ICA CS ACO
x1 12.2565196 -12.2565196 -12.2568621 -12.2565196 -12.2565206
x2 22.8949380 -22.8949386 -22.9118650 -22.8949386 -22.8949932
x3 2.7898183 -2.7898179 -2.7797279 -2.7898179 -2.7897853
f1 1.6249E-05 -7.3129E-11 -3.8856E-01 0.0000E+00 -1.2556E-03
f2 2.5032E-05 0.0000E+00 3.7464E-03 0.0000E+00 1.1628E-05
f3 -2.4320E-05 1.8190E-12 -2.1183E-03 0.0000E+00 -1.0003E-05
Fbest 1.4821E-09 5.3512E-21 1.5100E-01 0.0000E+00 1.5768E-06
Favg 3.0358E-04 1.1259E+06 1.4411E+04 9.1972E-02 8.3196E+03
Fworst 5.0167E-03 2.8090E+07 5.0856E+04 9.1919E+00 2.8960E+04
Std 8.5611E-04 5.5041E+06 1.5115E+04 9.1457E-01 1.0200E+04
Time(s) 1.941 6.501 7.015 4.614 9.941

Table 8. Optimum results for Case 2.

Function NDA PSO ICA CS ACO
x1 4 4 4 4 4
x2 3 3 3 3 3
x3 1 1 1 1 1
f1 0.0000E+00 0.0000E+00 -2.6816E-11 0.0000E+00 0.0000E+00
f2 0.0000E+00 0.0000E+00 -5.06688E-11 0.0000E+00 0.0000E+00
f3 0.0000E+00 0.0000E+00 3.8192E-09 0.0000E+00 0.0000E+00
Fbest 0.0000E+00 0.0000E+00 1.4590E-17 0.0000E+00 0.0000E+00
Favg 0.0000E+00 1.5639E+00 1.5273E-12 0.0000E+00 2.2598E-24
Fworst 0.0000E+00 7.8194E+00 3.5000E-11 0.0000E+00 7.2724E-24
Std 0.0000E+00 3.1278E+00 5.2979E-12 0.0000E+00 2.4547E-24
Time(s) 2.762 6.314 7.052 5.345 9.822

Table 9. Optimum results for Case 3.

Function NDA PSO ICA CS ACO
x1 -0.2905146 -0.2905146 -0.2905146 -0.2905146 -0.2905146
x2 1.0842151 1.0842151 1.0842151 1.0842151 1.0842151
f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Fbest 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Favg 9.8608E-32 6.7053E-32 5.1276E-32 0.0000E+00 9.0719E-32
Fworst 1.9722E-31 1.9722E-31 1.9722E-31 0.0000E+00 1.9722E-31
Std 9.8608E-32 9.3423E-32 8.6505E-32 0.0000E+00 9.8292E-32
Time(s) 1.607 6.184 8.599 4.415 7.839
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Table 10. Optimum results for Case 4.

Function NDA PSO ICA CS ACO

x1 -0.9293683 0.9760155 -0.3971934 -0.9978328 0.8714294
x2 -0.9293683 0.9760155 0.3971934 0.9978328 -0.8714294
x3 0.3691539 -0.2177008 0.9177349 -0.0658011 0.4905209
x4 0.3691539 -0.2177008 -0.9177349 0.06580113 -0.4905209
x5 0.2791445 0.2568353 0.7090235 0.34639726 -0.1475619
x6 -0.2791445 -0.2568353 0.7090235 0.34639726 -0.1475619
f1 0.0000E+00 0.0000E+00 0.0000E+00 1.6735E-10 0.0000E+00
f2 0.0000E+00 0.0000E+00 0.0000E+00 3.8574E-12 0.0000E+00
F3 0.0000E+00 0.0000E+00 0.0000E+00 -2.3286E-12 0.0000E+00
F4 0.0000E+00 0.0000E+00 0.0000E+00 -3.7086E-11 0.0000E+00
F5 0.0000E+00 0.0000E+00 0.0000E+00 -2.3595E-11 0.0000E+00
F6 0.0000E+00 0.0000E+00 0.0000E+00 -1.8012E-10 0.0000E+00
Fbest 0.0000E+00 0.0000E+00 0.0000E+00 6.2402E-20 0.0000E+00
Favg 1.2635E-10 4.3568E-22 1.6660E-06 1.4765E-09 3.3145E-09
Fworst 2.0113E-09 2.1784E-20 8.3233E-05 2.5806E-08 8.5111E-08
Std 3.9700E-10 3.0497E-21 1.1652E-05 3.8618E-09 1.4012E-08
Time 2.227 6.419 8.015 5.144 16.019

Table 11. Optimum results for Case 5.

