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Abstract

..

Matrix functions play important roles in various branches of science and engineering. In numerical computations
and physical measurements there are several sources of error which significantly affect the main results obtained

from solving the problems. This effect also influences the matrix computations. In this paper, we propose some
approaches to enclose the matrix functions. We then present some analytical arguments to ensure that the
obtained enclosures contain the exact result. Numerical experiments are given to illustrate the performance and
effectiveness of the proposed approaches.
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1. Introduction

Computing matrix functions is a frequently occurring problem in science and engineering such as differential equa-
tions, Markov models, control theory, nonsymmetric eigenvalue problem, exponential integrators and Nuclear Magnetic
Resonance, see [3, 4, 23]. Up to now, a large number of papers presented several methods for computing matrix func-
tions [7, 9, 21, 22, 24, 31, 41]. But on the other hand, finite number representation in floating point arithmetic,
inevitably causes some errors in computations. This motivated us to propose some approaches for bounding the error
of evaluating matrix functions.

Interval arithmetic is an arithmetic defined on the set of intervals, rather than the set of real numbers. As said in
[28], a form of interval arithmetic first appeared in 1924 [5] and 1931 [44], then later in [42]. Modern development of
interval arithmetic began with R. E. Moore’s dissertation [32]. Since then, many research articles and numerous books
have appeared on the subject. Also, there is an increasing amount of software package for interval computations. For
a preliminary introduction, we refer the interested reader to [2, 13, 14, 20, 27, 34].

1.1. Interval arithmetic as a useful tool in computing a matrix function. Here, we explain the motion of
applying interval computations for computing a matrix function by three simple examples.

Sample 1. Let

A =

(
a 0
0 1

)
,

in which a is a desirable parameter. Let f(x) = x75. So by diagonal structure of A, we have

f(A) =

(
f(a) 0
0 f(1)

)
.
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Now, if we put a = 1 − 10−21, performing 10-place arithmetic, we obtain f(a) = 1. Using 20-place arithmetic, we
obtain the same result, see [33]. So

f(A) =

(
1 0
0 1

)
.

However the exact value of f(a) satisfies f(a) < 10−10, i.e., we must have

f(A) =

(
b 0
0 1

)
,

in which b < 10−10.

Sample 2. Let

A =

(
π 0
0 π/2

)
,

and f(x) = sinx. Again since A is a diagonal matrix, we obtain

f(A) =

(
f(π) 0
0 f(π/2)

)
.

Performing the following commands in Matlab
≫ b = sin(π),

≫ c = sin(π/2),

responds, respectively, with

b = 1.2246e− 16,

c = 1.

So, by floating point arithmetic, we will have the following result for f(A)

f(A) =

(
1.2246e− 16 0

0 0

)
.

while, the exact result is

f(A) =

(
0 0
0 1

)
.

Sample 3. Consider the following two variable function

f(x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 + x/(2y),

and

A =

(
a 0
0 0

)
, B =

(
b 0
0 1

)
,

with a = 77617.0 and b = 33096.0, for noninterval case of this example see [33]. In this case, we have a two variable
matrix function. Matrices A and B are diagonal and B is invertible, so we obtain

f(A,B) =

(
f(a, b) 0

0 f(0, 1)

)
.

Now for computing f(a, b), as said in [33], computing powers by successive multiplications on an IBM 370 system using
single, double, and extended precision (approximately 7, 16, and 33 decimal digits, respectively), Rump obtained the
following results:
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single precision f(a, b) = 1.17260361...

double precision f(a, b) = 1.17260394005317847...

extended precision f(a, b) = 1.17260394005317863185....

We might be tempted to conclude that f(a, b) is close to 1.172603. On the other hand f(0, 1) = 333.75+5.5 = 339.25,
so we will have

f(A,B) =

(
1.172603 0

0 339.25

)
.

But it is not true. In fact the exact result for f(a, b) is

f(a, b) = −0.827396...,

and so we should have

f(A,B) =

(
−0.827396... 0

0 339.25

)
.

These three simple examples inspirit us to use interval arithmetic as a useful tool to bound the errors arising from
floating point arithmetic. If instead of simply computing a numerical approximation using limited-precision arithmetic
and then worrying about the accuracy of the results, we proceed in interval arithmetic, i.e., considering intervals which
contain the real parameters, we will be sure that the final result contains the exact result.

