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Abstract In the present study, we propose an effective nonlinear anisotropic diffusion-based
hyperbolic parabolic model for image denoising and edge detection. The hyperbolic-
parabolic model employs a second-order PDEs and has a second-time derivative to

time t. This approach is very effective to preserve sharper edges and better-denoised
images of noisy images. Our model is well-posed and it has a unique weak solution
under certain conditions, which is obtained by using an iterative finite difference
explicit scheme. The results are obtained in terms of peak signal to noise ratio

(PSNR) as a metric, using an explicit scheme with forward-backward diffusivities.
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1. Introduction

The partial differential equations have been increasingly used for solving vari-
ous image processing and analysis tasks in the last few decades. Perona and Ma-
lik [25] have given the first approach to remove the noise of noisy images by the
nonlinear anisotropic diffusion equation. Catte et al. [7] introduced an improved
Perona and Malik [25] model for image restoration and edge detection by nonlin-
ear anisotropic diffusion model with a Gaussian kernel. Welk et al.[31] introduced
an additive noise-based nonlinear anisotropic diffusion model for image restoration
and they have explained the forward-backward diffusivities. Many approaches to
image restoration by nonlinear diffusion models are suggested by many researchers
[1, 2, 11, 12, 15, 16, 17, 20, 21]. One popular nonlinear model for removing noise
is the time-dependent model which has introduced by Rudin et al.[27]. Many other
techniques such as [7, 9, 10, 13, 14, 18, 19, 23, 26, 30] are proposed to reconstruct
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the image by complex diffusion model, fourth-order equation model, wavelet-based
diffusion model, etc.

In recent years many researchers [3, 4, 28, 29] have studied nonlinear diffusion-based
hyperbolic-parabolic models for image processing and to achieve a good dealing with
the trade-off between image denoising and edge detection. Ratner and Zeevi [28] have
given an approach to viewing the image as an elastic sheet by the telegraph-diffusion
model. Later, Cao et al.[4] have introduced a diffusion-based hyperbolic-parabolic
model to remove the noise of noisy images. Sun et al.[29] proposed a coupled system
for image restoration by hyperbolic-parabolic model.

Motivated by [31], in this study, we propose a novel nonlinear anisotropic diffusion-
based hyperbolic-parabolic model for additive noise removal. The paper is organized
as follows: after abstract and introduction. In section 2, we present an image denoising
algorithm. In section 3, the choice of diffusivity for models is discussed. The explicit
scheme for the diffusion model and hyperbolic-parabolic model are in section 4. In
section 5, the numerical experimental results in terms of PSNR are presented. Finally,
a conclusion is given in section 6.

2. Image denoising algorithms

Welk et al.[31] introduced a model for image restoration using a minimizing the
energy functional which is as:

E(u) =

∫
Ω

ϕ(|∇u|2) dx dy +
λ

2

∫
Ω

(u− u0)
2 dx dy. (2.1)

The first integral of (2.1) is the smoothness term or regulariser and the second integral
is the data term of the squared error of the denoised image. The equation (2.1) using
the Euler-Lagrange equation can be written as:

0 = div(ϕ′(|∇u|2)∇u)− λ(u− u0). (2.2)

The gradient descent leading to a minimizer of E as t → ∞ is given by

∂u

∂t
= div(g(|∇u|2)∇u)− λ (u− u0), (2.3)

Equation (2.3) known as the diffusion-reaction equation and here the diffusivity g(s2)
is equal to ϕ′(s2) with homogeneous Neumann boundary conditions. Using (2.3), we
propose a new approach to remove noise by hyperbolic-parabolic model and it is given
by the following equation:

∂2u

∂t2
+

∂u

∂t
= div(g(|∇u|2)∇u)− λ (u− u0), (2.4)

Equation (2.4) is the diffusion-based hyperbolic-parabolic model, here the diffusivity
and boundary conditions are same as (2.3).

The proposed model provides an smoothness additive noise removal images which
contains the second derivative to time t, it removes the diffusion effect near of the
images boundaries, thus producing much sharper edges and better details.

The model (2.4) is well-posed since it has a unique weak solution under certain
conditions. The solution of the model (2.4) represents the denoised image, and it is
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obtained by using a numerically explicit scheme. The details of the numerical explicit
scheme for the hyperbolic-parabolic model are given in section 4.

3. Choice of the diffusivity

It is a very important concept to choose the diffusivity parameter such as total
variation (TV) diffusivity, Charbonnier diffusivity and Perona-Malik (PM) diffusivity
which are related to the non-convex regularizer function [24, 25, 32]. The importance
of diffusivity parameter g is to controlling smoothness and even enhancement of edges.
In our numerical experiments, we take the Charbonnier diffusivity g(s2) is equal to

1√
1+(|s|2/K2)

, which is related to the convex regularizer ϕ(s2) =
√
K4 +K2s2 −K2,

as given in [5, 32].

4. Numerical approximation algorithm

In this section, we discretize diffusion model (2.3) and hyperbolic-parabolic model
(2.4) by an explicit numerical scheme. Let un

i,j be the approximation to the value
u(xi, yj , tn). The spatial step sizes are ∆x and ∆y and the time step size is ∆t. We de-
fine the discrete approximation as which gives. xi = i∆x, yj = j∆x, i, j=1,2,3.......N ,
N∆x = 1, and tn = n∆t, n ≥ 1.