Function NDA PSO ICA CS ACO

x1 0.5 0.5 0.5 0.5 0.5
x2 3.141592654 3.141592654 3.141592654 3.141592654 3.141592654
f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Fbest 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Favg 5.4696E-34 2.2279E-04 2.3533E-25 4.6222E-35 3.0614E-30
Fworst 7.7037E-34 7.4264E-04 1.1694E-23 7.7037E-34 4.1763E-29
Std 3.4957E-34 3.4032E-04 1.6370E-24 1.8295E-34 6.7191E-30
Time(s) 2.250 6.158 7.441 4.577 7.774
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Table 12. Optimum results for Case 6.

Function NDA PSO ICA CS ACO

x1 0.6715543 0.6715543 0.1644317 0.6715543 0.6715543
x2 0.7409554 0.7409554 -0.9863885 0.7409554 0.7409554
x3 -0.6515906 -0.6515906 0.7184526 0.9518927 -0.6515906
x4 -0.7585708 -0.7585708 -0.6955759 -0.3064314 -0.7585708
x5 -0.9625450 -0.9625450 -0.9979644 -0.9638108 0.9625450
x6 0.2711219 -0.2711219 0.0637737 0.2665873 -0.2711219
x7 -0.4375776 -0.4375776 -0.5278091 0.4046414 -0.4375776
x8 -0.8991807 0.8991807 -0.8493630 -0.9144754 0.8991807
f1 0.0000E+00 -1.1102E-16 1.1102E-16 0.0000E+00 0.0000E+00
f2 0.0000E+00 1.1102E-16 -1.1102E-16 0.0000E+00 0.0000E+00
f3 -3.9031E-18 -3.1659E-17 -4.3368E-18 -3.9031E-18 -3.1659E-17
f4 -5.5511E-17 -5.5511E-17 0.0000E+00 -5.5511E-17 -5.5511E-17
f5 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f8 0.0000E+00 2.2204E-16 0.0000E+00 0.0000E+00 0.0000E+00
Fbest 3.0967E-33 7.8039E-32 2.4671E-32 3.0967E-33 4.0838E-33
Favg 5.8616E-33 7.6967E-02 1.2089E-02 2.5392E-12 7.1887E-32
Fworst 1.8504E-32 3.4509E-01 2.0184E-01 8.3763E-11 4.2529E-31
Std 3.8990E-33 9.6374E-02 4.7848E-02 1.2158E-11 9.6176E-32
Time(s) 2.365 6.233 7.900 5.189 19.890
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Table 13. Optimum results for Case 7.

Function NDA PSO ICA CS ACO

x1 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000
x2 0.0000001 0.0000000 0.0000002 0.0000000 0.0000002
x3 -0.5235988 -0.5235988 -0.5235988 -0.5235988 -0.5235988
f1 1.2355E-12 1.0891E-13 8.7710E-12 0.0000E+00 1.1545E-11
f2 -3.7081E-12 -3.286E-13 -2.6312E-11 0.0000E+00 -3.4637E-11
f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Fbest 1.5276E-23 1.1984E-25 7.6926E-22 0.0000E+00 1.3330E-21
Favg 2.8038E-13 1.8994E-20 3.3658E-14 0.0000E+00 1.0887E-15
Fworst 2.3105E-12 9.3809E-20 1.9288E-13 0.0000E+00 2.7747E-15
Std 5.3773E-13 2.2653E-20 3.9585E-14 0.0000E+00 1.0709E-15
T ime(s) 1.721 6.524 7.779 4.834 9.741

Table 14. Optimum results for Case 8.