1.2. Notations. We use boldface letters to denote interval quantities and ordinary letters are used for real quantities.
The left and right endpoints of an interval number x are denoted by x and x̄, respectively, i.e., x = [x, x]. The set of
real intervals is denoted by IR. By IRm×n, we denote the set of m-by-n interval matrices. The width of an interval
x = [x, x] is denoted by w(x) and is defined as w(x) = x− x, and the width of an interval matrix A = (Aij) is given
by w(A) = maxi,j w(Aij). For a matrix A ∈ Rn×n, the eigenvalues of A are shown by λ1, . . . , λn.

If x = [x, x] and y = [y, y], then the four elementary operations ∗ ∈ {+,−,×, /} for interval arithmetic obey

x ∗ y = {x ∗ y : x ∈ x and y ∈ y}. (1.1)

This paper is organized as follows: In section 2, we present a list of methods for evaluating interval matrix function
f(A) and theoretical theorems are given. Also some suggestions and development of the presented methods are briefly
discussed in this section. Section 3 contains some numerical experiments. Some applications of this subject in various
problems are presented in section 4. Finally, in section 5, we complete the paper with brief concluding remarks.

2. Main results

2.1. Our Approaches. Let A be an n-by-n real matrix and f be an analytic function in a certain domain of the
complex plane containing the spectrum of A. We want to enclose the matrix function f(A). For this purpose, we
consider an interval matrix A such that A ∈ A and then perform the following methods on A. In the following
λ1, ..., λn are the eigenvalues of A and I is the n-by-n identity matrix.

1) Interval power series method
If function f has a Taylor series representation on an open disk containing the eigenvalues of A, i.e.,

f(x) =
∞∑
k=1

f (k)(x0)

k!
(x− x0)

k,

then we define the interval matrix function f(A) by

f(A) =
∞∑
k=1

f (k)(x0)

k!
(A− x0I)

k.

Theorem 2.1. The interval power series method requires O(n3k) arithmetic operations per index k of summation.
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Proof. Evaluating A − x0I needs O(n) operations since subtraction only affects diagonal entries of A. The cost of
computing matrix powers (A−x0I)

k is O(n3k). Other computational parts of the summand contain number-number
or number-matrix operations including division and multiplication which needs O(n2) arithmetic operations. Overall,
we conclude that the interval power series method requires O(n3k) arithmetic operations per index k. �

2) Interval Cauchy integral method
Similar to Cauchy’s integral definition for a matrix function [16, 37], for a function analytic at the eigenvalues

λ1, ..., λn of A, we define interval matrix function f(A) by

f(A) =
1

2πi

∫
f(z)(zI −A)−1dz,

in which (zI−A)−1 is hull of the set {(zI−B)−1 : B ∈ A} and integral is taken componentwise over a set of admissible
closed paths enclosing each of the distinct characteristic roots of A.

3) Interval Sylvester, Buchheim method
Corresponding to the Sylvester definition of the matrix function f(A), see [43], for determining interval matrix

f(A), we propose the following method

f(A) =
n∑

j=1

∏
i ̸=j

A− λiI

λj − λi
f(λj),

where {λ1, ..., λn} are distinct eigenvalues of A.
If the characteristic roots of A are not necessarily distinct, then analogy with Buchheim’s definition for the real

case, we define

f(A) =
t∑

i=1

∏
i ̸=j

(A− λiI)
si

sj−1∑
k=0

dk

dzk

[
f(z)∏

h ̸=j (z − zh)sh

]
z=λj

(A− λjI)
k,

where si is the multiplicity of λi as a root of the minimum polynomial of A.

Theorem 2.2. The interval Sylvester method requires O(n4) arithmetic operations.