∆+
x u

n
i,j =

un
i+1,j − un

i,j

∆x
, ∆−

x u
n
i,j =

un
i−1,j − un

i,j

∆x
,

∆+
y u

n
i,j =

un
i,j+1 − un

i,j

∆x
, ∆−

y u
n
i,j =

un
i,j−1 − un

i,j

∆x
and

δun
i,j =

un
i,j − un−1

i,j

∆t
, δ2un

i,j =
δun

i,j − δun−1
i,j

∆t
The discrete scheme of the diffusion reaction model (2.3) can be written as:

ut
ij =

1

2∆x
[(gni+1,j + gni,j)∆

+
x u

n
i,j − (gni,j + gni−1,j)∆

−
x u

n
i,j ]

+
1

2∆x
[(gni,j+1 + gni,j)∆

+
y u

n
i,j − (gni,j + gni,j−1)∆

−
y u

n
i,j ]− λ(un

ij − u0
ij).

The discrete scheme of the hyperbolic-parabolic model (2.4) can be written as

δ2un+1
i,j + δun+1

ij =
1

2∆x
[(gni+1,j + gni,j)∆

+
x u

n
i,j − (gni,j + gni−1,j)∆

−
x u

n
i,j ]

+
1

2∆x
[(gni,j+1 + gni,j)∆

+
y u

n
i,j − (gni,j + gni,j−1)∆

−
y u

n
i,j ]− λ(un

ij − u0
ij).

(4.1)

where the diffusivity g(|∇u|2) is discretised by,

gnij = ϕ
′

((
un
i+1,j − un

i−1,j

∆x

)2

+

(
un
i,j+1 − un

i,j−1

∆x

)2
)
.
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The explicit method is stable and convergent for ∆t
∆x2 ≤ 0.5, see [22].

The numerical explicit scheme (4.1) is stable and consistent with the diffusion
based hyperbolic model. It also converges fast to its weak solution represent the
filtered image. It is then used in our numerical experiments which are given in the
next section.

5. Numerical implementation

The nonlinear anisotropic diffusion-based hyperbolic technique is applied to many
noisy images with different levels of white additive Gaussian noise, which gives better-
preserved edges and smooth images. We consider here grayscale images as depicted
in Figure 1. The interval [0,255] contains initially pixel values of all images. We
use the normal imnoise function in Matlab to add the Gaussian white noise. The
intensities of the images are scaled between zero and one. The diffusivity parameter
like Charbonnier diffusivity K and Lagrange multiplier λ are taken as 5 and 0.85
respectively as given in [6, 8]. We choose ∆t/∆x2 = 0.4 and ∆t = 0.01 for (2.3) and
(2.4) respectively in our all numerical experiments.

To measure the quality of denoised images, we use peak signal to noise ratio (PSNR)
which is given by below:

PSNR = 10log10

(
R2

1
mn

∑n
i,j(u(i, j)− unew(i, j))2

)
, (5.1)

where {u(i, j)− unew(i, j)} is the difference of the denoised and original images.

6. Figures

(a) (b)

Figure 1. (a-b) Original Lena 256× 256 and Boat: 256× 256 respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. (a-c) Depiction of Lena images with various different levels
of of Gaussian noise says σ2 = 0.004, 0.006, 0.008, respectively; (d)-(f)
corresponding denoised images by model (2.3); (g)-(i) by model (2.4).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. (a-c) Depiction of Boat images with various different levels
of of Gaussian noise says σ2 = 0.004, 0.006, 0.008, respectively; (d)-(f)
corresponding denoised images by model (2.3); (g)-(i) by model (2.4).

7. Tables

Table 1. Figure 2(a-c) represent noisy images with different level of
Gaussian noise (σ2 = 0.004, 0.006 and 0.008). We applied the models
(2.3) and (2.4) to noisy images. We get denoised images figure 2(d-f)
and 2(g-i) respectively. The results of denoised images given as PSNR
values.

Images PSNR of Images PSNR for Images PSNR for
in figures noisy images in figures (Model-2.3) in figures (Model-2.4)

2(a) 24.10 2(d) 27.75 2(g) 29.74
2(b) 22.39 2(e) 25.77 2(h) 28.48
2(c) 21.18 2(f) 24.34 2(i) 27.42

- - No. of 500 No. of 200
iterations iterations
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Table 2. Figure 3(a-c) represent noisy images with different level of
Gaussian noise (σ2 = 0.004, 0.006 and 0.008). We applied the models
(2.3) and (2.4) to noisy images. We get denoised images figure 3(d-f)
and 3(g-i) respectively. The results of denoised images given as PSNR
values.

Images PSNR of Images PSNR for Images PSNR for
in figures noisy images in figures (Model-2.3) in figures (Model-2.4)

3(a) 24.07 3(d) 27.34 3(g) 28.94
3(b) 22.30 3(e) 25.41 3(h) 27.87
3(c) 21.09 3(f) 24.04 3(i) 26.98

- - No. of 500 No. of 200
iterations iterations

8. Conclusion

We have proposed a nonlinear diffusion-based hyperbolic-parabolic model for re-
moving additive white Gaussian noise. This model assures a strong feature edge-
preserving and removing noise component which have the role of controlling the speed
of the diffusion process, and a drift term introduced to enhance the image edges. The
unique weak solution of our model has computed using a finite difference method
based iterative explicit numerical approximation algorithm that is stable, consistent,
and converges quite fast. It has been successfully applied in our restoration experi-
ments which have proved the effectiveness of the proposed denoising approach. Our
restoration framework has provided proper smoothing results while avoiding undesir-
able effects. The nonlinear explicit scheme has been employed to carry out the goal.
The hyperbolic-parabolic model has given better results than the diffusion model with
a small number of iterations.
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