Function NDA PSO ICA CS ACO

x1 0.9163546 1.0000000 0.9162502 0.9163546 0.9163546
x2 0.9163546 1.0000000 0.9162415 0.9163546 0.9163546
x3 0.9163546 1.0000000 0.9162459 0.9163546 0.9163546
x4 0.9163546 1.0000000 0.9162426 0.9163546 0.9163546
x5 1.4182271 1.0000000 1.4187915 1.4182271 1.4182271
f1 0.0000E+00 8.8818E-16 2.1927E-05 0.0000E+00 0.0000E+00
f2 0.0000E+00 0.0000E+00 1.3164E-05 0.0000E+00 0.0000E+00
f3 0.0000E+00 8.8818E-16 1.7560E-05 0.0000E+00 0.0000E+00
f4 0.0000E+00 0.0000E+00 1.4293E-05 0.0000E+00 0.0000E+00
f5 0.0000E+00 -2.6645E-15 -8.0265E-05 0.0000E+00 -4.4409E-16
Fbest 0.0000E+00 8.6775E-30 7.6092E-09 0.0000E+00 1.9722E-31
Favg 0.0000E+00 2.8552E-02 1.2504E-05 0.0000E+00 1.1581E-29
Fworst 0.0000E+00 1.2602E+00 3.1293E-04 0.0000E+00 8.2547E-29
Std 0.0000E+00 1.7619E-01 4.8082E-05 0.0000E+00 1.8148E-29
Time 1.827 6.536 7.760 5.138 14.157
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Table 15. Optimum results for Case 9.

Function NDA PSO ICA CS ACO
x1 -1 -0.9998809 -0.9999280 -1 -1.0000000
x2 1 0.9999070 0.9999467 1 1.0000000
x3 -1 -1.0001231 -1.0000845 -1 -1.0000000
x4 1 0.9998398 0.9998892 1 1.0000000
x5 -1 -1.0000682 -1.0000405 -1 -1.0000000
x6 1 0.9999413 0.9999627 1 1.0000000
f1 0.0000E+00 1.7928E-05 8.3776E-06 0.0000E+00 -7.8604E-14
f2 0.0000E+00 -7.0790E-06 -2.5291E-06 0.0000E+00 2.9754E-14
f3 0.0000E+00 -1.3648E-05 -1.039E-05 0.0000E+00 1.128E-13
f4 0.0000E+00 -1.1259E-05 -8.652E-06 0.0000E+00 7.8604E-14
f5 0.0000E+00 7.6686E-06 4.8038E-06 0.0000E+00 -6.217E-14
f6 0.0000E+00 -7.7441E-06 -5.717E-06 0.0000E+00 6.4837E-14
Fbest 0.0000E+00 8.0336E-10 3.1524E-10 0.0000E+00 3.4035E-26
Favg 0.0000E+00 2.0635E-02 1.7433E-03 0.0000E+00 7.6415E-23
Fworst 0.0000E+00 3.9144E-01 8.2054E-02 0.0000E+00 1.6305E-21
Std 0.0000E+00 6.0278E-02 1.1475E-02 0.0000E+00 2.2360E-22
Time 1.810 6.527 7.808 5.170 15.705

Table 16. Optimum results for Case 10.

Function NDA PSO ICA CS ACO
x1 0.5149333 0.5149333 0.5149333 0.5149333 0.5149333
x2 0.5149333 0.5149333 0.5149333 0.5149333 0.5149333
x3 0.5149333 0.5149333 0.5149333 0.5149333 0.5149333
x4 0.5149333 0.5149333 0.5149333 0.5149333 0.5149333
f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Fbest 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Favg 0.0000E+00 4.7051E-01 4.1454E-01 4.3449E-33 3.2047E-33
Fworst 0.0000E+00 1.0363E+01 1.0363E+01 1.2326E-32 1.2326E-32
Std 0.0000E+00 2.0196E+00 2.0308E+00 5.1396E-33 5.1916E-33
Time 1.807 6.261 7.616 5.157 12.016
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Table 17. Optimum results for Case 11.