Proof. Computing the expression under multiplication symbol needs O(n2) arithmetic operations since it involves
subtraction, division and multiplication between numbers and matrix A. Multiplying (n− 1) matrices of size n costs
O(n4). Finally the operation

∑n
j=1 adds n matrices of size n and so needs O(n3) operations. So, gathering all

computational costs yields that the interval Sylvester method requires O(n4) arithmetic operations. �

4) Interval Richter’s method
Using the idea of [36] (Richter method), we propose the following formula for evaluating f(A)

f(A) =

t∑
j=1

Rj

sj−1∑
k=0

1

k!
f (k)(λj)(A− λjI)

k,

where

Rj = wj(A)
∏
i ̸=j

(A− λi)
si ,

and the polynomial wj(z) is a polynomial satisfying

wj(z)
∏
i ̸=j

(z − λi)
si ≡ 1, mod(z − λj)

sj ,

therein sj is the multiplicity of λj as a root of the minimum polynomial of A.

5) Interval Newton divided difference method and its extension
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Another approach for enclosing the matrix function f(A) is

f(A) =
n∑

i=1

di

i−1∏
j=1

(A− λjI),

which is an extension of the divided difference method [8], therein the coefficients d1, . . . , dn are defined in [8].
The above definition is applicable only when the eigenvalues of A are distinct. For the case when the eigenvalues

are not distinct, we propose the following definition for determining f(A)

f(A) =
n∑

i=1

k[λ1, ..., λi]
i−1∏
j=1

(A− λjI),

where k[λ1, ..., λi] is defined in [8].

Theorem 2.3. The interval Newton divided difference method requires O(n4) arithmetic operations.

Proof. The argument is nearly similar to the proof of Theorem 2.2. The highest computational cost is related to the
case that the upper limit of multiplication takes amount of (n− 1) which occurs when i = n. In this case, we have to
multiply (n− 1) matrices of size n which needs O(n4) arithmetic operations. �

2.2. Theoretical consideration. In this subsection, we prove for all the above methods, we have f(A) ∈ f(A).

Lemma 2.4. [33] Let ∗ ∈ {+,−,×, /}. If a, b, c, and d are intervals such that

a ⊆ c, and b ⊆ d,

then

a ∗ b ⊆ c ∗ d.

Lemma 2.5. Let ∗ ∈ {+,−,×}. If A, B, C, and D are interval matrices such that

A ⊆ C, and B ⊆ D,

then

A ∗B ⊆ C ∗D.

Proof. For an operator ∗ ∈ {+,−,×}, since the result of the operator between two interval matrices is obtained by
combination of the elementary operators between their entries so by Lemma 2.4, the proof is concluded. �

Theorem 2.6. For the introduced methods in subsection 2.1, we have

f(A) ∈ f(A).

Proof. Because in each of the methods introduced in subsection 2.1, f(A) is obtained by a combination of the ele-
mentary operators between interval matrices and A ∈ A, so using Lemma 2.5, the proof is completed. �

Corollary 2.7. If A ⊆ B, then applying each of the methods proposed in subsection 2.1 for computing f(A) and f(B)
yields

f(A) ⊆ f(B).
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2.3. Considerable aspects. Here, we mention some aspects that help us to obtain better results in other cases.
First, we point that for evaluating the interval matrix function f(A), we can present other methods arising from

the same ideas in real cases, such as Jordan canonical form definition, Verde-Star’s method, Pade approximation, and
Fourier expansion method, see [1, 8].

In a more general case, we can consider the problem of determining f(A), where A ∈ Cn×n, i.e., entries of A are
complex. In this case our idea is generalizable also, i.e., we can use complex intervals and consider the complex interval
matrix A such that A ∈ A. Two most frequently used representations for complex intervals are as follow:

(i) The infimum-supremum representation

[x, x] = {x ∈ K : x ≤ x ≤ x}, for some x, x ∈ K, x ≤ x,

where ≤ is the partial ordering x ≤ y ⇔ Re(x) ≤ Re(y) & Im(x) ≤ Im(y), for x, y ∈ C, in which Re(x) and Im(x)
stand for the real part and the imaginary part of x, respectively.

(ii) The midpoint-radius representation⟨
xc, x∆

⟩
= {x ∈ K : |x− xc| ≤ x∆} for some xc ∈ K, 0 ≤ x∆ ∈ R.

for more details about complex intervals, see [38].
By Corollary 2.7, it is obvious that for obtaining tighter interval matrix function f(A), we can use tighter interval

matrix A containing A. We know that the tighter f(A), the more efficient result.

3. Test problems

In this section, we present some numerical experiments to apply the new techniques to obtain some enclosures for
the matrix function f(A). Let λ(A) be the set of the eigenvalues of A. In below, fP (A), fS(A) and fN (A) denote
the obtained interval matrix function f(A) respectively, by the interval power series, Sylvester, and Newton divided
difference methods. In each case, the interval power series method has been implemented by its first 40 terms.

Example 3.1. Let A be Hankel matrix

A =


1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

 ,

and f(x) = ex. The condition number of A is cond(A)=5.7063. Using Matlab’s funm function, we obtain

eA = 105


6.5381 6.5379 6.5379 6.5380 6.5382
6.5379 6.5382 6.5382 6.5380 6.5378
6.5379 6.5382 6.5383 6.5379 6.5378
6.5380 6.5380 6.5379 6.5381 6.5381
6.5382 6.5378 6.5378 6.5381 6.5383

 .

We consider interval matrix A = A+[−ϵ, ϵ], with ϵ = 10−4. Applying the interval power series, Sylvester and Newton
divided difference methods, we obtain the following enclosures for f(A)

fP (A) = 105
[6.5348, 6.5414] [6.5346, 6.5413] [6.5346, 6.5412] [6.5347, 6.5414] [6.5348, 6.5415]
[6.5346, 6.5413] [6.5349, 6.5415] [6.5349, 6.5415] [6.5347, 6.5414] [6.5345, 6.5411]
[6.5346, 6.5412] [6.5349, 6.5415] [6.5350, 6.5416] [6.5346, 6.5413] [6.5345, 6.5411]
[6.5347, 6.5414] [6.5347, 6.5414] [6.5346, 6.5413] [6.5348, 6.5414] [6.5347, 6.5414]

[6.5348, 6.5415] [6.5345, 6.5411] [6.5345, 6.5411] [6.5347, 6.5414] [6.5350, 6.5416]

 ,
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fS(A) = 105
[6.5367, 6.5395] [6.5368, 6.5391] [6.5369, 6.5389] [6.5368, 6.5393] [6.5371, 6.5392]

[6.5365, 6.5393] [6.5370, 6.5394] [6.5372, 6.5392] [6.5368, 6.5393] [6.5368, 6.5389]
[6.5365, 6.5393] [6.5370, 6.5393] [6.5373, 6.5393] [6.5367, 6.5392] [6.5368, 6.5389]
[6.5367, 6.5394] [6.5369, 6.5392] [6.5369, 6.5390] [6.5368, 6.5394] [6.5370, 6.5391]
[6.5368, 6.5396] [6.5367, 6.5390] [6.5368, 6.5388] [6.5368, 6.5393] [6.5373, 6.5394]

 ,

fN (A) = 105
[6.5367, 6.5395] [6.5368, 6.5391] [6.5369, 6.5389] [6.5368, 6.5393] [6.5371, 6.5392]
[6.5365, 6.5393] [6.5371, 6.5394] [6.5372, 6.5392] [6.5368, 6.5393] [6.5368, 6.5389]

[6.5365, 6.5393] [6.5370, 6.5393] [6.5373, 6.5393] [6.5367, 6.5392] [6.5368, 6.5389]
[6.5367, 6.5394] [6.5369, 6.5392] [6.5369, 6.5389] [6.5368, 6.5394] [6.5370, 6.5391]
[6.5368, 6.5396] [6.5367, 6.5390] [6.5368, 6.5388] [6.5368, 6.5393] [6.5373, 6.5394]

 .

As one can see, in all results we have eA ∈ f(A). The interval Sylvester and Newton divided difference methods
are closed together and give tighter results than one obtained by the interval power series method.

Example 3.2. In this example, we utilize the function ”lehmer” of Matlab for producing the matrix A, i.e.,

A = full(gallery(′lehmer′, 4)),

and f(x) = cosx. The condition number of A is cond(A)=12.2063. Matlab’s funm function yields

cos(A) =


0.5012 −0.3905 −0.3033 −0.2398
−0.3905 0.4239 −0.5223 −0.4373
−0.3033 −0.5223 0.3822 −0.5573
−0.2398 −0.4373 −0.5573 0.4282

 .