Function NDA PSO ICA CS ACO
x1 0.2578348 0.2578348 0.2578348 0.2578348 0.2578348
x2 0.3810972 0.3810972 0.3810972 0.3810972 0.3810972
x3 0.2787451 0.2787451 0.2787451 0.2787451 0.2787451
x4 0.2007453 0.2007453 0.2007453 0.2007453 0.2007453
x5 0.4453571 0.4453571 0.4453571 0.4453571 0.4453571
x6 0.1491876 0.1491876 0.1491876 0.1491876 0.1491876
x7 0.4447334 0.4447334 0.4447334 0.4447334 0.4447334
x8 0.0734865 0.0734865 0.0734865 0.0734865 0.0734865
x9 0.3459679 0.3459679 0.3459679 0.3459679 0.3459679
x10 0.4273275 0.4273275 0.4273275 0.4273275 0.4273275
f1 2.4720E-17 2.4720E-17 2.4720E-17 2.4720E-17 2.4720E-17
f2 -2.1250E-17 -2.1250E-17 -2.1250E-17 -2.1250E-17 -2.1250E-17
f3 1.4745E-17 1.4745E-17 1.4745E-17 1.4745E-17 1.4745E-17
f4 7.3726E-18 7.3726E-18 7.3726E-18 7.3726E-18 7.3726E-18
f5 2.0383E-17 2.0383E-17 2.0383E-17 2.0383E-17 2.0383E-17
f6 4.3368E-19 4.3368E-19 4.3368E-19 4.3368E-19 4.3368E-19
f7 1.2143E-17 1.2143E-17 1.2143E-17 1.2143E-17 1.2143E-17
f8 8.6736E-19 8.6736E-19 8.6736E-19 8.6736E-19 8.6736E-19
f9 -7.5894E-18 -7.5894E-18 -7.5894E-18 -7.5894E-18 -7.5894E-18
f10 1.7781E-17 1.7781E-17 1.7781E-17 1.7781E-17 1.7781E-17
Fbest 2.2720E-33 2.2720E-33 2.2720E-33 2.2720E-33 2.2720E-33
Favg 2.2720E-33 3.2457E-14 2.2720E-33 2.2720E-33 2.7632E-33
Fworst 2.2720E-33 1.6202E-12 2.2720E-33 2.2720E-33 7.5772E-33
Std 0.0000E+00 2.2683E-13 0.0000E+00 4.7896E-48 9.1794E-34
Time(s) 1.388 6.594 7.713 5.784 23.556

Table 18. Parameters for Case 12.

aji 1 2 3 4
1 -0.249150680 0.125016350 -0.635550070 1.489477300
2 1.609135400 -0.686607360 -0.115719920 0.230623410
3 0.279423430 -0.119228120 -0.666404480 1.328107300
4 1.434480160 -0.719940470 0.110362110 -0.258645030
5 0.000000000 -0.432419270 0.290702030 1.165172000
6 0.400263840 0.000000000 1.258776700 -0.269084940
7 -0.800527680 0.000000000 -0.629388360 0.538169870
8 0.000000000 -0.864838550 0.581404060 0.582585980
9 0.074052388 -0.037157270 0.195946620 -0.208169850
10 -0.083050031 0.035436896 -1.228034200 2.686832000
11 -0.386159610 0.085383482 0.000000000 -0.699103170
12 -0.755266030 0.000000000 -0.079034221 0.357444130
13 0.504201680 -0.039251967 0.026387877 1.249911700
14 -1.091628700 0.000000000 -0.057131430 1.467736000
15 0.000000000 -0.432419270 -1.162808100 1.165172000
16 0.049207290 0.000000000 1.258776700 1.076339700
17 0.049220729 0.013873010 2.162575000 -0.696868090
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Table 19. Optimum results for Case 12.

Function NDA PSO ICA CS ACO

x1 -0.9290548 -0.7990614 -0.7990614 0.9945078 0.7729415
x2 -0.3699422 -0.6012494 -0.6012494 0.1046625 0.6344772
x3 -0.9290548 -0.7990614 -0.7990614 0.9945078 0.7729415
x4 0.3699422 0.6012494 0.6012495 0.1046625 0.6344772
x5 -0.9290548 0.7990614 0.7990613 0.9945078 -0.7729415
x6 -0.5257808 -0.6786384 -0.6786383 -0.3843076 0.5002711
x7 1.7263456 0.9436221 0.9436231 -0.4832660 0.0187910
x8 0.1681780 -0.6348997 -0.6348993 -0.8702357 -1.2010347
f1 0.0000E+00 -3.9968E-15 -3.2826E-08 0.0000E+00 -5.5511E-16
f2 0.0000E+00 7.2387E-14 -9.5577E-08 0.0000E+00 2.2204E-16
f3 0.0000E+00 -4.74065E-14 9.2267E-08 0.0000E+00 2.2204E-16
f4 0.0000E+00 -4.74065E-14 9.2267E-08 0.0000E+00 2.2204E-16
f5 1.3878E-17 -6.87853E-14 7.9699E-08 1.1102E-16 5.0654E-16
f6 3.6429E-17 -1.43349E-13 2.5228E-07 8.6736E-18 5.6205E-16
f7 0.0000E+00 -8.88178E-15 -6.3999E-08 0.0000E+00 0.0000E+00
f8 0.0000E+00 9.99201E-16 -6.0876E-09 0.0000E+00 3.3307E-16
Fbest 1.5197E-33 3.2902E-26 9.3101E-14 1.2401E-32 1.1025E-30
Favg 1.3411E-05 4.3893E-03 5.1761E-03 3.7631E-06 5.8562E-06
Fworst 8.2093E-05 6.6469E-02 6.6469E-02 5.8180E-05 1.0649E-04
Std 2.2097E-05 1.4497E-02 1.5864E-02 1.1106E-05 1.9067E-05
Time(s) 2.886 7.334 8.505 6.041 22.938

Table 20. Optimum results for Case 13.

Function NDA PSO ICA CS ACO

x1 -0.0000001 -0.0000001 -0.0000002 0.0006745 0.0000190
x2 -0.0016248 0.0008110 0.0194582 -0.0008281 0.0030550
x3 0.2888647 3.1439916 -9.2054784 -0.0000013 -0.7771021
x4 0.0009906 0.0001748 0.0053118 0.0000532 -0.0036210
x5 -1.8858060 0.4189938 -13.7403258 9.0550510 -15.2917490
x6 -5.2386197 -2.7210099 -12.0499629 13.6325414 -16.7629329
x7 -0.0004903 -0.0000824 -0.0026505 -0.0000216 0.0017389
x8 -0.2888347 -3.1439615 9.2055024 0.0000313 0.7771094
x9 -2.3579406 -0.8292310 12.4699675 -8.9573310 6.0898931
x10 6.4184074 3.1352249 5.8052212 -9.1534568 3.7165353
f1 4.1902E-09 2.2586E-08 -6.7834E-05 2.4652E-09 1.4307E-04
f2 1.3347E-09 3.6900E-08 -5.9185E-06 2.2491E-09 -2.2668E-05
f3 -1.7409E-09 -7.6660E-15 1.3434E-05 3.3685E-09 1.6114E-05
f4 -8.5102E-10 -2.7908E-08 7.8414E-07 1.3236E-08 -1.5311E-04
f5 -9.6939E-08 2.1538E-08 -7.0631E-07 1.0480E-08 -7.8642E-07
f6 -5.8072E-06 -1.5896E-06 -7.5846E-04 1.3315E-09 -2.0355E-05
f7 -9.8127E-07 -3.0563E-08 -2.8215E-05 -2.8268E-09 -1.3112E-05
f8 -7.7326E-09 -4.2211E-08 -3.4552E-07 8.5542E-10 1.4875E-05
f9 -1.4626E-07 -5.1256E-08 7.7608E-07 3.6977E-09 1.5581E-06
f10 3.3769E-13 9.6138E-14 7.0874E-11 -4.6253E-10 -1.7725E-10
Fbest 3.4717E-11 2.5351E-12 5.8087E-07 3.3190E-16 4.5496E-08
Favg 9.4762E-07 2.1991E-08 2.9448E-06 2.3173E-12 1.0729E-04
Fworst 6.0118E-06 2.1562E-07 5.8016E-06 1.7253E-10 2.0885E-03
Std 1.3443E-06 4.3751E-08 1.0157E-06 1.7327E-11 3.6690E-04
T ime(s) 2.143 6.404 7.937 5.362 23.475
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Figure 7. Comparision of the convergence of PSO, ICA, CS, ACO and NDA for cases studies 1-13.
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5. Conclusions

So far, a wide range of various mathematical and evolutionary methods has been used to solve the system of
nonlinear equations. In this study, a completely new statistical approach has been developed for solving the systems
of nonlinear equations. This approach utilizes the benefits of the normal distribution, one of the most important
statistical distributions, to find the optimal solution. Some benchmark tests and case problems have been used to
compare the obtained results of NDA with those of PSO, ICA, CS, and ACO. These comparisons clearly demonstrate
the advantages of NDA. The advantages include (1) NDA requires relatively few parameters, i.e., σg, k, and p, to make
a successful and smart search. As a consequence, it helps the user to tune the algorithms parameters easily. (2) NDA
is an easy to understand algorithm with a simple structure that facilitates the coding procedure and computation. (3)
Due to its simplicity, NDA is suggested as a high-speed approach for solving large scale problems. In other words, it
gets high-quality solutions in a reasonable amount of time for practical size problems. (4) NDA is an efficient algorithm
for solving nonlinear functions. The effectiveness of NDA is because it uses a contraction expansion coefficient, i.e.,
standard deviation, to balance the local and global searches during the optimization process.

Besides all mentioned advantages, future work is needed to improve NDA for solving other mathematical program-
ming problems such as linear programming and constrained nonlinear programming problems. Furthermore, other
statistical distributions can be used instead of the normal distribution to solve the system of nonlinear equations.
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