If we put interval matrix A = A + [−ϵ, ϵ], with ϵ = 10−5, then by applying the interval power series, Sylvester, and
Newton divided difference methods, respectively, we obtain

fP (A) = [0.5011, 0.5013] [−0.3906,−0.3904] [−0.3034,−0.3032] [−0.2399,−0.2397]
[−0.3906,−0.3904] [0.4238, 0.4241] [−0.5224,−0.5221] [−0.4375,−0.4372]
[−0.3034,−0.3032] [−0.5224,−0.5221] [0.3820, 0.3823] [−0.5575,−0.5572]

[−0.2399,−0.2397] [−0.4375,−0.4372] [−0.5575,−0.5572] [0.4281, 0.4283]

 ,

fS(A) = [0.5001, 0.5024] [−0.3920,−0.3891] [−0.3048,−0.3018] [−0.2411,−0.2384]
[−0.3920,−0.3891] [0.4222, 0.4257] [−0.5240,−0.5205] [−0.4390,−0.4357]
[−0.3048,−0.3018] [−0.5240,−0.5205] [0.3803, 0.3840] [−0.5591,−0.5556]
[−0.2411,−0.2384] [−0.4390,−0.4357] [−0.5591,−0.5556] [0.4266, 0.4298]

 ,

fN (A) = [0.5012, 0.5013] [−0.3906,−0.3904] [−0.3034,−0.3032] [−0.2398,−0.2397]

[−0.3906,−0.3904] [0.4239, 0.4240] [−0.5223,−0.5222] [−0.4374,−0.4372]
[−0.3034,−0.3032] [−0.5223,−0.5222] [0.3821, 0.3822] [−0.5574,−0.5573]
[−0.2398,−0.2397] [−0.4374,−0.4372] [−0.5574,−0.5573] [0.4281, 0.4283]

 .

As one can see, in this example the interval power series method and the interval Newton divided difference method
are closed together and yield tighter enclosures than one obtained by the interval Sylvester method.
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Table 1. Ratio and execution times (in second) for Example 3.3

n Ratio Time
Power Sylvester Newton Power Sylvester Newton

5 0.0138 1 0.0084 0.0183 0.0225 0.0072
10 1.4196e-05 1 1.0814e-05 0.0123 0.1057 0.0363
15 2.7478e-08 1 1.4641e-08 0.0165 0.4225 0.0658
20 5.8638e-11 1 3.1485e-11 0.0917 0.4779 0.1183
25 1.4248e-13 1 7.6840e-14 0.0205 0.7338 0.2111
30 3.3651e-16 1 1.8685e-16 0.0184 1.0710 0.3108
35 8.3325e-19 1 5.4447e-18 0.2125 1.5941 0.4766
40 2.0980e-21 1 1.4936e-17 0.0257 2.1922 0.6519
45 5.4891e-24 1 1.9975e-17 0.0840 2.9909 0.9044
50 1.4139e-26 1 1.3088e-17 0.0321 4.0329 1.3382

Example 3.3. For the last example of this section, we want to consider the problem in higher dimensions to compare
the interval power series, Sylvester and Newton divided difference methods in terms of the execution times and quality
of the obtained results. The obtained enclosures for the matrix function f(A) are compared by relative sums of radii
with respect to the result obtained by interval Sylvester method. That is for a computed enclosure Z by a method
and enclosure Y obtained by the interval Sylvester method, we display

Ratio =

∑
i,j rad(Zij)∑
i,j rad(Yij)

.

Now, let us consider A = tridiag(−0.2625, 1,−0.2375) ∈ Rn×n and f(x) = sinx. Put A = A + [−ϵ, ϵ] with ϵ = 10−5.
The results of executing three methods for different values of dimension n are summarized in Table 1.

The reported numbers in Table 1 show that the quality of the obtained enclosures by the interval power series and
Newton divided difference methods are close together up to dimension n = 35 and for higher dimensions the interval
power series yields the tightest enclosures. Also, the interval power series performs faster than two other methods
which confirms the lower computational complexity of this method proved in Theorem 2.1.

Applying the new approach on an ill-conditioned problem. Here we want to apply our approaches for en-
veloping the inverse of an ill-conditioned matrix, namely Hilbert matrix.

Consider the 3-by-3 Hilbert matrix

H =

 1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

 .

As you know, 1
3 can not be represented exactly by a finite number of decimals, so let us replace 1

3 by the interval

x = [0.3333333333, 0.3333333334], and 1
2 ,

1
4 , and

1
5 are replaced by their exact decimal equivalents. We denote the

resulting interval matrix by A

A =

 1.0000 0.5000 x
0.5000 x 0.2500

x 0.2500 0.2000

 .

In [19], an enclosure for A−1 has been obtained in the form

E(A−1) = H−1 + 10−7

 [−8, 8] [−20, 30] [−40, 30]
[−50, 60] [−200, 100] [−200, 200]
[−40, 40] [−100, 200] [−200, 200]

 ,
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in which H−1 is the exact inverse of Hilbert matrix H

H−1 =

 9 −36 30
−36 192 −180
30 −180 180

 .

Now, we obtain other enclosures for A−1 using our techniques. An approach for evaluating the inverse of a real matrix
B ∈ Rn×n is calculating its matrix function f(B) wherein f(x) = 1

x . So, foe utilizing our approaches it is enough to
compute the interval matrix function f(A).

Applying the interval power series method yields

fP (A) = H−1 + 10−7

 [−2, 1] [−8, 11] [−10, 7]
[−7, 10] [−54, 38] [−37, 52]
[−10, 7] [−37, 52] [−50, 35]

 ,

and using interval Sylvester method, we obtain

fS(A) = H−1 + 10−8

 [−5, 10] [−6, 11] [−25, 22]
[−6, 11] [−18, 11] [−6, 11]
[−7, 4] [−58, 11] [−5, 10]

 .

As one can see, our approaches give better result than one obtained in [19].

4. Some applications

(i) Double mass-spring system [12]

Second order differential equations have many applications in science and engineering. Here we consider a double
mass-spring system which arise from a physical problem.

Consider the double mass-spring system in Figure 1 with the assumption that there are no frictional forces. Here
the natural length of each spring, L1 and L2, respectively, takes into account the horizontal dimension of the object
that is, if the springs are neither compressed or stretched, then

x1 = L1 and x2 − x1 = L2.

The motion of the objects in this physical system is described by the solution of the following system

m1
d2x1(t)

dt2
= −(κ1 + κ2)x1(t) + κ2x2(t) + (κ1L1 − κ2L2),

m2
d2x2(t)

dt2
= κ2x1(t)− κ2x2(t) + κ2L2,

see [12]. Equivalently,

d2x1(t)

dt2
= a11x1(t) + a12x2(t) + b1,

d2x2(t)

dt2
= a21x1(t) + a22x2(t) + b2, (4.1)

where

a11 = −κ1 + κ2

m1
, a12 =

κ2

m1
, b1 =

κ1L1 − κ2L2

m1
,

a21 =
κ2

m2
, a22 = − κ2

m2
, b2 =

κ2L2

m2
.

If we consider

x(t) =

(
x1(2)
x1(2)

)
, ẍ(t) =

(
d2x1(t)

dt2
d2x2(t)

dt2

)
,
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Figure 1. A double mass spring system with objects of mass m1 and m2 located at positions x1(t)
and x2(t), respectively. The first spring which has a natural length of L1 and spring constant κ1,
connects the object of mass m1 to the wall. The second spring which has a natural length of L2 and
spring constant κ2, connects the two objects together. In this snapshot, the first spring is stretched
and the second is compressed.

A =

(
a11 a12
a21 a22

)
, b =

(
b1
b2

)
,

then system of equations (4.1) is equivalent to

ẍ(t) = Ax(t) + b.

Now suppose x(0) = x0 and x′(0) = x′
0 denote the initial states at t = 0. Also let b = 0, then the second order

differential equation corresponding to these conditions is

ẍ(t) = Ax(t), x(0) = x0, x′(0) = x′
0. (4.2)

Trigonometric matrix functions arise in the solution of such second order differential equations. The above equation
has the following solution

x(t) = cos(
√
−At)x0 + (

√
−A)−1 sin(

√
−At)x′

0. (4.3)

But cos(
√
−At) and (

√
−A)−1 sin(

√
−At) are matrix functions, hence we can compute x(t) by available methods in

literature.

Example 4.1. Consider the second order differential equation(
ẋ1(t)
ẋ2(t)

)
=

(
−6 1
1 −8

)(
x1(t)
x2(t)

)
,

with initial states x(0) = x0 and x′(0) = x′
0. We want to determine the state vector x(t) at t = 1. According to (4.3)

x(1) = cos(
√
−A)x0 + (

√
−A)−1 sin(

√
−A)x′

0,

where

A =

(
−6 1
1 −8

)
.
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If we consider functions f(x) = cos(
√
−x) and g(x) = sin(

√
−x)√

−x
, then

x(1) = f(A)x0 + g(A)x′
0.

We have

λ(A) = {−8.4142,−5.5858}.

Using Sylvester method for determining f(A) and g(A), we obtain the following result for x(1)

x(1) =

(
−0.7501 0.0915
0.0915 −0.9332

)
x0 +

(
0.2656 0.0759
0.0759 0.1137

)
x′
0.

Now we consider interval matrix A = A + [−ϵ, ϵ] with ϵ = 0.001. Using interval sylvester method for enclosing f(A)
and g(A), we obtain the following envelope for x(1)

x(1) =

(
[−0.7508,−0.7495] [0.0909, 0.0922]
[0.0909, 0.0922] [−0.9339,−0.9326]

)
x0

+

(
[0.2654, 0.2657] [0.0758, 0.0761]
[0.0758, 0.0761] [0.1135, 0.1139]

)
x′
0.

As one can see, interval Sylvester scheme gives a good enclosure for x(1) that guarantees x(1) ∈ x(1).

(ii) Phase plane analysis [39]

Phase plane analysis is a graphical method for studying 2D autonomous systems. This method was introduced by
mathematicians (among others, Henri Poincare) in 1890.

The basic idea of the method is to generate in the state space motion trajectories corresponding to various initial
conditions, and then to examine the qualitative features of the trajectories. As a graphical method, it allows us to
visualize what goes on in a nonlinear system starting from various initial conditions, without having to solve the
nonlinear equations analytically. Thus, information concerning stability and other motion patterns of the system can
be obtained, see[39].

Here we want to consider the first order linear differential equation

ẋ(t) = Ax(t), x(0) = x0.

This equation has the unique solution x(t) = etAx0 in which etA is a matrix function.

Example 4.2. [39] Consider the system ẋ(t) = Ax(t) wherein A =

(
a b
−b a

)
, if the initial condition is x(0) = x0,

then x(t) = etAx0 where

etA = eta
(

cos (tb) sin (tb)
− sin (tb) cos (tb)

)
.

If the initial condition x(0) has polar coordinates (r0, θ0), then the solution is given by

x1(t) = etar0 cos(θ0 − bt) and x2(t) = etar0 sin(θ0 − bt), t ≥ 0,

so the trajectories are spirals if a is nonzero, moving towards the origin if a < 0, and outward if a > 0. If a = 0
the trajectories are circles, see Figure 2. Now for bounding the errors arising from round off, we use the proposed
techniques in this paper for determining an enclosure for etA. Let g(x) = ex. For the matrix A we have λ(A) =
{λ1, λ2} = {a − ib, a + ib}. Using the interval matrix A = A + [−ϵ, ϵ] with ϵ > 0, and interval Newton divided
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difference method we can write

gN (tA) = g(tλ1)I +
g(tλ2)− g(tλ1)

tλ2 − tλ1
(tA− tλ1I)

=

(
et(a−ib) 0

0 et(a−ib)

)
+

et(a+ib) − et(a−ib)

(ta+ itb)− (ta− itb){ (
ta tb
−tb ta

)
−
(
t(a− ib) 0

0 t(a− ib)

)
+ t[−ϵ, ϵ]

}

= eta
(

cos (tb) sin (tb)
− sin (tb) cos (tb)

)
+

e2ta sin tb

b
[−ϵ, ϵ]

= etA +
e2ta sin tb

b
[−ϵ, ϵ]. (4.4)

It is obvious that (4.4) is an enclosure for etA which its tightness depends on ϵ. Thus for the state vector x(t) we have

x(t) ∈ {etA +
e2ta sin tb

b
[−ϵ, ϵ]}.

(iii) Control theory [8]

Consider the mass-spring-friction system shown in Figure 3(a). The linear motion concerned is in the horizontal
direction. The free-body diagram of the system is shown in Figure 3(b). The force equation of the system is

f(t) = M
d2y(t)

dt2
+B

dy(t)

dt
+Ky(t).

The state diagram of the system is constructed as shown in Figure 3(c). By defining the outputs of the integrators on
the state diagram as state variables x1, x2 the state equations are

dx2(t)

dt
= −K

M
x1(t)−

B

M
x2(t) +

1

M
f(t),

dx1(t)

dt
= x2(t),

so in matrix form we have(
dx1(t)

dt
dx2(t)

dt

)
=

(
0 1

−K
M − B

M

)(
x1(t)
x2(t)

)
+

(
0

f(t)
M

)
.

Now if we consider

x(t) =

(
x1(2)
x1(2)

)
, ẋ(t) =

(
dx1(t)

dt
dx2(t)

dt

)
,

A =

(
0 1

−K
M − B

M

)
, C =

(
0
1
M

)
,

then

ẋ(t) = Ax(t) + Cf(t).

Suppose f(t) = 0, so we will have

ẋ(t) = Ax(t),

with initial condition x(0) = x0. As we said previously, this equation has the unique solution x(t) = etAx0.
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Figure 2. The phase plane trajectory of introduced system in Example 4.2. The last figure shows
the phase plane trajectory as a projection of the curve (t, x1(t), x2(t)) in R3: case when a = 0 and
b > 0.

Figure 3. (a) Mass spring friction system. (b) Free-body diagram. (c) State diagram.

Example 4.3. [8] Consider the state equation(
ẋ1(t)
ẋ2(t)

)
=

(
0 1
−2 −3

)(
x1(t)
x2(t)

)
+

(
0
1

)
f(t).

The problem is determining the state vector x(t) for t ≥ 0 when input is f(t) = 0 for t ≥ 0. For this example we have

sI −A =

(
s −1
2 s+ 3

)
.

If we find the inverse of the matrix (sI −A) and take its Laplace transform ℓ−1[(sI −A)−1] then we obtain

etA = ℓ−1[(sI −A)−1] =

(
2e−t − e−2t e−t − e−2t

−2e−t + 2e−2t −e−t + 2e−2t

)
.

Thus for x(t) we have

x(t) =

(
2e−t − e−2t e−t − e−2t

−2e−t + 2e−2t −e−t + 2e−2t

)
x(0).
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Now, for bounding the round off errors, we determine an interval matrix function that encloses etA. Let g(x) = ex,
we compute the interval matrix function g(tA) = etA, therein A = A + [−ϵ, ϵ]. For the real matrix A, we have
λ(A) = {λ1, λ2} = {−2,−1}. Using the interval Newton divided difference method we can write

gN (tA) = g(tλ1)I +
g(tλ2)− g(tλ1)

tλ2 − tλ1
(tA− tλ1I)

=

(
e−2t 0
0 e−2t

)
+

e−t − e−2t

−t+ 2t

{(
0 t

−2t −3t

)
−
(
−2t 0
0 −2t

)
+ t[−ϵ, ϵ]

}

=

(
2e−t − e−2t e−t − e−2t

−2e−t + 2e−2t −e−t + 2e−2t

)
+ (e−t − e−2t)[−ϵ, ϵ]

= etA + (e−t − e−2t)[−ϵ, ϵ]. (4.5)

It is obvious that (4.5) is an enclosure for etA which depends on ϵ. Thus, for the state vector x(t) for t ≥ 0 we have

x(t) ∈
{
etA + (e−t − e−2t)[−ϵ, ϵ]

}
x(0).

5. Concluding remarks

In this paper, for a given matrix A ∈ Rn×n and an analytic function f , we proposed some approaches to obtain
an enclosure f(A) for the matrix function f(A). We then proved that for all the proposed approaches f(A) ∈ f(A).
For some numerical examples, we computed interval matrix function f(A) and showed that in all cases f(A) ∈ f(A)
which confirmed the presented analytical arguments. The numerical tests showed the performance of the proposed
approaches for bounding the error of determining matrix functions.
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